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Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of
interesting biological activities. Recent advances in genome sequencing and techniques in
genetic manipulation have enabled researchers to study the biosynthetic genes of these
SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering
drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and
territram, with interesting bioactivities. This review will cover recent progress in genome
mining of SMs identified in this fungus. The identification and characterization of the gene
cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed
in depth.
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INTRODUCTION
Filamentous fungi, such as species found within the genus
Aspergillus, are known to produce a wide variety of natural prod-
ucts displaying a broad spectrum of biological activities. Genome
sequencing of members in the genus Aspergillus revealed that
the number of secondary metabolite (SM) genes or gene clus-
ters greatly exceeds the number of SMs identified so far. This
suggests that more types of SMs still remain to be discovered.
Efficient and high-throughput genome sequencing techniques
have now greatly facilitated the genome mining of SMs identi-
fied in Aspergillus species. More and more studies have shown
that most fungal SM genes are clustered, often separated from
each other by less than 2 kb within the chromosome (Keller
et al., 2005). Striking examples of fungal SM clusters include
those responsible for the biosynthesis of fumonisin (Proctor
et al., 2003) and sterigmatocystin (Brown et al., 1996). The
clustering of these SM genes is fortuitous for researchers since
upon discovering one responsible gene within a cluster, other
genes that are within close proximity of the identified genes
may be involved in the biosynthesis of the same natural prod-
uct.

Analysis of the fungal genome makes it feasible to character-
ize these SM gene clusters via genetic manipulations. Verification
of function of the relevant genes can be achieved via sev-
eral approaches. These approaches include targeted deletion
or over-expression of the relevant genes in the native organ-
ism, heterologous expression in an alternative host, or in vitro
biochemical characterization. Recent advances in the genome
editing of Aspergillus nidulans have greatly expedited the SM
genome mining of this fungal species (Sanchez et al., 2012). One
advance is the development of a fusion PCR technique that allows

quick synthesis of linear PCR fragments that are used in the
transformation of filamentous fungi (Yu et al., 2004; Szewczyk
et al., 2006). Another advance concerns the establishment of an
efficient gene targeting system in the fungus A. nidulans. This is
accomplished via targeted deletion of the A. nidulans homolog
(nkuA) of the human KU70 gene which is essential for non-
homologous end joining of DNA in DNA double-strand breaks
(Nayak et al., 2006; Szewczyk et al., 2006). Later, this ku70 deletion
toolbox was expanded to other Aspergillus species and boosted
the gene targeting efficiency in these species (Kuck and Hoff,
2010).

The fungus Aspergillus terreus is known to produce lovas-
tatin, which became the first cholesterol-lowering drug of its
class approved for human use in the United States. Besides
lovastatin, A. terreus produces a number of biologically relevant
compounds such as sulochrin, terretonin, asterriquinone, and
butyrolactone. The strain A. terreus NIH 2624, a patient iso-
late, was sequenced by the Broad Institute as part of the Broad
Fungal Genome Initiative. A 10 × coverage genome sequence has
been completed, and the data are publicly available through the
Broad Institute website. Analysis by Secondary Metabolite Unique
Regions Finder (SMURF) showed that A. terreus NIH2624 con-
tains 28 polyketide synthase (PKS) genes, 22 non-ribosomal
peptide synthetase (NRPS) genes, one hybrid PKS/NRPS gene,
two PKS-like genes, and 15 NRPS-like genes (Khaldi et al., 2010).
This review will cover the most current knowledge of the genome
mining of SMs produced by A. terreus. The review consists of
three major sections: genome mining of PKS-derived natural
products, genome mining of NRPS-derived natural products, and
genome mining of hybrid PKS-NRPS derived natural products by
A. terreus.

www.frontiersin.org December 2014 | Volume 5 | Article 717 | 1

http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/journal/10.3389/fmicb.2014.00717/abstract
http://community.frontiersin.org/people/u/191667
http://community.frontiersin.org/people/u/108787
mailto:clayw@usc.edu
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Physiology_and_Metabolism/archive


