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Peroxisome proliferator-activated receptor 𝛾 (PPAR 𝛾), a member of the nuclear receptor superfamily, is a ligand-activated
transcription factor that plays an important role in the control of a variety of physiological processes.The last decade has witnessed
an increasing interest for the role played by the agonists of PPAR 𝛾 in antiangiogenesis, antifibrosis, anti-inflammation effects and
in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-
related macular degeneration (AMD), diabetic retinopathy (DR), keratitis, and optic neuropathy, often involve neoangiogenesis
and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPAR 𝛾 to
improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPAR 𝛾 in the
ocular pathophysiological processes and PPAR 𝛾 agonists as novel adjuvants in the treatment of eye diseases.

1. Introduction

Peroxisome proliferator-activated receptor 𝛾 (PPAR 𝛾), a
member of the nuclear receptor superfamily, is a ligand-
activated transcription factor that plays an important role
in the control of gene expression linked to a variety of
physiological processes [1]. PPAR 𝛾 was first identified by
homology cloning in Xenopus [2] and then in mammals
[3] and mice [4]. It is most widely expressed in adipose
tissue but is also expressed in immune/inflammatory cells
(e.g., monocytes, macrophages), mucosa of the colon and
cecum, skeletal muscle, heart, kidney, liver, lung, and the eye
ball [5–8]. Similar to typical nuclear receptors, PPAR 𝛾 is
comprised of distinct functional domains, including an N-
terminal transactivation domain (AF1), a highly conserved
DNA-binding domain (DBD), and a C-terminal ligand-
binding domain (LBD) containing a ligand-dependent trans-
activation function (AF2) [9].

PPAR 𝛾 can regulate transcription by several mecha-
nisms, including ligand-dependent transactivation, ligand-
dependent transrepression, and ligand-independent repres-
sion. PPAR 𝛾 is activated by heterodimerization with the
retinoid X receptor (RXR) into biologically active tran-
scription factor and then binds to peroxisome proliferator

response elements (PPREs), thereby acting as a transcrip-
tional regulator [10, 11]. PPAR 𝛾 is also capable of regulating
gene expression independently of binding to PPREs. PPAR 𝛾
possesses a large T-shaped ligand-binding pocket that enables
interaction with a structurally diverse library of ligands
[12]. A wide range of natural and synthetic compounds
functioning as PPAR 𝛾 ligands have been identified (Table 1).

Endogenous ligands for PPAR 𝛾 include unsaturated and
oxidized fatty acids, nitrated fatty acids, eicosanoids, and
prostaglandins [13]. Thiazolidinediones (TZDs) including
troglitazone, pioglitazone, and rosiglitazone are synthetic
PPAR 𝛾 ligandswith the efficacy to enhance insulin sensitivity
in animals and humans [14, 15], and some of the TZDs are
already in clinical use as insulin sensitizers in type 2 diabetic
patients [16]. Withmore intensive investigations, the number
of PPAR 𝛾 ligands continues to increase for their key role in
regulating metabolic processes.

PPAR 𝛾 is involved in a range of distinct physiological
processes including fat cell differentiation, glucose homeosta-
sis, lipid metabolism, aging, and inflammatory and immune
responses [1, 17–20]. Previous investigations have found that
PPAR 𝛾 and its ligands have good antiangiogenesis and
antifibrosis effects in various organs [21–24]. Furthermore,
recent studies indicate that PPAR 𝛾 plays an important role in
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Table 1: Ligands for PPAR 𝛾.

