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Abstract

Background: Single-cell RNA-seq (scRNA-seq) profiling has revealed remarkable variation in transcription, suggesting that
expression of many genes at the single-cell level is intrinsically stochastic and noisy. Yet, on the cell population level, a
subset of genes traditionally referred to as housekeeping genes (HKGs) are found to be stably expressed in different cell and
tissue types. It is therefore critical to question whether stably expressed genes (SEGs) can be identified on the single-cell
level, and if so, how can their expression stability be assessed? We have previously proposed a computational framework
for ranking expression stability of genes in single cells for scRNA-seq data normalization and integration. In this study, we
perform detailed evaluation and characterization of SEGs derived from this framework. Results: Here, we show that gene
expression stability indices derived from the early human and mouse development scRNA-seq datasets and the ”Mouse
Atlas” dataset are reproducible and conserved across species. We demonstrate that SEGs identified from single cells based
on their stability indices are considerably more stable than HKGs defined previously from cell populations across diverse
biological systems. Our analyses indicate that SEGs are inherently more stable at the single-cell level and their
characteristics reminiscent of HKGs, suggesting their potential role in sustaining essential functions in individual cells.
Conclusions: SEGs identified in this study have immediate utility both for understanding variation and stability of
single-cell transcriptomes and for practical applications such as scRNA-seq data normalization. Our framework for
calculating gene stability index, ”scSEGIndex,” is incorporated into the scMerge Bioconductor R package
(https://sydneybiox.github.io/scMerge/reference/scSEGIndex.html) and can be used for identifying genes with stable
expression in scRNA-seq datasets.
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Background

A hallmark of single-cell RNA-sequencing (scRNA-seq) data has
been the remarkable variation in gene transcription that occurs
at the level of individual cells [1]. The high degree of variation
has led to the appreciation that transcription of genes at the
single-cell level is comparatively noisier than on the cell popu-
lation level [2]. Indeed, a subset of genes are thought to be char-
acterized by their stochastic expression [3]. Supporting this no-
tion, genes were found to show transcriptional bursting, where
their expression varies drastically in individual cells [4,5]. Fur-
thermore, a large number of genes from scRNA-seq data exhibit
bimodality or multimodality of non-zero expression values [6],
suggesting that many of these genes may be expressed at differ-
ent levels in the same and/or different cells. These phenomena
illustrate that expression stochasticity is an intrinsic property of
many genes on the single-cell level [7].

On the cell population level, however, a subset of genes tra-
ditionally referred to as housekeeping genes (HKGs) [8,9] are
found to be stably expressed in different cell types, tissue types,
and developmental stages [10]. The concept of HKGs is often re-
lated to the gene set required to maintain basic cellular func-
tions and therefore is crucial to the understanding of the core
transcriptome that is required to sustain life [11–13]. Early stud-
ies [8, 14–16] were conducted to define HKGs using serial analy-
sis of gene expression (SAGE) or microarrays. With the advent
of biotechnologies, follow-up studies using more comprehen-
sive data sources [17, 18] and high-throughput RNA sequencing
(RNA-seq) [10, 19] have refined the list of HKGs from populations
of cells.

When the findings from bulk transcriptome data of cell pop-
ulations and the stochasticity in gene expression observed in
individual cells from scRNA-seq data are taken together, several
fundamental questions arise including (i) can patterns of stably
expressed genes be identified from single-cell data? And if so,
(ii) how stable are they across individual cells from different tis-
sue types and biological systems? (iii) What properties do such
genes have? And (iv) how do they compare to HKGs defined from
bulk transcriptome data? In the present study, we set out to an-
swer each of these questions.

Leveraging the advances of scRNA-seq techniques [20,21],
we have previously developed a computational framework to
rank genes based on various properties extracted from scRNA-
seq data to characterize their expression stability in individual
cells [22]. These genes were subsequently used for scRNA-seq
data normalization and integration. To address the questions
posed above, here, we applied the proposed framework on 2
high-resolution scRNA-seq datasets in which a wide range of cell
types and developmental stages were profiled in human [23] and
mouse [24], and also the ”Mouse Atlas” scRNA-seq dataset that
comprehensively profiled across major mouse organs and tissue
types [25]. We referred to the list of stably expressed genes de-
rived from these datasets as “hSEG” and “mSEG” for human and
mouse, respectively, and collectively as “SEGs.” We subsequently
evaluated the stability of SEGs on a collection of independent
scRNA-seq datasets generated from diverse tissues and biolog-
ical systems, and different sequencing protocols. Compared to
HKGs previously defined using bulk microarray [15] or RNA-seq
datasets [10], SEGs identified on the single-cell level are consid-
erably more stable in all tested biological systems, demonstrat-
ing the higher resolution enabled by scRNA-seq data for iden-
tifying genes that are truly stably expressed across individual
cells, and suggesting their potential roles in maintaining essen-
tial functions in individual cells.