Guo and Wang Mining secondary metabolites in A. terreus

GENOME MINING OF PKS-DERIVED NATURAL PRODUCTS IN
A. TERREUS
BIOSYNTHESIS OF LOVASTATIN IN A. TERREUS
Perhaps the most well-known molecule produced by A. ter-
reus is lovastatin. Lovastatin is an inhibitor of the enzyme
(3S)-hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase
which reduces HMG-CoA to mevalonate. The biosynthesis of
lovastain has been extensively reviewed in literature reports (Hill,
2006; Cox, 2007; Campbell and Vederas, 2010; Chiang et al., 2010;
Chooi and Tang, 2012). Two highly reducing PKSs (HR-PKSs),

LovB (lovastatin nonaketide synthase) and LovF, play critical roles
in the formation of the lovastatin core structure (Figure 1). In
the pathway, the HR-PKS LovB, together with the trans-acting
enoyl reductase (ER) protein LovC, are responsible for the pro-
duction of dihydromonacolin L acid (1). The release of 1 from
LovB is catalyzed by a thioesterase LovG (Xu et al., 2013a). The
oxidative conversion of 1 to monacolin J acid (2) involves LovA.
The other HR-PKS LovF synthesizes the 2-methylbutyrate moi-
ety of lovastatin (3) and the covalent attachment of this moiety to
2 is catalyzed by a transesterase, LovD (Figure 2). Recent efforts

FIGURE 1 | Organization of the secondary metabolite gene clusters identified in A. terreus.
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FIGURE 2 | Biosynthesis of lovastain in A. terreus.

in engineering LovD using a directed evolution strategy gener-
ated a mutant LovD containing 29 point mutations that greatly
improves (∼1000 fold) the protein’s efficiency in the synthesis
of the drug simvastatin (Jimenez-Oses et al., 2014), represent-
ing an excellent example of how the combination of synthetic
biology and protein chemistry may facilitate drug discovery and
production.

BIOSYNTHESIS OF TERRETONIN IN A. TERREUS
Terretonin is one type of meroterpenoids with mixed origins
(Figure 3). Previous studies by Simpson and Vederas in the
1980’s using isotopic labeled precursors have shown that terre-
tonin originates from both polyketide and terpenoid pathways
(McIntyre et al., 1982, 1989). Recent genome mining studies
revealed that the terretonin cluster contains a total of 10 genes
(Guo et al., 2012). The cluster includes a non-reducing PKS (NR-
PKS) gene, trt4 (ATEG_10080.1), and a prenyltransferase gene,
trt2 (Figure 1). Trt4 is responsible for the biosynthesis of 3,5-
dimethylorsellinic acid (4) and Trt2 catalyzes the alkylation of
compound 4 to give 5 (Figures 1, 3) (Guo et al., 2012; Itoh et al.,
2012). The following methylation (5 to 6), epoxidation (6 to 7)
and cyclization (7 to 8) are proposed to be catalyzed by pro-
teins encoded by trt5, trt8, and trt1, respectively (Guo et al., 2012;
Matsuda et al., 2012). Interestingly, the Abe group discovered that
the methylation step catalyzed by Trt5 is an essential step for
cyclization (Matsuda et al., 2012). Upon formation of the tetra-
cyclic precursor, Trt9 is proposed to oxidize compound 9 to 10
and Trt3 hydroxylases 10 to give 11 (Figure 3). Next, the putative
protein Trt6 catalyzes the intra-lactonization reaction to give 12,
while the conversion of 12 to terretonin (13) might involve other
enzymes that are not identified by Guo et al. (2012).

BIOSYNTHESIS OF 10,11-DEHYDROCURVULARIN IN A. TERREUS
The polyketide origin of the compound 10,11-dehydrocurvularin
(14) was established by incorporation of stable isotope labeled