Ligand class Compounds References

Endogenous agonists

15d-PGJ2, [122–125]
13-Hydroxyoctadecadienoic acid (13-HODE), [122]
9-hydroxyoctadecadienoic acid (9-HODE), [122]
15-hydroxyeicosatetraenoic acid (15-HETE), [123]

nitrolinoleic acid [126]

Synthetic agonists

Pioglitazone, troglitazone, rosiglitazone, ciglitazone, TZD18, [127–129]
JTT-501, CDDO, SB-219994, SB-219993, GW2331, GW0072, [130–133]
5-ASA, PAT5A, TAK-559, GW7845, GW1929, LG10074, [122, 134–137]

indomethacin, ibuprofen, flufenamic acid, conjugated linoleic acid, [123, 138–140]
L-764406, L-796449, LY-510929, LY-465608, AD-5061, AD-5075, [141–144]
KRP-297/MK-0767, MCC555, ragaglitazar, farglitazar, diclofenac [145–148]

Antagonists GW9662, CDDO-Me, BADGE, PD068235, SR-202 [149, 150]

oxidative stress response. It may directly modulate activa-
tion of several antioxidants involved in oxidative stress and
influence apoptotic or necrotic cell death [25]. In regard
to the immune system, PPAR 𝛾 is found in monocytes,
macrophages, T cells, and dendritic cells and has been identi-
fied as crucial regulator of inflammatory gene expression [26–
31]. As the pathologicmechanisms ofmajor blinding diseases,
such as age-related macular degeneration (AMD), diabetic
retinopathy (DR), keratitis, and optic neuropathy, often
involve neoangiogenesis and inflammation- and oxidative
stress-mediated cell death, evidences are accumulating on
the potential benefits of PPAR 𝛾 to improve or prevent these
vision threatening eye diseases. However, there also several
studies that reported the side effects of PPAR 𝛾 in some ocular
diseases [32–37]. In this paper we describe what is known
about the role of PPAR 𝛾 in the ocular pathophysiological
processes and PPAR 𝛾 agonists as novel adjuvants in the
treatment of eye diseases.

2. PPAR 𝛾 and Ocular Disease

2.1. PPAR 𝛾 and Ocular Surface Disease

2.1.1. PPAR 𝛾 and Corneal Neovascularization and Fibrosis.
Thecornea is an avascular tissue andmust remain transparent
to refract light properly. Corneal neovascularization and
fibrosis often lead to loss of corneal transparency which is
an important cause of blindness. Diseases associated with
corneal neovascularization include inflammatory disorders,
corneal graft rejection, infectious keratitis, traumatic and
chemical insults, contact lens-related hypoxia, aniridia, and
limbal stem cell deficiency [38]. As potential angiogenesis
modulators [39, 40], PPAR 𝛾 ligands have a good inhibition
of corneal neovascularization [6, 41–43]. In 1999, Xin et al.
[6] first reported that administration of 15d-PGJ2 inhibited
vascular endothelial cell growth factor- (VEGF-) induced
angiogenesis in the rat cornea. Then, Usui et al. [41] found
that telmisartan, a partial agonist of PPAR 𝛾, significantly
reduced vascularized area in mice cornea. Furthermore,
telmisartan-induced inhibition of corneal neovascularization
was partially reversed by the administration of GW9662