Our analyses highlight the previously unappreciated gene
stability at the single-cell level. Our computational framework,
incorporated as part of the scMerge Bioconductor R package, also
allows further identification and refining of SEGs in other scRNA-
seq datasets. This will have broad applications in normalization
[26,27] and removal of unwanted variation [22,28,29] in scRNA-
seq as well as bulk sequencing datasets generated from various
experiments.

Data Description
scRNA-seq data processing

A collection of 11 publicly available scRNA-seq datasets (Table 1)
were used in this study. These datasets were downloaded from
either NCBI GEO repository or the EMBL-EBI ArrayExpress reposi-
tory. Fragments per kilobase of transcript per million (FPKM) val-
ues or counts per million (CPM) from their respective original
publications were used to quantify full-length gene expression
for datasets generated by SMARTer or SMART-Seq2 protocols.
Unique molecular identifier–filtered counts were used to quan-
tify gene expression for the InDrop dataset. Data were trans-
formed by log2(x + 1), where x is the original quantification (e.g.,
CPM). All datasets have undergone cell-type identification using
biological knowledge assisted by various clustering algorithms
from their respective original publications, which we retain for
evaluation purposes. For each dataset, genes with >80% missing
values (zeros) were removed, with the remaining genes consid-
ered as expressed in that dataset. These filtered datasets were
used for all subsequent analyses.

Analyses
A computational framework for measuring gene
expression stability in single cells

We recently proposed a mixture-modeling computational
framework for characterizing gene expression stability using
scRNA-seq data [22]. The original framework uses a Gamma
component to fit the lower end of the distribution given the non-
negative values of gene expression [30] and a Gaussian compo-
nent to fit the higher end for capturing variability in cells that
express a given gene (Fig. 1A). To test whether a Gamma com-
ponent would be better suited for fitting the higher end of the
distribution, here we compared the choices of Gamma-Gaussian
and Gamma-Gamma mixture models using Bayesian informa-
tion criterion. We found that the Gamma-Gaussian mixture fits
consistently better than Gamma-Gamma mixture across multi-
ple datasets (Fig. 1B).

Using the Gamma-Gaussian mixture model, we extract a set
of stability features including λ, σ 2, ω∗, and the F-statistics, and
derive a stability index for each gene on the single-cell level. The
μ and σ 2 denote the mean and variance of the Gaussian compo-
nent fitted to a gene x across individual cells. The joint density
function f(.) is defined as follows:

f (.) = λ
βα

�(α)
xα−1e−βx + (1 − λ)

1

σ
√

2π
e− (x−μ)2

2σ2 ,

where 0 ≤ λ ≤ 1 is the mixing proportion indicating the pro-
portion of cells in the Gamma component in the fitted model.
Genes whose expression profiles are with low mixing propor-
tion (λ) and small variance (σ 2) are unimodal and relatively
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Table 1: Summary of scRNA-seq datasets used for stably expressed gene identification and/or evaluation in the present study

ID Publication Description Organism No. cell No. class Protocol Purpose

E-MTAB-3929 [23] Human development Human 1,529 5 SMART-Seq2 Identify
GSE45719 [24] Mouse development Mouse 269 8 SMART-Seq2 Identify
GSE109774 [25] Mouse atlas Mouse 41,965 68 SMART-Seq2 Identify
GSE94820 [31] Peripheral blood mononuclear cells Human 1,140 5 SMART-Seq2 Evaluate
GSE75748 [32] Pluripotent stem cells and endoderm

progenitors
Human 1,018 7 SMARTer Evaluate

GSE72056 [33] Multicellular metastatic melanoma Human 4,645 7 SMART-Seq2 Evaluate
GSE67835 [34] Adult and fetal brain Human 466 8 SMARTer Evaluate
GSE60361 [35] Cortex and hippocampus Mouse 3,005 7 SMARTer Evaluate
GSE52583 [36] Developmental lung epithelial cells Mouse 198 4 SMARTer Evaluate
E-MTAB-4079 [37] Mesoderm diversification Mouse 1,205 4 SMART-Seq2 Evaluate
GSE84133 [38] Pancreas inter- and intracells Mouse 822 13 InDrop Evaluate
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Figure 1: Schematic illustration of the computational framework for deriving

gene stability index on the single-cell level. (A) Stability features extracted di-
rectly from the mixture model are colored in blue. Those extracted from addi-
tional scRNA-seq data characteristics are in red. The overall stability index is
derived from the combination of all stability features. (B) Comparison of Gamma-

Gaussian and Gamma-Gamma mixture models on 4 scRNA-seq datasets (i.e. E-
MTAB-3929, GSE45719, GSE60361, E-MTAB-4079). y-axis represents the percent-
age of times a given model is selected by Bayesian information criterion. (C)
Evaluation metrics used for evaluating gene expression stability in scRNA-seq

datasets.

invariant across cells and therefore more likely to be stably
expressed.