precursors (Arai et al., 1989). The biosynthetic cluster for
10,11-dehydrocurvularin was identified in A. terreus AH-02-
30-F7. The cluster is proposed to contain four genes, an HR-
PKS gene (Atcurs1), an NR-PKS gene (Atcurs2), a GAL4-like
transcription regulatory gene (AtcursR) and a major facilitator
superfamily gene (AtcursE) (Figure 1) (Xu et al., 2013b). The
biosynthesis of 10,11-dehydrocurvularin in A. terreus was char-
acterized by heterologous expressing the HR-PKS and NR-PKS
pair in Saccharomyces cerevisiae (Xu et al., 2013b). In the pathway,
the HR-PKS AtCURS1 is proposed to synthesize the tetraketide
7(S)-hydroxyotc-2(E)-enoic acid (Figure 4). This tetraketide is
then loaded onto the starter unit ACP transacylase domain (SAT)
of AtCURS2, followed by four chain extension cycles to release
the final product 14. In the cluster, the gene AtcursR is pre-
dicted to encode for a fungal transcription regulator and AtcursE
may code for an exporter involved in the transporting of 10,11-
dehydrocurvularin (14) (Xu et al., 2013b). Further investigation
of the product template (PT) domain of AtCURS2, which cat-
alyzes the ring cyclization and aromatization, revealed that the
cyclization mode of this domain could be reshaped from the bac-
terial folding mode, as shown in the biosynthesis of compound
14, to the fungal mode by three selected point mutations (Xu
et al., 2013c). Such rational control of fungal polyketide ring
cyclization should facilitate the engineering of natural products
with novel chemical scaffolds.

BIOSYNTHESIS OF ASPERFURANONE IN A. TERREUS
The azaphilone asperfuranone (20) was first isolated from
A. nidulans after activating two PKSs encoded by afoE and afoG
(Chiang et al., 2009). Later a highly homologous cluster was iden-
tified in the A. terreus genome (Figure 1) (Chiang et al., 2013).
In this case, the individual genes from A. terreus were heterol-
ogously expressed in A. nidulans and the whole asperfuranone
pathway was reconstituted. The asperfuranone cluster in A. ter-
reus contains a total of seven genes including two PKS genes
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FIGURE 3 | Biosynthesis of terretonin in A. terreus.

FIGURE 4 | Biosynthesis of 10,11-dehydrocurvularin in A. terreus.

ateafoE and ateafoG (Figure 1). In the pathway, the gene AteafoG
encodes the HR-PKS that is responsible for the production of
the PK intermediate 15. The enzyme AteafoC might facilitate
the transfer of the side chain 15 from AteafoG to AteafoE. Next,
AteafoD catalyzes the dearomatization of the precursor 16 to give
intermediate 17, followed by hydroxylation by AteafoF to 18. Last,
the authors proposed the existence of an endogenous reductase in
A. nidulans that catalyzes the conversion of 19 to asperfuranone
(20) (Figure 5).

BIOSYNTHESIS OF TERREIN IN A. TERREUS
The terrein (25) cluster was serendipitously identified while the
Brock group were initially looking for secondary metabolites that
are involved in the biosynthesis of conidia pigment in A. terreus
(Zaehle et al., 2014). Previous isotope-labeling studies revealed
that the biosynthesis of terrein originates from a polyketide-based
pathway (Birch et al., 1965) and involves the contraction of a

six-membered ring precursor to give the five-membered ring ter-
rein (25) (Hill et al., 1981). The terrein cluster contains a total
of 11 genes, including an NR-PKS gene terA (ATEG_00145.1)
and a transcription factor gene, terR (Figure 1). In the ter-
rein biosynthetic pathway as shown in Figure 6, the NR-PKS
encoded by terA condensates one acetyl-CoA and four malonyl-
CoA to synthesize the precursor 2,3-dehydro-6-hydroxymellein
(23). Heterologous expression of terA in A. niger revealed that
the NR-PKS TerA is also capable of producing compounds 21
and 22 by incorporating different number of malonyl-CoAs as
substrates. The reduction of compound 23 to 6-hydroxymellein
(6-HM) (24) is probably catalyzed by TerB, but it is also possible
that other unspecific ketoreductases may perform this reduc-
tion. The authors proposed that the conversion of 6-HM (24)
to the final product terrein (25) might involve four genes, terC,
terD, terE, and terF while the specific roles of these genes await
further verification. Interestingly, the study also revealed that
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FIGURE 5 | Biosynthesis of asperfuranone in A. terreus.

terrein (25) has phytotoxic activity. In the two experiments,
terrein (25), rather than the intermediates or shunt products,
inhibited root elongation and caused lesions on fruit surface
(Zaehle et al., 2014), representing a prime example of how fun-
gal secondary metabolites might play a role in fungus-plant
interactions.