(a PPAR 𝛾 antagonist), indicating that the inhibitory effects
were partially mediated through PPAR 𝛾 signaling. Sarayba
et al. [43] randomly divide twenty-six adult male Sprague-
Dawley rats into three groups. Each group received intrastro-
mal polymer micropellets containing different doses and
types of pioglitazone. The area and density of neovas-
cularization were measured 7 days after pellet implanta-
tion. The result indicated that pioglitazone can effectively
inhibit VEGF-induced corneal neovascularization. Recently,
Uchiyama et al. [42] also demonstrated that the ophthalmic
solution of the PPAR 𝛾 agonist could inhibit inflammation,
decrease the fibrotic reaction, and prevent neovasculariza-
tion in the cornea from the early phase after alkali burn
injury. Corneal neovascularization is a complex process that
includes degradation of basement membrane and prolifera-
tion, migration, and tube formation by endothelial cells [44].
Activation of PPAR 𝛾 suppresses endothelial cell differenti-
ation into tube-like structures and represses growth factor-
induced endothelial cell proliferation in vitro [6]. PPAR 𝛾
activation also inhibits the expression of at least three impor-
tant genes in the angiogenic process, the VEGF receptors
Flk/KDR, Flt-1, and the protease uPA [6]. In addition, PPAR
𝛾 can reduce the activity of angiogenesis by inhibiting inflam-
matory cytokines at the transcriptional level via suppression
of the AP-1, NF-𝜅B pathway [45].These observations indicate
some possible molecular mechanisms by which PPAR 𝛾
ligandsmediate inhibition of corneal neovascularization.The
TGF𝛽-induced differentiation of corneal keratocytes into
myofibroblasts plays a critical role in corneal scarring. PPAR
𝛾 ligands have antifibrotic effects and have been studied as
agents capable of inhibiting TGF𝛽-induced myofibroblast
differentiation in cornea [46–49]. Using corneal fibroblasts
cultured in vitro, Huxlin et al. [46] and Pan et al. [48]
demonstrated that pioglitazone suppressed TGF𝛽-induced
alpha smoothmuscle actin (𝛼SMA) expression, inhibited cell
migration, contractility, matrix metalloproteinase (MMP)
secretion, and extracellular matrix production. Electrophilic
PPAR 𝛾 ligands, CDDO-Me and 𝜅15d-PGJ2, were also able to
inhibit corneal fibroblast to myofibroblast differentiation in
vitro [47]. Viral transfection and overexpression of PPAR 𝛾
inhibited activation of ocular fibroblasts and macrophages in
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vitro and also reduced myofibroblast differentiation, upreg-
ulation of several cytokines and matrix metalloproteases,
and macrophage/monocyte invasion in an alkali-burned
mouse cornea [50]. Since viral transfection is not yet widely
practiced clinically, several authors investigated the effects of
topical PPAR 𝛾 ligands on corneal fibrosis [42, 46]. Topical
application of rosiglitazone to cat eyes following laser ablation
of the corneal stroma decreased 𝛼SMA expression, blocking
myofibroblast differentiation, while allowing the epithelium
and stroma to return to a normal thickness, restoring corneal
shape, structure, and optical quality to near-normal levels
[46]. The ophthalmic solution containing 0.1% pioglitazone
hydrochloride significantly decreased the fibrotic reaction in
the rat cornea after alkali burn injury [42]. All these evidences
suggest that PPAR 𝛾 ligands may exert a direct antifibrosis
effect to prevent the corneal scar formation.

2.1.2. PPAR 𝛾 and Conjunctiva Fibrosis. Conjunctival scar-
ring potentially reduces filtration efficacy after glaucoma
filtering surgery. Yamanaka and his fellows [51] found that
PPAR 𝛾 gene transfer suppresses the fibrogenic reaction
in human subconjunctival fibroblasts (hSCFs) as well as
the injury-induced scarring of conjunctival tissue in mice.
PPAR 𝛾 overexpression may reduce the expression of type
I collagen, fibronectin, and connective tissue growth factor
(CTGF) in cultured hSCFs. It may also suppress invasion
of macrophages into the healing subconjunctival tissue and
generation of myofibroblasts [51]. Consistent with this result,
Fan [52] and his fellows reported that rosiglitazone can
effectively attenuate activation of human Tenon’s fibroblasts
(HTFs) induced by TGF𝛽1 without obvious toxicity. The
possible mechanism might be that rosiglitazone interferes
with TGF𝛽/Smad signaling pathway. Thus, PPAR 𝛾 and
its agonists may represent a new strategy for inhibiting
excessive bleb scarring in the conjunctiva after glaucoma
surgery. Pterygium is a wing-like fibrovascular proliferation,
of exposed bulbar conjunctival tissue, which encroaches
onto the cornea. PPAR 𝛾 is positively expressed in ptery-
gium specimens obtained from patients undergoing routine
pterygium excision [53]. The role of PPAR 𝛾 as a potential
therapeutic agent for pterygium was studied on cultured
human pterygium fibroblasts (HPFs) in vitro. The results
showed that PPAR 𝛾 agonists can significantly inhibit HPFs
proliferation and induce apoptosis ofHPFs in dose- and time-
dependent manners [53, 54].

