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Abstract

Background: Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo
hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-
intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their
introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary
event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are
conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean
hatching enzyme genes for insight into how and why introns were lost during evolution.

Results: We investigated the evolutionary pathway of intron-losses in hatching enzyme genes of 27 species of
Teleostei. Hatching enzyme genes of basal teleosts are of only one type, which conserves the 9-exon-8-intron
structure of an assumed ancestor. On the other hand, otocephalans and euteleosts possess two types of hatching
enzyme genes, suggesting a gene duplication event in the common ancestor of otocephalans and euteleosts. The
duplicated genes were classified into two clades, clades I and II, based on phylogenetic analysis. In otocephalans
and euteleosts, clade I genes developed a phylogeny-specific structure, such as an 8-exon-7-intron, 5-exon-4-intron,
4-exon-3-intron or intron-less structure. In contrast to the clade I genes, the structures of clade II genes were
relatively stable in their configuration, and were similar to that of the ancestral genes. Expression analyses revealed
that hatching enzyme genes were high-expression genes, when compared to that of housekeeping genes. When
expression levels were compared between clade I and II genes, clade I genes tends to be expressed more highly
than clade II genes.

Conclusions: Hatching enzyme genes evolved to lose their introns, and the intron-loss events occurred at the
specific points of teleostean phylogeny. We propose that the high-expression hatching enzyme genes frequently
lost their introns during the evolution of teleosts, while the low-expression genes maintained the exon-intron
structure of the ancestral gene.

Background
Many of the nuclear genes of eukaryotes are composed of
coding sequences (exons) interspersed with intervening
sequences (introns) [1,2]. Both exon and intron
sequences are transcribed into pre-mRNA, and the
introns are removed from the pre-mRNA through spli-
cing. The intron insertion sites in homologous genes
have been considered to be well conserved among eukar-
yotes. However, recent large-scale comparisons of intron

positions in orthologous genes have revealed that intron
positioning varies more dynamically than previously sup-
posed [3]. A considerable number of intron losses and
gains during the evolution of eukaryotes are reported [4].
Nematodes have a particularly high rate of intron turn-
over [5]. In vertebrates, however, the exon-intron struc-
tures of orthologs are reported to be relatively stable
[6,7]. In teleosts, Venkatesh et al. [8] compared exon-
intron structures of eight genes, and showed that changes
in intron positioning occurred at specific points of evolu-
tion. Although other studies [9,10] have been done, there
remain many uncertainties in understanding the mechan-
isms and selective pressures that mediate evolutionary
loss and gain of introns [11].
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Our previous analyses implied that hatching enzyme
genes lost their introns frequently during the evolution
of teleosts [12]. Hatching enzyme is an enzyme that
digests egg envelope at embryo hatching [13]. The
enzyme belongs to the astacin metallo-protease family
[14] as do BMP1 (bone morphogenetic protein 1) and
meprin (metallo-endopeptidase from renal tissue).
Hatching enzyme orthologs are also found in other ver-
tebrates [15-18]. Those of tetrapods are multi-domain
proteins consisting of astacin protease domain and addi-
tional C-terminal domain(s). In amphibians, reptiles and
birds, there are one or two C-terminal CUB domains,
whereas in mammals there is an unknown C-terminal
domain. On the other hand, the hatching enzymes of
teleosts are composed of only the protease domain
[14,19,20]. The exon-intron structures of the genes cod-
ing the pre-pro-peptide and protease domain were con-
served between tetrapods and Japanese eel [12], a basal
teleost. Therefore, it is reasonable to suggest that the eel
genes maintain the structure of the ancestral hatching
enzyme genes. In the higher teleosts, however, the
hatching enzyme genes were found to have frequently
lost their introns [12]. Such frequent intron losses were
found only in hatching enzyme gene orthologs, and not
in their paralogous genes [21].
Teleostei is one of the diversified groups in vertebrates

with over 26,000 living species [22] and is estimated to
have diverged 284-333 million years ago (MYA) [23].
Recently, the phylogenetic relationships among teleosts
have been extensively studied using whole mitochondrial
DNA sequences [23-27]. The analyses make it possible
to clarify gene evolution in teleosts tracing back to
about 300 MYA. We compared the exon-intron struc-
tures of hatching enzyme genes in a wide variety of tele-
osts, and found that hatching enzyme genes lost their
introns at specific points in teleostean phylogeny.