BIOSYNTHESIS OF TERREIC ACID IN A. TERREUS
Terreic acid (30) is a natural product isolated from A. terreus
with anti-bacterial activity (Yamamoto et al., 1980). A later study
recognized its inhibitory effect against Bruton’s tyrosine kinase
(Btk), and this compound has been used as a chemical probe to
examine the function of Btk (Kawakami et al., 1999). Previous
research using isotope-labeled precursors has shown that the
biosynthesis of terreic acid originated from one polyketide, 6-
methylsalicylic acid (6-MSA, 26) (Read and Vining, 1968; Read
et al., 1969). The PKS gene atX was cloned and identified as a
6-MSA (26) synthase (Fujii et al., 1996). A recent bioinformatic
analysis study predicts that the PKS gene atX and its surrounding

genes encodes the biosynthetic cluster which is responsible for ter-
reic acid biosynthesis (Boruta and Bizukojc, 2014). The cluster
was experimentally characterized using a targeted gene deletion
method (Guo et al., 2014). The cluster contains a total of eight
genes, including a partially reducing PKS (PRPKS) gene, atX, and
a transcription factor gene atF (Figure 1). The pathway starts
with the formation of 6-MSA (26) by AtX using one acetyl-
CoA and three malonyl-CoA units as its substrates, followed
by a decarboxylative hydroxylation catalyzed by AtA to give 27.
Compound 27 could be degraded to a shunt product, (2Z,4E)-
2-methyl-2,4-hexadienedioic acid. The degradation of 27 may
be catalyzed by a putative catechol 1,2-dioxygenase in A. ter-
reus, but the coding gene for this enzyme is not identified in
the terreic acid cluster (Guo et al., 2014). The hydroxylation
of 27 to give 28 is possibly catalyzed by AtE. The oxidative
conversion of 28 to 29 might involve AtG, but this proposal
is not confirmed in the study. Last, AtC catalyzes the oxida-
tion of compound 29 to give the final product terreic acid (30)
(Figure 7).
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FIGURE 6 | Biosynthesis of terrein in A. terreus.

FIGURE 7 | Biosynthesis of terreic acid in A. terreus.

IDENTIFICATION OF THE PRODUCTS OF SIX NR-PKS GENES IN A.
TERREUS
The previous studies successfully linked several PKS-derived SMs
with their biosynthetic clusters in A. terreus. Using a heterologous
expression strategy, researchers also identified the products of six
NR-PKS genes in A. terreus (Chiang et al., 2013). The products
of these NR-PKSs are shown in Table 1. The NR-PKS encoded
by ATEG_00145.1 synthesizes a mixture of compounds, 21, 22,
23, and 31. The plasticity of ATEG_00145.1 is also demonstrated
in the study of terrein biosynthesis (Zaehle et al., 2014). The
products of the NR-PKS, encoded by ATEG_03432.1, are com-
pounds 32 and 33, and the product of the ATEG_03629.1 encoded
NR-PKS is 34. The NR-PKS atrochrysone carboxylic acid syn-
thase (ACAS) encoded by ATEG_08451.1 produces atrochrysone
35 and its derivative emodin 36 with the aid of a β-lactamase
encoded by ATEG_08450.1. This result matches the previ-
ous finding reported by Awakawa et al. (2009) As expected,
ATEG_10080.1 (trt4) synthesizes and releases the PKS product
3,5-dimethylorsellinic acid (4), which is presumed to be the first
precursor in the biosynthesis of terretonin (Figure 3) (Guo et al.,
2012; Itoh et al., 2012). As aforementioned, the products of the
NR-PKS AteafoE and its adjacent HR-PKS AteafoG incorporate
into the asperfuranone pathway as shown in Figure 5 (Table 1).

BIOSYNTHESIS OF NRPS-DERIVED NATURAL PRODUCTS IN
A. TERREUS
BIOSYNTHESIS OF ACETYLARANOTIN IN A. TERREUS
Acetylaranotin belongs to one group of SM toxins named epipoly-
thiodioxopiperizine (ETP). This type of natural products is

usually featured by the presence of unique di- or poly-sulfide
bridges. The di- or poly-sulfide bridges are presumed to mediate
the molecule’s cytotoxicity, either by cross-linking vital proteins
via cysteine bonds, or by generating reactive oxygen species via
redox cycling (Scharf et al., 2011a). An early study using sta-
ble isotope-labeled precursors showed that the diketopiperazine
(DKP) precursor, compound 37, could be incorporated intact
into acetylaranotin (44) (Boente et al., 1981). This indicates
that the acetylaranotin pathway may include an NRPS that cat-
alyzes the condensation of two L-phenylalanines to give 37.
Bioinformatic analysis of the ETP clusters dispersed in filamen-
tous ascomycetes uncovered two putative clusters in A. terreus that
might encode the biosynthetic pathway for acetylaranotin (Patron
et al., 2007).

