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Abstract

Many microbiome studies employ reference-based operational taxonomic unit (OTU)-picking

methods, which in general, rely on databases cataloguing reference OTUs identified through

clustering full-length 16S rRNA genes. Given that the rate of accumulation of mutations are not

uniform throughout the length of a 16S rRNA gene across different taxonomic clades, results of

OTU identification or taxonomic classification obtained using ‘short-read’ sequence queries (as

generated by next-generation sequencing platforms) can be inconsistent and of suboptimal ac-

curacy. De novo OTU clustering results too can significantly vary depending upon the hypervar-

iable region (V-region) targeted for sequencing. As a consequence, comparison of microbiomes

profiled in different scientific studies becomes difficult and often poses a challenge in analysing

new findings in context of prior knowledge. The OTUX approach of reference-based OTU-pick-

ing proposes to overcome these limitations by using ‘customized’ OTU reference databases,

which can cater to different sets of short-read sequences corresponding to different 16S V-

regions. The results obtained with OTUX-approach (which are in terms of OTUX-OTU identi-

fiers) can also be ‘mapped back’ or represented in terms of other OTU database identifiers/tax-

onomy, e.g. Greengenes, thus allowing for easy cross-study comparisons. Validation with

simulated datasets indicates more efficient, accurate, and consistent taxonomic classifications

obtained using OTUX-approach, as compared with conventional methods.
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1. Introduction

Advances in high-throughput DNA sequencing technologies have en-
abled culture independent studies of diverse microbial communities
(microbiome) inhabiting different environments. Targeted amplicon

sequencing of phylogenetic markers genes (e.g. the bacterial 16S
rRNA) forms the basis of most of these studies. The downstream
steps of taxonomic classification involve a similarity search of the se-
quenced DNA fragments (reads) against a reference database of
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pre-classified sequences (with taxonomic annotations).1–4 Inspite of
extensive sampling of microbiomes from different environments
being performed over the past decade, it would be optimistic to claim
the completeness of current generation reference databases, with
respect to cataloguing (and annotating) the entire diversity of the
microbial world. Given this, many of the sequenced reads in a micro-
biome study may not find close matches in the reference databases,
and thereby remain as unclassified. OTU (operational taxonomic
unit)-based methods constitute an alternate approach, wherein the
sequenced reads are clustered based on some predefined similarity
threshold (de novo OTU clustering). Sequences clustered into the
same OTU may be inferred to have originated from the same taxo-
nomic group. Given that all sequenced reads can be grouped into
OTUs prior to analysis, the problem with unclassified sequences can
be traversed using this method. Further, taxonomic affiliations of
these OTUs (and sequences clustered therein) can still be ascertained
using similarity searches against reference databases. In practice,
‘open-reference OTU-picking’ approaches have been the choice of a
number of recent studies.5–10 Such an approach involves an initial
similarity search step against a reference database (of pre-clustered
OTUs) for identifying sequences corresponding to previously anno-
tated OTUs, followed by a clustering step with the remaining se-
quenced reads for identifying de novo OTUs.

Conventional OTU-picking approaches also have certain limita-
tions. Previous studies have indicated how DNA sequencing errors
can lead to an increased number of detected OTUs,11–13 or how the
use of different clustering approaches may result in formation of al-
ternate OTU clusters.14–17 However, some other important limita-
tions of the OTU-based approaches, especially in the context of
high-throughput DNA-sequencing technologies, have received rela-
tively lesser attention. Given the limitations pertaining to the length
of contiguous stretch of DNA (read length) that can be sequenced
by currently available technologies, the targeted amplicon often
consists of a selected region from the phylogenetic marker gene, in-
stead of the entire gene. For example, in case of the bacterial 16S
rRNA gene, stretches consisting of one or more specific ‘variable’
regions (spanning around 400–600 bp) are targeted for sequencing.
However, since the reference databases catalogue sequences of full
length marker genes, querying the same with ‘short’ sequence reads
for OTU identification or taxonomic classification can yield subop-
timal results.18 Furthermore, it may be noted that rate of evolution
(accumulation of mutations) is not always uniform across the
length of a chosen marker gene (or in its variable regions) across
different taxonomic clades.19,20 It is possible that while a short re-
gion may remain more or less identical during the course of evolu-
tion, the flanking regions may be more prone to mutations.
Alternately, barring a small hyper-variable stretch, a major fraction
of the marker gene may remain unchanged through evolution.
Given this scenario, OTU clustering results can vary significantly
based on the choice of the target region. Although OTUs identified
or classified using reference-based methods vs de novo clustering
methods can provide different results, any comparison between the
results obtained from studies utilizing different variable regions of
a given marker gene also loses relevance.