2.1.3. PPAR 𝛾 andDry Eye. Recently, Chen et al. [55] reported
that the PPAR 𝛾 expression in the conjunctiva of dry eye
mice was downregulated, accompanied by increased contents
of inflammatory cytokines, TNF-𝛼 and IL-1𝛽. They also
found that pioglitazone may activate PPAR 𝛾 to suppress the
inflammatory progression, increase the tear fluid production,
elevate the tear film stability, and reduce the damage to the
ocular surface, exerting a therapeutic effect on dry eye. In
cultured lacrimal gland acinar cells, pioglitazone can inhibit
NO production, excessive synthesis of which may be detri-
mental to normal function of the lacrimal gland, suggesting
that the use of PPAR 𝛾 agonist may provide an effective

therapeutic intervention for the prevention of dry eye caused
by decrease or lack of lacrimal gland secretion [56].

2.1.4. PPAR 𝛾 and Meibomian Gland Dysfunction (MGD).
Recently, Jester and Nien published a series of papers on
PPAR 𝛾 and MGD [7, 57, 58]. Their studies have shown
that mouse and human meibomian glands undergo specific
age-related changes, including decreased acinar cell pro-
liferation, decreased meibomian gland size, and increased
inflammatory cell infiltration. These changes occur concur-
rently with altered PPAR 𝛾 localization from cytoplasmic-
vesicular/nuclei of acinar cells in young mice and humans to
nuclei in older individuals. Meibomian glands express PPAR
𝛾 in lipid synthesizing cells and PPAR 𝛾 is a biomolecular
marker for meibocyte differentiation. By analyzing eyelid
tissue from 36 patients (age range, 18–95 years) who under-
went canthoplasty procedures, they found that the degree of
MGDdropoutwas significantly correlatedwith nuclear PPAR
𝛾 staining, indicating that age-related MGD may involve
altered PPAR 𝛾 localization. Based on these findings, Jester et
al. proposed that age-relatedMGD involves altered regulation
of PPAR 𝛾 gene that may lead to decreased meibocyte
differentiation, acinar atrophy, decreased lipid synthesis, and
the development of hyposecretory MGD.