Using the gene targeted deletion strategy, one of the two
clusters, named ata cluster, was found to be responsible for
acetylaranotin production in A. terreus (Guo et al., 2013b).
The ata cluster contains a total of nine genes, including one
NRPS gene, ataP (Figure 1). In the pathway, the NRPS AtaP
catalyzes the condensation of two phenylalanines to give com-
pound 37. Next, the C domain of the protein AtaTC is pro-
posed to catalyze the dual hydroxylation of compound 37 to
38. A series of studies have fully elucidated the functions of
the enzymes that are involved in the installation of the disul-
fide moiety in gliotoxin (Scharf et al., 2010, 2011b, 2012, 2013;
Schrettl et al., 2010; Davis et al., 2011; Gallagher et al., 2012).
Similar to their homologs in the gliotoxin cluster, AtaG, AtaJ,
AtaI are involved in the conversion of the dual hydroxyl groups
in 38 to thiol groups in 39, followed by the AtaT-mediated
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Table 1 | The core synthesis genes and their products identified in A. terreus.

Genes Name Type Putative domain

architecture

Released product Downstream

metabolites

ATEG_00145.1 terA NR-PKS SAT-KS-AT-PT-ACP-ACP-
TE

Terrein

ATEG_00228.1 NRPS Multidomains
ATEG_00282.1 HR-PKS KS-AT-DH-KR-ACP-C

ATEG_00325.1 PKS-NRPS
hybrid

KS-AT-(DH)-(CMeT)-
(KR)-ACP-C-A-T-R/C

Isoflavipucine

ATEG_00700.1 atqA NRPS-like A-T-TE Asterriquinones

ATEG_00881.1 NRPS A-T-C
ATEG_00913.1 Undefined KS-AT
ATEG_01002.1 NRPS A-T-C-C-A-T-C-A-T-C-A-T-R

ATEG_01052.1 NRPS-like A-T-R
ATEG_01894.1 HR-PKS KS-AT-DH-ER-KR-ACP

ATEG_02004.1 apvA NRPS-like A-T-TE Aspulvinones

ATEG_02403.1 NRPS-like A-T-R-KR
ATEG_02434.1 HR-PKS KS-AT-DH-ACP

ATEG_02815.1 btyA NRPS-like A-T-TE Butyrolactones

ATEG_02831.1 NRPS A-T-C
ATEG_02944.1 NRPS C-A-C-A-T-C
ATEG_03090.1 NRPS-like A-T

ATEG_03432.1 NR-PKS SAT-KS-AT-PT-ACP-
CMeT-R

ATEG_03446.1 HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

ATEG_03470.1 ataP NRPS T-C-A-T-C Acetylaranotin

(Continued)
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Table 1 | Continued