Results and Discussion
To determine the evolutionary pathway of structural
changes of hatching enzyme genes in Teleostei, we
cloned the genes of 27 species including 15 newly-cloned
species, as described in Materials and Methods. The spe-
cies examined are distributed within the Teleostei, from
basal to higher, as follows: 2 species in 1 order of Osteo-
glossomorpha, 4 species in 4 orders of Elopomorpha,
8 species in 6 orders of Otocephala, and 13 species in
11 orders of Euteleostei (Additional file 1).

Diversification of hatching enzyme genes
A maximum likelihood tree was constructed from
nucleotide sequences of the protease domains of hatching
enzyme genes of all the teleosts examined (Figure 1). The
tree was divided into two clades: Elopomorpha gene
clade, and Otocephala and Euteleostei (Clupeocephala)

gene clade. Elopomorph genes form a monophyletic
clade with short branch lengths. On the other hand, the
clupeocephalan gene clade was divided into two clades,
named clades I and II. Within each clade, two subclades,
otocephalan and euteleostean subclades, were present.
These results suggest that duplication of hatching
enzyme genes occurred in the ancestor of Clupeocephala
(Figure 1). This duplication event is supported by recon-
struction of ancestral states by the Notung program
[28,29], along with further duplication events in several
lineages (data not shown). Our present analysis of hatch-
ing enzyme genes shows that basal teleosts possessed a
single type of gene. After the branching off of clupeoce-
phalans from the ancestor, gene duplication occurred in
the ancestor of clupeocephalans and the genes were
diversified into two types.
Clade I genes were cloned from all of the clupeoce-

phalans examined. The branching patterns of the genes
within the clade (Figure 1) mirrored molecular phyloge-
netic relationships estimated using whole mitochondrial
DNA sequences [24,25,27]. Clade II genes were also
cloned from euteleosts. In otocephalans, on the other
hand, the genes were cloned only from clupeiforms and
gonorynchiforms, but not from otophysans (cyprini-
forms, characiforms, gymnotiforms and siluriforms)
(Figure 1). This was corroborated by the fact that clade
II genes were not found in the genome sequences of
zebrafish (cypriniforms), i.e., only three clade I genes
(two ZHE1 and one ZHE2) were present in the genome,
and the clade II gene was absent [12]. In addition, we
have recently demonstrated that the hatching of zebra-
fish embryos involved only ZHE1 enzymes that were
expressed from the clade I genes (ZHE1) [30]. These
results suggest that the clade II genes disappeared speci-
fically in the otophysans lineage.
In protein level studies of euteleostean hatching

enzymes, two types of hatching enzymes have been well
characterized using medaka and killifish [31-34]. They
have been called HCE and LCE based on how they
digest egg envelope. The HCE and LCE gene orthologs
were cloned from other euteleosts, and they were
located in clades I and II, respectively, in the present
phylogenetic tree (Figure 1).