The ω denotes the percentage of zeros of a gene across cells.
The measured expression level for a given gene and cell may be
zero due to technical dropout, stochastic expression, or no tran-
scription occurring at all for that gene [39]. Thus, SEGs would
have relatively small ω (i.e., low proportion of zeros) because
they are expected to be expressed in all cells. However, genes
with a low level of expression tend to have a higher proportion
of zeros than highly expressed genes simply due to technical
dropouts [40]. We therefore regularized the proportion of zeros
(ω) of each gene based on its average expression level μ in the
Gaussian component by ω∗ = ω · minmax(μ), where minmax(.)
scales the ω∗ to the range of 0–1. This regularization accounts
for the dropout bias towards genes with lower expression.

When predefined cell type annotation is available for a given
dataset, the F-statistics can be used as another stability fea-
ture to select for genes in which we observe the same aver-
age gene expression across different predefined cell types. To-
gether, genes with small λ, σ 2, ω∗, and F-statistic are unimodal,
expressed with low variance, with relatively low percentage of

zeros, and expressed similarly across all cell types, respectively,
and are more likely to be stably expressed.

The expression stability index is defined for each gene by
combining these 4 stability features. Specifically, genes are
ranked first in increasing order with respect to λ, σ 2, ω∗, and F-
statistics; and the ranks from each stability feature are rescaled
to range from 0 to 1. The stability index for each gene is defined
as the average of its scaled rankings across all 4 stability fea-
tures. Thus, genes are ranked in terms of their degree of evi-
dence towards expression stability in individual cells and can
be selected by adjusting the stability index threshold. The sub-
sequent evaluation can be conducted to assess the stability and
generalization property of selected SEGs in other biological sys-
tems using various evaluation metrics (Fig. 1C).

Genes are reproducibly ranked by their expression
stability in single cells

To investigate whether some genes are inherently more stable
in expression on the single-cell level, we used 3 high-resolution
scRNA-seq datasets (e.g., human development, mouse develop-
ment, and the mouse atlas) to quantify genes that are expressed
at steady levels across different cell types, tissues, and devel-
opmental stages of human and mouse, respectively (Table 1;
datasets labeled as ”identify”). These datasets provide a start-
ing point for identifying SEGs that can then be used for evalua-
tion on various cell/tissue types and biological systems (Table 1;
datasets labeled as ”evaluate”).

We first looked at the proportion of zeros per gene across
all profiled cells in the early human and mouse development
scRNA-seq datasets, respectively. We found that a large per-
centage of genes have >50% zero quantification across cells in
both datasets (Fig. 2A), suggesting that most of the genes are
transiently expressed in different cell/tissue types and during
different developmental stages in both human and mouse. We
observed that the distributions of stability features across the
3 scRNA-seq datasets are different (Fig. 2B). Nevertheless, our
rank-based approach scales ranks of genes with respect to each
stability feature and derives highly comparable stability index
distributions from each dataset (Fig. 2B, bottom right panel).

We next investigated the reproducibility of the stability in-
dex by randomly sampling 80% of all cells from the human and
mouse development datasets and recalculating the stability in-
dex for each subsample. We found the stability index to be highly
reproducible (Fig. 2C) within a dataset with average Pearson cor-
relation coefficients of 0.98 and 0.97. In comparison, the cor-
relation of stability indices from the mouse development and
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A C D

B

Figure 2: Characterizing gene stability features in single cells for human and mouse. (A) Percentage of zeros per gene across individual cells. (B) Fitted values of mixing

proportion (λ), and variance (σ 2) and mean (μ) in the Gaussian component (top panels) of the mixture model for each gene. Regularized percentage of zeros, F-statistics
computed from predefined cell class (bottom left panel), and stability index derived for each gene (bottom right panel), respectively. (C) Scatter plot of stability index
calculated from 2 random subsamplings of cells from human and mouse development datasets. Mean Pearson’s correlation coefficient and standard deviation (r̄ ± sd)

were calculated from pairwise comparison of 10 repeated random subsamplings on each dataset. (D) Scatter plot and correlation of stability indices calculated from
each of 3 datasets. P-values denote t-distribution test on Pearson’s correlation coefficient.

mouse atlas datasets are much more moderate (Fig. 2D), sug-
gesting room for further improvement when more comprehen-
sive and deeper scRNA-seq datasets become available. We also
observed that the stability indices derived for human and mouse
are significantly correlated (Fig. 2D).