Genes Name Type Putative domain

architecture

Released product Downstream

metabolites

ATEG_03528.1 NRPS A-T-C-A-T-C

ATEG_03576.1 NRPS C-A-T-C-A-T-C

ATEG_03629.1 NR-PKS SAT-KS-AT-PT-ACP-ACP-
CMeT-TE

ATEG_03630.1 NRPS-like A-T-R Reduce 34 to its aldehyde form

ATEG_04322.1 NRPS C-A-T-C

ATEG_04323.1 NRPS A-T-C-C-A

ATEG_04718.1 HR-PKS KS-AT-DH-KR-ER-KR-
ACP

ATEG_04975.1 NRPS-like A-T-R

ATEG_05073.1 NRPS A-T-C-A-T-C-T-C-T-C

ATEG_05795.1 NRPS-lke A-T-R

ATEG_06056.1 HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

ATEG_06113.1 NRPS A-T-C-C-A-T-C

ATEG_06206.1 Undefined KS-AT

ATEG_06275.1 atX PRPKS KS-AT-TH-KR-ACP Terreic acid

ATEG_06680.1 HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

ATEG_06998.1 NRPS-like A-T-R

ATEG_07067.1 HR-PKS KS-AT-DH-ER-KR-ACP

ATEG_07279.1 HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

ATEG_07282.1 HR-PKS KS-AT-DH-CMeT-KR-ER-
KR-ACP

ATEG_07358.1 NRPS A-T-C-A-T-C-T

ATEG_07379.1 HR-PKS KS-AT-DH-ACP-ACP-TE

ATEG_07380.1 NRPS-like A-T-R

ATEG_07488.1 NRPS A-T-C-A-T-C

ATEG_07500.1 HR-PKS KS-AT-DH-ACP-ACP-TE

ATEG_07659.1 AteafoG HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

Asperfuranone

ATEG_07661.1 AteafoE NR-PKS SAT-KS-AT-PT-ACP-
CMeT-R

Asperfuranone

ATEG_07894.1 NRPS-like A-T-R

ATEG_08172.1 HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

ATEG_08427.1 NRPS A-C-A-T-C-T

(Continued)
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Table 1 | Continued

Genes Name Type Putative domain

architecture

Released product Downstream

metabolites

ATEG_08451.1 NR-PKS SAT-KS-AT-PT-ACP

ATEG_08662.1 NR-PKS SAT-KS-AT-ACP-CMeT-R
ATEG_08678.1 NRPS-like A-T-R
ATEG_08899.1 NRPS-like A-T-TE
ATEG_09019.1 NRPS C-A-T-C-C-T-A-T-C-A-T-C-

A-T-C
ATEG_09033.1 NRPS-like A-T-R
ATEG_09064.1 NRPS A-T-C-A-T-C
ATEG_09068.1 NRPS C-A-T-C-A-T-R
ATEG_09088.1 HR-PKS KS-AT-DH-CMeT-ER-KR
ATEG_09100.1 HR-PKS KS-AT-DH-CMeT-ER-KR-R

ATEG_09142.1 NRPS-like A-T-R
ATEG_09617.1 HR-PKS KS-AT-DH-CMeT-KR-

ACP

ATEG_09961.1 lovB HR-PKS KS-AT-DH-CMeT-(ER)-
KR-ACP-CON

lovastatin

ATEG_09968.1 lovF HR-PKS KS-AT-DH-CMeT-ER-KR-
ACP

lovastatin

ATEG_10080.1 trt4 NR-PKS SAT-KS-AT-PT-ACP-
CMeT-TE

Terretonin

ATEG_10305.1 anaPS NRPS A-T-C-A-T-C Epi-aszonalenins

Domains shown in bracket are supposed to be non-functional.

oxidation to form the transannular disulfide bridge as shown
in intermediate 40. Next, AtaF catalyzes the dual epoxidation
of 40 followed by the spontaneous nucleophilic attack of the
amide nitrogens to yield intermediate 41. The acetylation of
41 to 42 is catalyzed by AtaH, and the oxepine ring formation
involves the protein AtaY to yield acetylaranotin 44 (Figure 8).
The proteins AtaH and AtaY can function independently, but
the detailed catalytic mechanism of AtaY still awaits further

investigation. Two recent studies unveiled that the S-alkylation
of gliotoxin was catalyzed by a SAM dependent methyltrans-
ferase encoded by a gene tmtA/gtmA outside the gliotoxin cluster
(Dolan et al., 2014; Scharf et al., 2014). These studies sug-
gest that the S-methylation of acetylaranotin to give bisde-
thiobis(methylthio)acetylaranotin is likely to be catalyzed by a
methyltransferase encoded by a gene outside the acetylaranotin
cluster.
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FIGURE 8 | Biosynthesis of acetylaranotin in A. terreus.