Intron-loss evolution of hatching enzyme genes in
Teleostei
As mapped on the phylogenetic tree (Figure 1), exon-
intron structures of hatching enzyme genes showed
characteristic intron-loss patterns during evolution. In
this section, exon-intron structures of (1) Osteoglosso-
morpha and Elopomorpha hatching enzyme genes, (2)
Clupeocephala clade I genes and (3) Clupeocephala
clade II genes will be described, and (4) their evolution
will be discussed.
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Figure 1 Phylogenetic tree and exon-intron structure of hatching enzyme genes. The ML tree was constructed from nucleotide sequences
of mature enzyme portions of teleostean hatching enzyme genes using osteoglossiform gene (AwHE) as an outgroup. Numbers at the nodes
show bootstrap support values, and the values under 50% are removed. Exon-intron structures are shown at the right of gene names. The intron
numbers corresponding to the assumed ancestral hatching enzyme gene are shown at the top. The numbers in boxes represent intron phases,
and the boxes are colored black for conserved introns, white for lost introns, and gray for inserted introns or introns having intron phase
different from that of the ancestral gene.
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(1) Osteoglossomorpha and Elopomorpha genes
Exon-intron structures of osteoglossomorph and elopo-
morph genes were well conserved with only a few
exceptions (EHE7 and PeHE1; Figure 1 and Additional
file 2). The genes were composed of 9 exons interrupted
by 8 introns (Figure 1). Exon 1 to the middle of exon 4
encode the pre-pro-peptide region, the remainder of
exon 4 through to exon 8 encode the entire protease
domain, and exon 9, in addition to the whole 3′-UTR,
encode only two nucleotides of stop codon (EHE4) or 4
additional amino acids at the C-terminus of the protease
domain (EHE7). Because of the low sequence similarity
of the 9th exon, it was frequently difficult to directly
determine its position in genomic DNA. However, the
existence of the 8th intron was predicted by the pre-
sence of a consensus sequence of 5′-splice-site “GT”
[35]. This “GT” was found in osteoglossomorph and elo-
pomorph genes, with the exception that exon 8 of BtHE
gene comprised coding sequence and stop codon. From
these results, we concluded that the 9th exon was evi-
dently present in the genes. These exon-intron struc-
tures, including intron phases (the positions of intron
between or within codons) [36], were the same as those
of tetrapod genes [12], suggesting that the ancestral tele-
ostean hatching enzyme genes had a 9-exon-8-intron
structure.
(2) Clupeocephala clade I genes
Among the duplicated genes of clupeocephalans, clade I
and II genes, the clade I genes had variable exon-intron
structures different from that of the ancestral gene. Fig-
ure 1 suggests that otocephalan clade I genes lost their
introns successively during evolution. In clupeiforms
and gonorynchiforms, although their exon-intron struc-
ture was similar to that of the ancestral gene, one intron
(2nd intron of the ancestral genes) was commonly lost
and they possessed an 8-exon-7-intron structure with
two exceptions (AcHE2 and MfHE2) (Figure 1). In cypri-
niforms, the clade I genes possessed a 5-exon-4-intron
structure: this structure appeared to be derived by the
additional loss of 3 more introns (6th, 7th and 8th
introns) (Figure 1), without any nucleotide deletions or
insertions in exonic regions (Additional file 2). The
clade I genes of characiphysans (characiforms, gymnoti-
forms and siluriforms) lost one more intron (1st intron),
resulting a 4-exon-3-intron structure (Figure 1).
In contrast to the otocephalan genes, euteleostean

clade I genes, except in salmoniforms and esociforms,
had no introns, resulting in an intron-less structure (Fig-
ure 1). Salmoniforms and esociforms possess two clade I
genes. One each of these (MsHCE1, RbHCE1 and
PkHCE1) was composed of 2 exons interrupted by 1
intron, resulting a 2-exon-1-intron structure, while the
other (MsHCE2, RbHCE2 and PkHCE2) showed the
intron-less structure (Figure 1). The intron insertion