2.2. PPAR 𝛾 and Retinal Disease

2.2.1. PPAR 𝛾 and AMD. Age-related macular degeneration
(AMD) is a degenerative disease of the macula which results
primarily in loss of central vision [59].Thedisease can be clas-
sified into a dry or nonexudative form (geographic atrophy)
and a wet or exudative form (neovascular AMD). There is a
growing body of research demonstrating that PPAR 𝛾may be
involved in various chemical pathways associated with AMD.
PPAR 𝛾 is constitutively expressed in normal neuroretina
and retinal pigmented epithelial (RPE) cells of mice and
humans. However, the expression of PPAR 𝛾 is significantly
higher thannormal in bothCcl2−/−/Cx3cr1−/−mice (anAMD
model) and AMD patients [60].The exudative form of AMD,
characterized by choroidal neovascularization (CNV), is
thought to be responsible formost of the cases of severe visual
loss in this disease. Murata et al. [61] have demonstrated that
PPAR 𝛾 ligands, troglitazone or rosiglitazone, significantly
inhibited VEGF-induced proliferation and migration of RPE
and choroidal endothelial cells and choroidal angiogenesis
in vitro. In the eyes of rat and monkeys in which CNV was
induced by laser photocoagulation, this group also showed
that intravitreal injection of troglitazone dramatically inhib-
ited the percentage of lesions as well as leakage per lesion.
Increased intake of omega-3 long-chain polyunsaturated
fatty acids (𝜔-3 LCPUFAs), endogenous agonists of PPARs
[62], is associated with attenuation of pathologic retinal
and choroidal angiogenesis [63]. More recently, SanGiovanni
and his colleagues found that DNA sequence variation in
PPAR 𝛾 coactivator 1 alpha, a gene encoding a coactivator of
the 𝜔-3 LCPUFAs-sensing PPAR-retinoid X receptor (RXR)
transcription complex, may influence neovascularization in
AMD [64]. The results suggest that multiple constituents
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(ligands and transcriptional coactivators) of the PPAR-RXR
system may influence pathogenic processes in CNV. There is
evidence that dysfunction of RPE around macula area may
be responsible for the development of AMD [58, 65]. One of
the most important functions of RPE is phagocytic uptake
and degradation of photoreceptor outer segments [64]. A
study showed that specific phagocytosis of photoreceptor
outer segments by RPE cells selectively activates expression
of PPAR 𝛾, suggesting that PPAR 𝛾 may play an important
role in the photoreceptor renewal process [66]. Oxidative
stress is a major risk factor causing RPE cell degeneration.
A number of studies have shown that RPE might be the
prime target for oxidative stress and PPAR 𝛾 is implicated
in the oxidative stress response [25]. In cultured human
primary RPE cells and/or ARPE-19 cells, troglitazone and
15d-PGJ2 can protect cells from oxidative stress induced
by t-butylhydroperoxide or H

2

O
2

[67–69]. Other PPAR 𝛾
agonists, rosiglitazone [67, 69], pioglitazone [69], ciglitazone
[68], AGN195037 [67], azelaoyl PAF [68], LY171883 [68],
and WY14643 [68], however, are not effective. To determine
whether the cytoprotective effects of troglitazone and 15d-
PGJ2 were mediated by PPAR 𝛾, PPAR 𝛾 expression was
knocked down using RNA interference. In the cells lacking
PPAR 𝛾 expression, troglitazone’s protective effect was greatly
blocked [69], while 15d-PGJ2’s protective activity was not
affected [67]. These results indicate that the cytoprotective
effect of troglitazone is mediated by PPAR 𝛾 but the effect
of 15d-PGJ2 is independent of PPAR 𝛾 activity, and PPAR
𝛾 agonists can have differential effects on RPE survival in
response to oxidative stress.

2.2.2. PPAR 𝛾 and DR. Diabetic retinopathy (DR) remains as
the leading cause of blindness amongworking age individuals
in developed countries, which is one of the most common
microvascular complications of diabetes. TZDs, synthetic
PPAR 𝛾 agonists, in addition to increasing insulin sensitivity
and regulating lipid metabolism [70, 71], may also exert anti-
inflammatory, antiatherogenic, neuroprotective, and antiox-
idative effects [72–75]. Because of these beneficial effects,
theymay have therapeutic potential in diabeticmicrovascular
complications such as DR.

In vitro and in vivo experiments have demonstrated
that TZDs may provide retinal microcirculatory stability
[76–78], attenuate pathological retinal microvessel formation
[79], inhibit the fibrotic change of RPE cells [80], and also
prevent retinal neuronal damage [81] in diabetic and ischemic
retinopathy. Recently, a study showed that pioglitazonemight
improve impaired insulin signaling in the diabetic rat retina
[82]. Murata et al. [83] illustrated that TZDs may have
the potential to inhibit the progression of DR. In vitro,
they found that troglitazone and rosiglitazone could inhibit
the proliferation of retinal endothelial cell and tube for-
mation induced by VEGF. Meanwhile, using the oxygen-
induced ischemia model of retinal neovascularization in
neonatal mice they showed that intravitreous injection of
troglitazone and rosiglitazone could inhibit development of
retinal neovascularization. To support these experimental
evidences, a clinical study showed that the progression from