IDENTIFICATION OF THE PRODUCTS OF FOUR NRPS OR NRPS-LIKE
GENES IN A. TERREUS
Screening of the genome-sequenced strain A. terreus NIH 2624
showed that this fungus is able to biosynthesize four main types
of secondary metabolites including aspulvinones, butyrolactones,
asterriquinones, and aszonalenins (Guo et al., 2013a). The NRPS-
origin of these four types of natural products was revealed in
previous studies (Kiriyama et al., 1977; Nitta et al., 1983; Balibar
et al., 2007; Yin et al., 2009). To link these molecules to their
core synthesis NRPS genes, a mutant library was created by
individually deleting a total of 21 NRPS or NRPS-like genes in
A. terreus. Screening of the mutants’ SM profiles, in compar-
ison with that of the wild type, showed that three NRPS-like
genes atqA (ATEG_00700.1), apvA (ATEG_02004.1), and btyA
(ATEG_02815.1), are responsible for the synthesis of the core
structures of asterriquinones, aspulvinones, and butyrolactones,
respectively (Table 1) (Balibar et al., 2007; Guo et al., 2013a).
The NRPS gene anaPS encoded by ATEG_10305.1 is proposed
to biosynthesize the (R)-benzodiazepinedione core (Table 1) (Yin
et al., 2009; Guo et al., 2013a). Serendipitously, deletion of one
NRPS-like gene atmelA (ATEG_03563.1) generates an albino
mutant that abolishes the brown conidia melanin in A. terreus. It
is possible that AtmelA synthesizes the first precursor that incor-
porates into the conidia pigment produced by A. terreus. Since
all the identified conidial melanins in other Aspergillus species
are derived from a PKS pathway, another possibility is that this
NRPS-like gene might be involved, but not directly related in the
melanin biosynthesis of A. terreus (Guo et al., 2013a).

AN NRPS-LIKE GENE IS INVOLVED IN ACTIVATING AND REDUCING OF
AN ARYL ACID RELEASED FROM AN NR-PKS
Zhao group recently reported that an NRPS-like protein encoded
by ATEG_03630.1 could catalyze the reduction of compound 34

to an aryl aldehyde (Wang et al., 2014). Compound 34 is released
by its adjacent NR-PKS ATEG_03629.1, The putative domain
architecture of the NRPS-like protein is A-T-R. The aryl acid
product 34, upon its release from the TE domain of the NRPKS,
is then loaded onto the A domain. And the R domain is respon-
sible for the reduction of the aryl acid 34 to its aldehyde form
(Wang et al., 2014). Interestingly, a subsequent study revealed
that the substrate of the A domain of this NRPS-like enzyme
could be engineered to anthranilate via bioinformatic analysis and
mutagenesis (Wang and Zhao, 2014).

BIOSYNTHESIS OF HYBRID PKS-NRPS NATURAL PRODUCTS
IN A. TERREUS
BIOSYNTHESIS OF ISOFLAVIPUCINE IN A. TERREUS
Only one hybrid PKS-NRPS gene, ATEG_00325.1, can be iden-
tified in the genome of A. terreus NIH 2624. The Brock
group identified that the PKS-NRPS encoded by this hybrid
gene is responsible for the core synthesis of isoflavipucine
and dihydroisoflavipucine (Gressler et al., 2011). RT–PCR anal-
ysis of expression of the hybrid gene and its surrounding
genes, under isoflavipucine producing condition, suggested
that the cluster for isoflavipucine biosynthesis might contain
five genes, ATEG_00325.1, ATEG_00326.1 (transcription fac-
tor gene), ATEG_00329.1, ATEG_00330.1, and ATEG_00331.1
(Figure 1) (Gressler et al., 2011). In the pathway, the hybrid
PKS-NRS synthesizes and releases the linear precursor (49). The
conversion of the precursor 49 to final product includes hetero-
cyclization (49 to 50), oxidation (50 to 51), transamination and
ring arrangement (51 to 52), and epoxidation to give flavipucine
(53) (Figure 9). However, the enzymes that are responsible
for the conversion of the linear precursor 45 to isoflavipucine
(54) are not identified in this study and needs further
investigation.
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FIGURE 9 | Biosynthesis of flavipucine in A. terreus.

CONCLUSION
In the fungus A. terreus, most of the genome mining experiments
are carried out in the strain NIH 2624 because it is the only
A. terreus strain in which the genome sequence is publicly avail-
able. A combination of bioinformatic analysis and experimental
verification have enabled researchers to elucidate the functions
of genes and proteins that are involved in the biosynthesis of
several SMs produced in A. terreus. However, as shown in Table 1,
there are still many other SM genes or gene clusters in A. terreus
whose products still remain elusive. With the advance of genome
sequencing and manipulation techniques, an increasing amount
of effort will focus on deciphering the products of these silent
or cryptic genes or gene clusters, as well as engineering the char-
acterized pathways to produce second generation molecules with
improved bioactivities.
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