Comparative analysis of SEGs identified in single cells
and HKGs defined from bulk transcriptome

To understand the relationships of genes with stable expression
in single cells with HKGs defined previously with bulk microar-
ray [15] and RNA-seq [10], we derived a list of SEGs for human
and mouse, respectively, by computing the rank percentiles of
the stability index as well as the 4 stability features. Genes with
a stability index rank percentile >80 as well as a reversed rank
percentile >60 for each of the 4 stability features were included
in the SEG list. For mouse, we took the union of the SEGs iden-
tified from the mouse development and mouse atlas datasets.
This resulted in lists of 1,076 human (hSEG) and 916 mouse
(mSEG) genes, respectively (Fig. 3A and B). In comparison to the
HKGs defined previously using bulk transcriptomes, we found
that hSEG identified on the single-cell level have significantly
smaller expression variances across individual cells (Fig. 3A).

Comparing with previously defined HKGs (Fig. 3C), there were
676 common genes between our hSEG list and those defined by
microarray or bulk RNA-seq. This accounts for 62% of hSEGs,
a statistically significant overlap (permutation P < 2e−5), high-
lighting a high level of commonality but also uniqueness of
SEGs. For the human and mouse SEG lists derived from scRNA-
seq datasets, there were 272 common genes (Fig. 3D), which ac-
counts for a significant portion of genes in both lists (25% with
respect to hSEG and 30% with respect to mSEG; permutation

P < 2e−5), in agreement with the correlation analysis (Fig. 2D),
suggesting their conservation between human and mouse.

To investigate the difference between SEGs and HKGs defined
by bulk transcriptomes, we inspected a few individual genes that
were defined as SEGs using scRNA-seq data but not HKGs by bulk
microarray or RNA-seq, and vice versa. We discovered that many
ribosomal proteins (such as RPL26 and RPL36) that were included
in the SEG list but not in the HKG lists (Fig. 3E) showed strong
unimodal expression patterns across all cells. In contrast, genes
such as HINT1 (histidine triad nucleotide-binding protein 1) and
AGPAT1 (1-acylglycerol-3-phosphate O-acyltransferase), both of
which have been reported to be differentially expressed in brain
tissue [41] or malignant esophageal tissues [42] compared to nor-
mal samples, were included in both microarray and RNA-seq–
defined HKG lists, but not in the SEG list owing to their bimodal
expression patterns across individual cells.

Finally, we examined the expression patterns of GAPDH and
ACTB (Fig. 3F), genes that are commonly treated as canonical
HKGs for data normalization, and observed clear bimodality
in both the human and mouse data. In agreement with previ-
ous studies [10,17,26, 43], these data argue against their use as
“housekeeping genes” for sample normalization.

SEGs exhibit strong expression stability in single cells
across different tissues and biological systems

We hypothesized that if the expression levels of the SEGs
are relatively stable, they should show relatively small expres-
sion differences across the different cell types from various
biological systems. We first investigated principal component
analysis (PCA) plots generated from early human and mouse de-
velopment data using all genes (all expressed messenger RNA
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Figure 3: Comparison of SEGs identified on individual cell level using scRNA-
seq with HKGs defined on cell population level using bulk transcriptome data.

(A) Scatter plot showing mean expression (x-axis) and variance (y-axis) of each
gene (gray circles) across profiled single cells. Open red circles represent SEGs
identified from early human development data (hSEG) in this study whereas
dark and light blue solid circles represent HKGs defined previously using bulk

microarray [15] and RNA-seq data [10]. (B) Same as (A) but for SEGs identified
from early mouse development data (mSEG∗; light blue points) and the union of
these identified from both mouse development and mouse atlas datasets (mSEG;

green circles). (C) Venn diagrams showing overlaps of hSEGs and HKGs defined
using bulk microarray and RNA-seq. (D) Overlap of all human and mouse gene
lists. (E) Expression patterns of example genes that are defined as SEGs using
scRNA-seq data but not as HKGs using bulk microarray or RNA-seq data (RPL26

and RPL36) and vice versa (HINT and AGPAT1) across individual cells. (F) Expres-
sion patterns for GAPDH and ACTB in human and mouse (Gapdh and Actb) across
individual cells.