sites of the former genes did not correspond to those of
any other hatching enzyme genes (Additional file 2),
suggesting that, after all introns were lost in the ances-
tor of euteleosts, duplication occurred in the common
ancestor of salmoniforms and esociforms, and then, one
intron was newly inserted into one of the two clade I
genes.
(3) Clupeocephala clade II genes
Different from clade I genes, exon-intron structure of
clade II genes was relatively stable. Otocephalan clade II
genes were composed of 9 exons and 8 introns (the
same as the ancestral gene; Figure 1), with exceptions
seen in anchovy genes (AcHE4 and AcHE5), whose
intron loss/gain has been demonstrated to occur specifi-
cally in the anchovy lineage [37]. Most of euteleostean
clade II genes had exon-intron structures similar to the
ancestral gene, although an 8th intron loss was
observed. Salmoniform and esociform genes, however,
were quite different from the others, showing an intron-
less structure. The intron-loss might have occurred spe-
cifically in the common ancestor of salmoniforms and
esociforms.
(4) Evolutionary pathway of change of exon-intron
structure
An evolutionary pathway of exon-intron structural
changes of hatching enzyme genes was deduced on the
basis of the molecular phylogenetic relationships of tele-
osts estimated using whole mitochondrial DNA
sequences (Figure 2). Osteoglossomorphs and elopo-
morphs possessed a single type of hatching enzyme
gene. Gene duplication occurred after the branching off
of clupeocephalans from the ancestor, and clupeocepha-
lans then possessed two kinds of the genes, clade I and
II genes. Then, the ancestor of otophysans lost the clade
II genes. During the evolution of otocephalans, clade I
genes lost their introns in a stepwise manner as one
intron loss in the basal lineage of otocephalans, three
more intron losses in the ancestor of otophysans, and
an additional intron loss in the ancestor of characiphy-
sans. During the evolution of euteleosts, all introns were
lost from clade I genes, and one intron was newly
insered into one of two clade I genes in the common
ancestor of salmoniforms and esociforms. In contrast to
the clade I genes, clade II genes did not undergo fre-
quent structural change; nevertheless, one intron loss
(8th intron) during the evolution of euteleosts and the
loss of all introns in the common ancestor of salmoni-
forms and esociforms were observed.

Why were introns lost?
Why did frequent intron losses occur during the evolution
of hatching enzyme genes in Teleostei? We hypothesize
that the intron loss events resulted from adaptation to effi-
cient production of hatching enzyme according to the
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Figure 2 Evolutionary pathway of teleostean hatching enzyme genes. Duplication of hatching enzyme gene occurred in the ancestor of
clupeocephalans (black square), and clupeocephalans possessed clade I genes (red line) and clade II genes (blue line). Clade II gene-loss
occurred in the ancestor of otophysans. Intron-loss/insertion events are indicated at the lineage shown either with red (clade I genes) and blue
(clade II genes) triangles. Resultant exon-intron structures are shown at the right with the same colors. The cladogram of teleostean relationships
is based on the molecular phylogenetic relationships estimated using whole mitochondrial DNA sequences with some modifications [24-27].
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following information. It has been estimated to take 1 min
to transcribe 1-1.5 kbp sequence and 3 min to remove an
intron from the sequence of pre-mRNA [9]. Based on this
information, we tentatively estimated the times for tran-
scription of intron-possessing or intron-less hatching
enzyme genes. According to the average length of exonic
regions in hatching enzyme genes (1 kbp) and the average
intron size (about 250 bp), the size of 8-intron genes is
about 3 kbp and the size of intron-less gene is about
1 kbp. Therefore, an 8-intron gene would require 2-3 min
for transcription and additional time (at least 3 min) for
splicing introns. On the other hand, it would take less
than 1 min to transcribe an intron-less gene. Indeed, the
intron-less genes are well-known to tend to be rapidly
expressed [7,38].
We first examined whether or not hatching enzyme is

more efficiently expressed than housekeeping genes in
medaka embryos. As shown in Figure 3A, the expression
level of the MHCE gene was three-fold higher than that
of the housekeeping genes b-actin and GAPDH, while
the level of MLCE gene was similar to those of the
housekeeping genes. These expression levels were not as
high as we expected. We further compared the expres-
sion level in a cell called hatching gland cell (HGC),
where hatching enzyme genes were expressed. HGCs
are distributed on the inner wall of the pharyngeal cav-
ity in pre-hatching embryos of medaka [39], or the sur-
face of the embryos of milkfish (Figure 3D), loach
(Figure 3E), catfish (Figure 3F), rainbow trout

(Figure 3G) and Pacific cod (Figure 3H). Hatching
enzyme genes, unlike housekeeping genes, were
expressed in restricted cells, indicating that the expres-
sion level of hatching enzyme genes in a cell is much
higher than that of the housekeeping genes. The
enzymes are accumulated in zymogen granules which
are filled until immediately before hatching (Figure 3C)
[40]. These results suggest that HGCs devote their sub-
stantial resources to synthesizing the hatching enzyme.
Next, we examined the expression levels between clade