nonproliferative DR to proliferative DR over 3 years occurred
in 19.2% in the rosiglitazone group and 47.4% in the control
group, suggesting that rosiglitazone may delay the onset
of proliferative DR [84]. However, there are some adverse
effects of TZDs that have been reported. Several clinical
studies showed that TZDs increased the risk of macular
edema [32–35]. Other studies found that administration of
pioglitazone [36] and troglitazone [37] significantly increased
plasmaVEGF expression in diabetic patients which increased
risk of diabetic macular oedema (DME) and promoted the
progression of DR.The relationship between TZDs andDME
is still controversial. Some authors reported that they did not
detect fluid retention in themacula or subclinical DMEunder
TZDs treatment [85, 86]. Further clinical and experimental
studies are urgently required.

Apart from these synthetic PPAR 𝛾 agonists, herbal
and traditional natural medicines, such as Astragalus mem-
branaceus, Pueraria thomsonii [87], Swietenia mahagoni [69],
Korean red ginseng [59], Dan-shao-hua-xian formula [88–
90], and Turmeric [91–94], have shown the potential effect
in the modulation of DR through PPAR 𝛾 activation. Tom
Huang’s group summarized the current studies on herbal or
traditional medicine associated with PPAR 𝛾 activation and
the possible mechanisms relevant to the management of DR
[8]. They confirmed that plant-derived PPAR 𝛾 activators
could provide an alternative or combination therapy to
prevent or delay the progression of DR.

2.2.3. PPAR 𝛾 and Retinal Neuroprotection. It is well known
that PPAR 𝛾 has neuroprotective effects in central nervous
system (CNS) [95]. Several studies indicated that PPAR 𝛾 ago-
nists could prevent or attenuate the process of neurodegener-
ative diseases in Parkinson’s disease [96], Alzheimer’s disease
[97], and amyotrophic lateral sclerosis [98]. Various PPAR 𝛾
agonists (e.g., troglitazone, rosiglitazone, and pioglitazone)
have shown beneficial effects in animal models of cerebral
ischemia/reperfusion injury, ischemic stroke, intracerebral
hemorrhage, traumatic brain injury, and spinal cord injury
by attenuating neuronal cell death in the injured CNS [99–
103]. Using a rat model of optic nerve crush (ONC), our
research group demonstrated that PPAR 𝛾 activation is
beneficial in retinal neuroprotection [104]. We found that
PPAR 𝛾 was upregulated in rat retina after ONC and most
of PPAR 𝛾 immunoreactive cells colocalized with Müller
cells. Intraperitoneal injection of pioglitazone significantly
enhanced the number of surviving retinal ganglion cells
(RGCs) and inhibited RGCs apoptosis induced by ONC. But
these neuroprotective effects were abrogated in the presence
of PPAR 𝛾 antagonist GW9662. In addition, pioglitazone
attenuated Müller cell activation after ONC. In coincidence
with our results, Zhang et al. reported the protective effect
of pioglitazone on the rat retina after ischemia/reperfusion
injury [105]. They found that pioglitazone could inhibit
activation of the glia cells, prevent cell apoptosis, and protect
the retina from subsequent cellular damage caused by the
retinal I/R. In vitro, other two PPAR 𝛾 ligands, 15d-PGJ2
and troglitazone, also appeared to protect RGC-5 cells against
glutamate-induced cytotoxicity. To understand the more
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specific mechanisms of PPAR 𝛾-based neuroprotection in
retina, future studies would be needed.