[mRNA]), or subsets of genes defined for human (i.e., HKG mi-
croarray, HKG RNA-seq, and hSEG) (Fig. 4A) and mouse (i.e.,
mSEG) (Fig. 4B). We found that for human data there is clear
separation of developmental stages in the first 2 principal com-
ponents when PCA plots were created by using either all genes,
or HKGs defined from microarray or RNA-seq, suggesting that
genes that were expressed differentially in different develop-
mental stages were driving the separation. In contrast, the PCA
plot generated from using hSEG shows much less separation
with respect to the developmental stages, suggesting that they
are generally expressed at a similar level across individual cells
irrespective of cell differentiation and change of developmental
stages. Similar results were observed from mouse development
data (Fig. 4B), where the PCA plot generated from mSEG shows
less separation of cell type and development stage compared to
the PCA plot generated from using all genes.

To quantify the above visual observations in human and
mouse developmental datasets, we used k-means clustering to
partition cells into 5 and 8 clusters, respectively, using all genes
(all expressed mRNA) or subsets of genes defined in each list
(i.e., hSEG, mSEG, HKG microarray, and HKG RNA-seq) with the

hypothesis that clusters arising from using SEGs and HKGs will
exhibit lower concordance with predefined cell type- and tissue-
specific labels (Fig. 4C), thereby demonstrating consistent levels
of expression across different cell and tissue types. To account
for the size difference of the gene lists, we also created sub-
sets of HKGs identified from RNA-seq data (sub HKG RNA-seq)
to match the sizes of hSEGs and mSEGs, respectively; and sub-
sets of hSEGs (sub hSEG) and mSEGs (sub mSEG) to match the
size of HKGs identified from microarray data.

We found that k-means clustering outputs using SEGs de-
rived from scRNA-seq data showed the lowest concordance to
their predefined cell class labels (i.e., embryonic day of devel-
opment or cell types) as quantified by the adjusted Rand in-
dex (ARI), Purity, Fowlkes-Mallows index (FM), and Jaccard in-
dex (Fig. 4D). The reduction of either list to match the other had
relatively minor effect on the clustering results. These results
demonstrate that SEGs are stably expressed across cells and de-
velopmental stages in the 2 scRNA-seq datasets.

To test whether the SEGs derived above are stably expressed
in other cell and tissue types, we evaluated these SEGs and
their subsets that matched the size of HKGs defined from mi-
croarray data on 8 datasets (Table 1), which are independent of
the scRNA-seq datasets used for identifying SEGs. These addi-
tional datasets represent drastically different tissues and bio-
logical systems in both human and mouse, as well as different
sequencing protocols and a wide range in the number of cells
sequenced.

Similar to the above section, we quantified the clustering
concordance with respect to each of their predefined cell class
labels using each of the 4 concordance metrics (ARI, Purity, FM,
and Jaccard) (Table 2). We found that on average, clustering us-
ing SEGs (and their subsets) gave the lowest concordance to
the predefined cell type- and tissue-specific class labels in all
tested datasets compared to clustering using all expressed genes
or HKGs defined using bulk microarray and RNA-seq datasets.
These results suggest that SEGs defined in early human and
mouse development also display strong expression stability in
various cell/tissue types and biological systems, and they are
considerably more stable than HKGs defined using bulk tran-
scriptome data on the single-cell level.

Gene stability index derived from single cells correlates
with gene sequence and structural characteristics

To further characterize gene expression stability in single cells,
we correlated the stability index and each stability feature ex-
tracted from scRNA-seq data with various gene structural and
conservation features calculated from various data sources. We
found that the stability index correlated positively with the
number of exons in a gene, gene expression, and gene con-
servation, and negatively with GC content in the gene body in
both human and mouse (Fig. 5A), many of which are character-
istics of HKGs reported in previous studies. Consistent with this,
we found that SEGs are more evolutionarily conserved [44] with
higher phyloP scores. SEGs also possess more exons, in agree-
ment with previous finding on HKGs [45], despite mouse genes
on average having fewer exons than human genes. Both human
and mouse SEGs appeared to have a slightly lower GC content,
but, similar to previous observation on HKGs, the relation was
relatively weak [46] (Fig. 5B).

Perhaps unsurprisingly, SEGs identified in this study possess
similar characteristics to those observed in HKGs, indicating
that they are serving essential cellular functions akin to HKGs.
Supporting this, we found that multiple top-enriched Gene
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Figure 4: Stability of SEGs and HKGs in human and mouse development scRNA-seq datasets. (A) PCA plots generated from human development data using all expressed
genes, HKGs, or hSEGs. Cells are colored by their predefined developmental stages. (B) PCA plots generated from mouse development data using all expressed genes
or mSEGs. Cells are colored by their predefined types and developmental stages. (C) Schematic showing the quantification of concordance of k-means clustering with
predefined cell classes using a panel of metrics. (D) Bar plots of concordance between k-means clustering and predefined cell class labels, using all expressed genes,

HKGs identified from microarray and RNA-seq data, SEGs identified from this study for human (hSEGs) and mouse (mSEGs), and size-matched subset of HKGs to SEGs
and vice versa.