I and II genes in several fish species. Figure 3A indicates
that expression of MHCE gene (clade I) is 6-times higher
than that of MLCE gene (clade II) in medaka embryos. In
addition, Northern analysis of 7 other fish species showed
that clade I genes had a tendency to be more highly
expressed than clade II genes (Figure 3B). Such differen-
tial expression reflected the relative amount of enzyme
required for egg envelope digestion. At the time of
medaka hatching, MHCE and MLCE cooperatively digest
the egg envelope: MHCE swells the egg envelope by its
proteolytic action, and MLCE digests the MHCE-swollen
envelope completely [32,33,41]. In vitro experiments
revealed that a large amount of MHCE was required to
swell the envelope, while only a small amount of MLCE,
10-times less than that of MHCE, was enough to digest it
[33,42]. This relationship has been also found in killifish
[34]. These results suggest that clade I genes are required
for production of a large amount of their proteins. Con-
sidering that a gene having a small number of introns is

Figure 3 Expression level of hatching enzyme genes and distribution of hatching gland cells (HGCs). (A) Comparison of the relative
expression levels of hatching enzyme genes (MHCE and MLCE) and housekeeping genes (b-actin and GAPDH) in medaka embryos performed by
Northern blot. The relative expression level of mRNA was estimated by densitometry and represented relative to an intensity of 1 for b-actin. (B)
Expression analysis of hatching enzyme genes performed by Northern blot. Gene names are shown at the top of the lane, and clade I genes are
underlined. Triangles indicate the positions of 28 S and 18 S rRNAs. (C) A section of the lower jaw of medaka embryo stained with toluidine
blue. HGCs (arrowheads) are filled with many of zymogen granules. pc, pharyngeal cavity. Scale bar, 10 μm. (D-H) Distribution of HGCs were
observed by whole-mount in situ hybridization using pre-hatching embryos of milkfish (D), loach (E), catfish (F), rainbow trout (G) and Pacific cod
(H). Dorsal (D and H) and ventral (F and G) views of the head region, and lateral view (E). Scale bars, 200 μm.
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favorable for its high expression, clade I genes might have
lost their introns during evolution so as to be highly
expressed in HGCs.

How were introns lost?
Currently, two main models are proposed for the
mechanism of intron loss [11]: (1) deletion at the genome
level [43]; and (2) homologous recombination between
the genomic copy of a gene and the cDNA produced by
the reverse transcription of its mature mRNA or partially
spliced pre-mRNA [44]. Deletion under the first model
does not always result in the exact removal of an intron
region. In the hatching enzyme genes examined, we
could not find any additional nucleotide insertions or
deletions around the lost insertion sites in the mature
enzyme-coding region. Such a precise intron deletion
may be better explained by the second model involving
homologous recombination. However, the evolutionary
fixation of such intron deletion must be limited to the
genes expressed in the germline. The hatching enzyme
genes are expressed only during embryogenesis, and are
never expressed in germ cells [21].
It is difficult to explain that six intron-loss events were

generated in hatching enzyme genes only by homolo-
gous recombination, because it is hard to consider that
the misexpression of hatching enzyme genes could
occur so frequently in germ cells. There are some other
examples of intron losses that do not seem to be
mediated by reverse transcriptase (i.e., intron loss from
genes expressed in non-germline, somatic cells, occur-
ring without any nucleotide deletions or insertions [45]).
An “unknown mechanism” by which introns are prop-
erly removed must exist. Although the intron-loss evolu-
tion of teleostean hatching enzyme genes may be a rare
case under the special circumstances, future investiga-
tions of this phenomenon may reveal and improve the
understanding of a new mechanism of intron loss.