2.3. PPAR 𝛾 and Other Ocular Diseases. PPAR 𝛾 has
been found to be associated with thyroid eye disease
(TED), Graves’ ophthalmopathy (GO), or thyroid-associated
orbitopathy (TAO), an autoimmune eye condition that is
often seen with thyroid disease. The expression of PPAR 𝛾
was significantly increased in orbital tissue samples from
patients with GO compared with normal orbital tissue [106,
107]. PPAR 𝛾 may play divergent roles in the process of the
disease, both attenuating and promoting disease progression.
PPAR 𝛾 activation is critical to adipogenesis, making it a
potential culprit in the pathological fat accumulation asso-
ciated with TED or GO [108]. Downregulation of PPAR 𝛾
could reduce adipogenesis [109]. Starkey reported that a male
type 2 diabetic patient, treatedwith pioglitazone, experienced
rapid exacerbation of his TED, which had been stable and
inactive for more than 2 yr. In his in vitro experiments, by
isolating and culturing preadipocytes from TED orbits, he
demonstrated that the PPAR 𝛾 agonists resulted in a 2- to
13-fold increase, and a PPAR 𝛾 antagonist produced a 2-
to 7-fold reduction in adipogenesis [110]. Consistent with
this finding, sodium diclofenac, another antagonist of PPAR
𝛾, also appeared to have efficacy in the treatment of GO
[111]. However, PPAR 𝛾 also has anti-inflammatory activity.
Pioglitazone and rosiglitazone have been found to inhibit
TGF𝛽-induced, hyaluronan-dependent, T cell adhesion to
orbital fibroblasts, suggesting that they could inhibit intense
inflammation and might be useful in treating TED [112].
Thus, if PPAR 𝛾 function is to be targeted as a TED thera-
peutic, PPAR 𝛾modulators with selective activities would be
required.

PPAR 𝛾 expression has been already studied in several
tumors, and most studies implicate a protective effect of
PPAR 𝛾 activation in tumors [113–116]. A recent study showed
that PPAR 𝛾 was predominantly expressed in the cytoplasm
of uveal melanoma tumor cells, suggesting that it might play
an important role in the progression of uveal melanoma [117].
However, further studies are warranted to shed more light on
a possible protective role of PPAR 𝛾 in this tumor.

Since PPAR 𝛾 has been shown to have the potential
to treat autoimmune diseases [118–120], a murine model of
experimental autoimmune uveoretinitis (EAU) was estab-
lished to explore the efficacy of PPAR 𝛾 on endogenous
uveitis. Intravenous injection of pioglitazone before and
after the onset of EAU significantly reduced disease severity,
suppressed intraocular concentrations of TNF-𝛼 and IL-
6, and increased CD4(+)Foxp3(+) regulatory T cells and
CD4(+)CD62L(high) naı̈ve T cells in draining lymph nodes
[121].

3. Significance and Future Prospects

TZDs (e.g., pioglitazone, troglitazone, and rosiglitazone) and
15d-PGJ2, as the existing therapeutic agents targeted to effect
PPAR 𝛾, may be the novel adjuvants in the treatment of ocular
diseases. Pioglitazone and 15d-PGJ2 may inhibit corneal

neovascularization and scar formation in cornea alkali burn
injury model and VEGF-induced cornea angiogenesis and
exert a therapeutic effect in dry eye mice. Rosiglitazone
may represent a new strategy for inhibiting excessive bleb
scarring in the cornel and conjunctiva after laser ablation and
glaucoma filtering surgery. In retinal diseases troglitazone
and rosiglitazone may attenuate the progression of AMD
and DR in vivo. A clinical study suggested that rosiglitazone
may delay the onset of proliferative DR. Pioglitazone and
troglitazone also showed the neuroprotective effects in retina.

In summary, various experimental studies and several
clinical studies have provided evidences that PPAR 𝛾 may
emerge as a potential target for drugs that might be used in
the treatment of ocular diseases in which PPAR 𝛾 activities
play a key role in disease pathology. However, the complexity
of PPAR 𝛾 activation not only provides beneficial effects but
also introduces risks from undesirable side effects. Extensive
preclinical and clinical trials are needed to establish the
efficacy and to prove the safety of these drugs for the
treatment of ocular diseases.
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