Ontology and Reactome terms that describe essential cellular
functions are shared by common SEGs (genes overlap between
hSEG and mSEG) and common HKGs (genes overlap between
HKG microarray and HKG RNA-seq) (Fig. 5C) (see Methods for
details). Nevertheless, common SEGs are far more enriched for
most GO and Reactome terms than common HKGs defined from
bulk transcriptome and also show significantly higher conser-
vation in both human and mouse (Fig. 5D). These results indi-
cate the higher resolution enabled by scRNA-seq data for iden-
tifying genes that are truly stably expressed across individual
cells.

Discussion

Since the emergence of high-throughput transcriptome profil-
ing, the search for stably expressed genes (SEGs) has been a
central quest in modern biology. Such genes are often thought
to be essential for basic cellular functions given their relatively
constant expression and activity despite changes in cell status
and types. The hypothesis that such genes may serve the same
housekeeping functions across various cell and tissue types has
also led to their definition as “housekeeping genes” (HKGs).
While the existence of true HKGs whose expression is univer-
sally constant across all cells and systems is a subject of de-

bate [42, 47], their practical use as control genes for experimental
data normalization is well appreciated.

Recent advances in single-cell transcriptome profiling using
scRNA-seq have highlighted the phenomenal amount of gene
expression stochasticity and heterogeneity in single cells. Com-
pared to bulk transcriptome data that aggregate millions of cells
to obtain a single gene expression measure, scRNA-seq data
allows the expression dynamics of each gene within individ-
ual cells to be monitored, and therefore enables the identifica-
tion of genes that are truly expressed at a steady level in indi-
vidual cells across tissues and developmental stages. By mod-
eling from large-scale scRNA-seq datasets, we quantified the
relative expression stability of genes on the single-cell level.
We showed that the SEGs derived based on their stability in-
dices are considerably more stable in not only the scRNA-seq
datasets from which they are identified but also independent
scRNA-seq datasets that profile various cell types and biological
systems.

Our analysis demonstrated that despite the high vari-
ability in single-cell gene expression, a subset of genes
is inherently more stable in expression than other genes
within individual cells. Their sequence and gene struc-
tural properties are strongly reminiscent of HKGs defined
from bulk transcriptome, suggesting their essential roles in
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Table 2: Stability evaluation results on independent scRNA-seq datasets that profile various cell types and biological systems

Index

Peripheral blood mononuclear cells (human) [31] Pluripotent stem cells and endoderm progenitors (human) [32]

All genes
HKG SEG HKG SEG

Array RNA-seq n = 1,076 n = 553 All genes Array RNA-seq n = 1,076 n = 553

ARI 55 ± 8 42 ± 3 38 ± 4 29 ± 6 21 ± 3 69 ± 5 58 ± 5 55 ± 6 41 ± 3 40 ± 3
Purity 69 ± 7 62 ± 2 59 ± 1 52 ± 5 48 ± 5 80 ± 4 74 ± 3 71 ± 5 59 ± 3 61 ± 4
FM 67 ± 5 56 ± 1 52 ± 3 45 ± 4 40 ± 2 75 ± 4 66 ± 4 63 ± 5 51 ± 2 50 ± 3
Jaccard 49 ± 6 39 ± 1 35 ± 2 29 ± 4 25 ± 2 60 ± 5 48 ± 4 46 ± 6 34 ± 2 33 ± 2

Multicellular metastatic melanoma (human) [33] Adult and fetal brain (human) [34]
HKG SEG HKG SEG

All genes Array RNA-seq n = 1,076 n = 553 All genes Array RNA-seq n = 1,076 n = 553
ARI 31 ± 5 18 ± 2 18 ± 1 15 ± 1 15 ± 1 53 ± 7 50 ± 3 39 ± 4 36 ± 3 34 ± 3
Purity 80 ± 5 73 ± 1 74 ± 1 71 ± 1 70 ± 1 82 ± 3 76 ± 4 74 ± 3 68 ± 2 65 ± 1
FM 51 ± 3 39 ± 2 40 ± 1 37 ± 1 36 ± 1 62 ± 6 59 ± 2 50 ± 3 47 ± 3 46 ± 3
Jaccard 32 ± 2 22 ± 2 24 ± 1 21 ± 1 20 ± 0 44 ± 6 41 ± 2 33 ± 3 30 ± 3 29 ± 2