Conclusions
Ancestral hatching enzyme gene of teleosts is considered
to be a single type of gene. After the branching off of
clupeocephalans from the ancestor, duplication of
hatching enzyme gene occurred. Consequently, the clu-
peocephalans possessed two kinds of hatching enzyme
genes, called clade I and II genes. Clade I genes lost
their introns frequently (1-8 intron losses), in contrast
to the clade II genes (0-1 intron loss, with one exception
showing 8 intron losses). When comparing expression
level, “intron-lost genes” tend to be more highly
expressed than “intron-conserving genes”, suggesting
that there might be a connection between the intron-
loss evolution and the level of expression.

Methods
Fish
Embryo and adult fish samples were obtained from the
following organizations: Japanese flounder Paralichthys
olivaceus from National Center of Stock Enhancement,
Fisheries Research Agency Miyako Station; milkfish Cha-
nos chanos from Institute of Cellular and Organismic
Biology of the Academia Sinica; loach Misgurnus anguil-
licaudatus from Graduate School of Fisheries Sciences,
Hokkaido University; catfish Silurus asotus from Chiba-
Prefectural Fisheries Research Center Fresh-Water Sta-
tion; masu salmon Oncorhynchus masou from National
Research Institute of Aquaculture; rainbow trout Oncor-
hynchus mykiss from Irikawa Trout Hatchery, Tokyo;
Pacific cod Gadus macrocephalus from Toyama Prefec-
tural Fisheries Research Institute Fisheries Resource Sec-
tion; electric eel Electrophorus electricus, pike Esox
americanus, Stomias nebulosus, Aldrovandia affinis and
pelican eel Eurypharynx pelecanoides from Atmosphere
and Ocean Research Institute, The University of Tokyo;
arowana Osteoglossum bicirrhosum, Asian bonytongue
Scleropages formosus, tarpon Megalops cyprinoides and
neon tetra Paracheirodon innesi from dealer.

Cloning of hatching enzyme cDNAs and their genomic
sequences
Teleostean hatching enzyme genes reported previously
were multi-copy genes [12]. To clone all kinds of hatch-
ing enzyme genes, we designed four sets of PCR primers
from the regions conserved in the cloned genes [21].
Using these primers, we isolated the full length hatching
enzyme cDNAs from RNAs of the pre-hatching embryos
of 6 species by RT-PCR and RACE PCR. After their
genomic genes were isolated, the exon-intron bound-
aries of the genomic DNAs were determined by com-
parison with the sequences of cDNAs.
In cases that we could not obtain embryos, we cloned

hatching enzyme genes by PCR directly from genomic
DNAs of the adult fishes. The exon-intron boundaries
of the cloned genes were also confirmed based on simi-
larities to the sequence of closely-related species. The
method of direct cloning from the genomic DNAs is as
follows. Five primers, four forward (F1 to 4) primers
and one reverse (R1) primer, were designed from the
conserved sequences of hatching enzyme cDNAs [21].
From the fragments, we further constructed forward
and reverse gene-specific primers (GSPs). Next, 5′- and
3′-portions of the gene were separately extended using
the forward GSP and R2 primer designed from the
3′-end conserved in the cloned cDNAs, or using the
reverse GSP and F5 primer designed from the 5′-end
conserved in the cloned cDNAs. The sequences of F1-5
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and R1-2 primers are shown below, and the positions
are shown in Additional file 2.

F1: 5′-RVMVRMTGYYTiTGGARSAARDVYBC-3′
F2: 5′-ARACMTGCATTCGYTTYRTBYCHHG-3′
F3: 5′-YRYYCAGCAYGAGMYBMDYCAYGCiCTS
GG-3′
F4: 5′-HTTCYAiCAYGARCAHDYHAGRAGCGA
YCG-3′
F5: 5′-TBCWRVYBCTGBTVBTBRGMHTYTCiY
WRGC-3′
R1: 5′-TTCCATARTGCATSABVGARSHRTAGT
CRTA-3′
R2: 5′-RCAKYYRTABAKHiKVTTGATYCYSAR-
RATRTC-3′

As previously described [12], most of the hatching
enzyme genes were predicted to be multi-copy genes
forming clusters with short inter-genic regions. There-
fore, the inter-genic region between hatching enzyme
genes was amplified using GSPs. In some cases, the 5′
or 3′ regions of the gene were extended by the ACP-
PCR method using DNA Walking SpeedUp Premix Kit
(Seegene Inc., Seoul, Korea). By the combined use of the
above PCR methods, the full-length genes including
their 5′-upstream and 3′-downstream regions were
cloned. The sequences thus cloned included the hatch-
ing enzyme genes and their paralogous genes. As
reported previously [21], hatching enzyme genes are
specifically expressed in pre-hatching embryos, while
their paralogous genes such as nephrosin gene are
mainly expressed in adult internal organs. We discrimi-
nated hatching enzyme genes from their paralogous
genes based on the phylogenetic analysis and whole-
mount in situ hybridization. The names of the cloned
hatching enzyme genes are listed in Additional file 1.

Phylogenetic analysis
A codon-based alignment of nucleotide sequences of
mature enzyme portions was made using the Clustal X
program [46] and the CodonAlign 2.0 program [47].
Data were partitioned into the first, second and third
codon positions. A general time reversible (GTR) + I +
Γ was selected as the best fitting model using Kakusan4
[48]. Maximum likelihood (ML) analysis was conducted
with RAxML version 7.2.6 [49], using the GTR + I + Γ
model. We reconstructed an ML tree, simultaneously
conducting bootstrap analysis for the best-scoring topo-
logy with 1,000 replicates.
The program Notung version 2.6 [28,29] was employed

to reconcile the hatching enzyme gene tree with teleos-
tean species tree. Notung mapped duplication and loss
events of the genes onto branches of the species tree
by reconstructing ancestral states according to the

parsimony method. The topology of the species tree was
obtained from the molecular phylogenetic tree estimated
using whole mitochondrial DNA sequences [24-27].

Whole-mount in situ hybridization
Whole-mount in situ hybridization was performed
according to the method described previously [50]. The
digoxigenin (DIG)-labeled RNA probes were synthesized
from hatching enzyme cDNAs of milkfish, loach, catfish,
Pacific cod and rainbow trout, and were hybridized to
pre-hatching embryos.

Northern blot analysis
For comparison of the expression levels of medaka
hatching enzyme genes (MHCE and MLCE) and house-
keeping genes (b-actin and GAPDH), total RNA was
extracted from stage 30 embryos. Four μg of the RNAs
were electrophoresed on 1% formaldehyde-agarose gel,
and then transferred to nylon membrane (Hybond N,
Amersham, Piscataway, NJ, USA). cDNAs of MHCE,
MLCE, b-actin and GAPDH were used to synthesize
DIG-labeled PCR probe. Each probe size was adjusted
to 816 bp and the labeling efficiency was checked by
dot-blot analysis. Hybridization was performed using the
same protocol as described previously [50]. Images were
analyzed with ImageQuant software (Molecular
Dynamic, Sunnyvale, CA) for semi-quantitative assess-
ment of the expression level.

Accession Numbers
The nucleotide sequence data reported in the present
paper will appear in the DDBJ/EMBL/GenBank nucleo-
tide sequence databases with accession number
[AB480003-AB480032].

Additional material

Additional file 1: Teleostean species examined in this study and the
names of hatching enzyme genes

Additional file 2: A multiple alignment of amino acid sequences
deduced from teleostean hatching enzyme genes. All hatching
enzymes were composed of a signal sequence (putative cleavage sites
are shown as white triangle), a pro-sequence, and a mature enzyme
sequence (the N-terminals are shown as black triangle). The mature
enzyme portion possesses two active site consensus sequences for
astacin family metallo-proteases, HExxHxxGFxHExxRxDR (Zn-binding site,
indicated in dark gray) and SxMHY (methionine turn, indicated in light
gray). In addition, six conserved cysteine residues are shaded in black.
Red lines indicate the intron insertion sites. Identical residues are boxed.
Dashes, asterisks and “X"s represent gaps, stop codons and unidentified
amino acid residues, respectively. Arrows at the bottom indicate sites of
primers designed for amplification of hatching enzyme gene fragments.
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