Cortex and hippocampus (mouse) [35] Developmental lung epithelial cells (mouse) [36]
HKG SEG HKG SEG

All genes Array RNA-seq n = 916 n = 553 All genes Array RNA-seq n = 916 n = 553
ARI 45 ± 8 36 ± 5 31 ± 3 28 ± 3 26 ± 2 61 ± 6 55 ± 4 48 ± 2 46 ± 0 43 ± 5
Purity 72 ± 3 66 ± 1 63 ± 1 59 ± 1 58 ± 2 83 ± 4 80 ± 2 76 ± 1 75 ± 0 73 ± 3
FM 55 ± 6 49 ± 4 44 ± 3 42 ± 2 40 ± 2 72 ± 4 68 ± 3 62 ± 2 61 ± 0 59 ± 4
Jaccard 38 ± 6 32 ± 4 28 ± 2 26 ± 2 25 ± 2 56 ± 5 51 ± 3 45 ± 2 44 ± 0 42 ± 4

Mesoderm diversification (mouse) [37] Pancreas inter- and intracells (mouse) [38]
HKG SEG HKG SEG

All genes Array RNA-seq n = 916 n = 553 All genes Array RNA-seq n = 916 n = 553
ARI 54 ± 2 43 ± 8 49 ± 3 31 ± 7 10 ± 7 37 ± 4 22 ± 3 23 ± 3 19 ± 2 17 ± 3
Purity 66 ± 1 62 ± 6 65 ± 1 59 ± 7 48 ± 7 89 ± 3 78 ± 3 76 ± 2 74 ± 2 71 ± 2
FM 68 ± 1 63 ± 8 67 ± 1 59 ± 7 53 ± 5 52 ± 4 38 ± 3 39 ± 3 35 ± 2 32 ± 3
Jaccard 52 ± 1 46 ± 7 50 ± 1 40 ± 8 32 ± 7 30 ± 3 20 ± 3 21 ± 3 17 ± 2 16 ± 2

All indices are within the range of [0, 1] and are multiplied by 100.

A

C

D

B

Figure 5: Characterization of stability index with sequence and gene characteristics. (A) Pearson correlation analyses of human and mouse gene stability features
with respect to genomic structural and evolutionary gene features. P-values >0.001 are displayed. (B) Box plots of various gene characteristics for SEGs, HKGs, and all
expressed genes. Coloured box captures lower quartile and upper quartile with median displayed as horizontal line in the middle. Dotted lines and bars represent

whiskers. (C) Overrepresentation analyses of SEGs that are common between hSEG and mSEG (common SEGs); and HKGs that are common between HKG microarray
and HKG RNA-seq (common HKGs), using Gene Ontology (GO) and Reactome databases. (D) Comparison of conservation for common SEGs and common HKGs in
human and mouse genomes. P-values were calculated from a 2-sided Wilcoxon rank sum test.
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maintaining basic cellular functions on the individual cell
level.

While a heuristic cut-off was used to select a set of SEGs, we
note that the main purpose is primarily for evaluation and com-
parison with HKGs. The proposed framework provides a contin-
uous stability index for each gene and therefore allows the se-
lection of a desired number of genes based on the stability in-
dex according to specific applications. Moreover, the proposed
framework can be applied in a data-dependent manner to rank
genes based on their expression stability in a given scRNA-seq
dataset. This relaxes the rigid binary definition of HKGs and en-
ables a more practical definition of stable expression in differ-
ent experimental contexts. Hence, the proposed method is par-
ticularly useful for defining stable or “control” genes in various
scRNA-seq experiments, which is often a key step in normaliz-
ing such data [48,49]. Indeed, the utility of SEGs for scRNA-seq
data normalization has already been demonstrated by our re-
cent study on integrating multiple scRNA-seq datasets [22]. Nev-
ertheless, the choice of dataset for deriving SEGs is important.
Datasets used for SEG identification should contain normal cell
types and profile heterogeneous tissues and cell types because
data only containing homogeneous cell types cannot provide the
foundation for identifying genes stably expressed in different
tissues and cell types, and data containing abnormal cell types
such as cancers may derive genes that are abnormally stable in
cancers.

As mentioned above, generalizability of SEGs is dependent on
the diversity of cell types profiled in a scRNA-seq experiment.
Various cell atlas profiling initiatives such as the Human Cell
Atlas [50] are currently under way to comprehensively charac-
terize the transcriptome of every human cell. Information from
such resources in conjunction with our computational frame-
work will provide an even more precise assessment of gene ex-
pression stability in single cells that will enrich subsequent av-
enues of research including characterizing heterogeneity and
stability of single-cell transcriptomes and their use for techni-
cal data normalization and standardization.

Taken together, this comprehensive evaluation study
demonstrates the utility of measuring gene expression stability
at the single-cell level and marks a shift in paradigm for select-
ing genes that are stably expressed in single cells for practical
applications.

Methods
Evaluating the stability of gene lists

To assess the expression stability of each gene list in various
cell types and biological systems, the k-means algorithm was
used to cluster each scRNA-seq dataset to its predefined num-
ber of clusters and an array of evaluation metrics were applied to
compute the concordance with respect to the predefined (“gold
standard”) class labels. Evaluation metrics include the ARI, Pu-
rity, FM, and the Jaccard index.

Let U = {u1, u2, ..., uP } denote the true partition across P
classes and V = {v1, v2, ..., vK } denote the partition produced
from k-means clustering (K = P). Let a be the number of pairs
of cells correctly partitioned into the same class by the cluster-
ing method; b be the number of pairs of cells partitioned into
the same cluster but in fact belonging to different classes; c
be the number of pairs of cells partitioned into different clus-
ters but belonging to the same class; and d be the number of
pairs of cells correctly partitioned into different clusters. Then

the ARI [51], the Jaccard index [52], and the FM [53] can be
defined as

ARI = 2(ad − bc)
(a + b)(b + d) + (a + c)(c + d)

;

Jaccard = a/(a + b + c);

FM =
√

[a/(a + b)] [a/(a + c)];

and the Purity [54] can be calculated as

Purity = 1
N

∑
i
max j |ui ∩ vi |,

where N is the total number of cells and i and j are the indices of
clusters from clustering output ui and predefined class label vj.

For each dataset, we calculated and compared the above 4
metrics using (i) all expressed genes, (ii) HKGs defined using mi-
croarray data [15], (iii) HKGs defined using bulk RNA-seq data
[10], and (iv) SEGs identified in this study. To account for poten-
tial effects of gene list length, we also generated random sub-
sets with the same number of genes in our SEG lists first by ran-
domly sampling from all expressed genes in the dataset, and
second by randomly sampling from the HKG list defined by bulk
RNA-seq. Because the k-means clustering algorithm is not de-
terministic and the random sampling process introduces vari-
ability, the above procedure was repeated 10 times to account
for such variability.

Gene properties

To characterize SEGs identified in early human and mouse de-
velopment datasets, we extracted gene sequence and structural
features including the number of exons and percentage GC con-
tent in the gene body for human and mouse, respectively, us-
ing biomaRt [55]. Additionally, to characterize gene evolutionary
conservation, phyloP scores were downloaded from the UCSC
Genome Browser for mouse (mm10) and human (hg38) genomes.
Exonic bases of each gene were determined based on GENCODE
Genes for human (release 26) and mouse (release 14). The set of
conservation scores for each gene was averaged for each gene.
We assessed the concordance of gene expression stability index
and each stability feature derived from single cells with struc-
tural features, conservation scores, and their expression across
all genes for human and mouse using Pearson correlation coeffi-
cients. We also compared these features for SEGs and previously
defined HKGs against all expressed genes in human and mouse,
respectively.

Gene ontology enrichment analysis

To perform GO enrichment analysis, we first defined SEGs that
are shared between hSEG and mSEG as “common SEGs” and
HKGs that are shared between HKG microarray and HKG RNA-
seq as “common HKGs.” The similar numbers of common SEGs
(256) and common HKGs (277) allowed us to avoid any potential
gene set size bias in the enrichment analysis.

Overrepresentation of common SEGs or common HKGs was
evaluated by comparing each set of genes against ontologies de-
fined in the GO database [56] and those defined in the Reactome
database [57]. Fisher’s exact test was used to assess statistical
significance. Top-enriched ontologies from either common SEGs
or common HKGs were combined for interpretation.
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Availability of supporting data and materials

The computational framework for calculating the gene stabil-
ity index, ”scSEGIndex,” is deposited in the GigaScience GigaDB
database [58].

Availability of supporting source code and
requirements

Project name: Single cell stably expressed genes
Project home page: https://sydneybiox.github.io/scMerge
Operating system(s): Platform independent
Programming language: R
License: GPL-3

Additional files

Supplementary information: Supplementary Methods and Re-
sults are available via the additional file associated with this ar-
ticle.
Supplementary Table S1. Lists of stably expression genes.
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ing genes defined using bulk RNA-seq; hSEG: stably expressed
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messenger RNA; mSEG: stably expressed genes derived from
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