The question whether the above limitations can be addressed us-
ing reference OTU databases that are specific to the targeted regions
of the marker gene has been explored in this study. We present the
OTUX (meta)database, which consists of 19 distinct OTU databases
corresponding to the different stretches of variable regions (V-
regions) of the bacterial 16S rRNA gene, that are commonly targeted
for amplicon sequencing in microbiome studies. Each of the

V-region-specific databases consists of OTUs (referred to as OTUX-
OTUs) identified by clustering sequence fragments from correspond-
ing stretches of V-regions cropped out from full-length 16S rRNA
gene sequences catalogued in reference databases. Also presented is a
‘mapping matrix’ (MAPMAT), which lists the probabilities of associ-
ation of any of the OTUX-OTUs to the reference OTUs present in
the widely used Greengenes OTU database (consisting full-length
marker genes). An open-reference-based OTU-picking approach
against an appropriately selected OTUX V-region database is
expected to provide results closer to those obtained with de novo

OTU clustering. Further, the OTU abundance profiles, obtained in
terms of OTUX-OTUs, can be ‘mapped back’ and represented in
terms of Greengenes OTUs, using the MAPMAT. Mapping back
enables comparing OTU-picking or taxonomic annotation results
from different microbiome studies, even if the choice of targeted V-
regions had been different. The utility of the proposed database and
OTU-picking approach has been extensively validated with multiple
simulated sequence datasets mimicking microbiome samples col-
lected from diverse environments. The results indicate the benefits of
using V-region-specific databases for classifying 16S amplicon data
generated using short-read sequencing technologies.

2. Materials and methods

The OTUX workflow has two major components. This includes a
one-time preprocessing step to generate customized V-region-specific
reference databases (called OTUX databases) and a ‘MAPMAT’ for
different stretches of V-regions. Subsequently, any amplicon sequenc-
ing dataset targeting 16S V-regions can be subjected to a reference-
based OTU-picking cum taxonomic classification step using the
OTUX reference database(s). Figure 1 gives a schematic representa-
tion of the OTUX method in context of conventional approach (CA)
of OTU picking and taxonomic classification of 16S rRNA amplicon
sequencing reads.

2.1. Building OTUX databases

The ‘prokMSA’ unaligned sequences from Greengenes database21

was downloaded through the following links: (i) http://greengenes.
lbl.gov/Download/Sequence_Data/Fasta_data_files/current_prokMSA
_unaligned.fasta.gz and (ii) ftp://greengenes.microbio.me/green
genes_release/gg_13_5/gg_13_5.fasta.gz. The downloaded files were
decompressed to obtain the fasta formatted sequences, which were
subsequently combined to create a final corpus of 1,079,252 un-
aligned sequences. The taxonomic classification of these sequences
for different taxonomic hierarchical levels (including phylum, class,
order, family, genus, species as well as Greengenes OTU IDs at 99%
sequence identity) as annotated in Greengenes database version 13.8,
were retrieved from ftp://greengenes.microbio.me/greengenes_re
lease/gg_13_8_otus/taxonomy/99_otu_taxonomy.txt. Individual V-
regions as well as stretches encompassing consecutive V-regions were
extracted from each of the 16S rRNA gene sequences present in the
sequence corpus using the software V-xtractor.22 The extracted
sequences were then clustered based on sequence similarity using
CD-HIT,23 wherein each resultant cluster constituted sequences shar-
ing 99% sequence identity. Each of the clusters was assigned a V-re-
gion-specific OTU identifier (OTUXV ID) and was compiled to
constitute an OTUXV reference database corresponding to a specific
V-region.

148 OTUX: V-region-specific OTU classification

http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/current_prokMSA
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/current_prokMSA
http://ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_5.fasta.gz
http://ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_5.fasta.gz
http://ftp://greengenes.microbio.me/greengenes_release/gg_13_8_otus/taxonomy/99_otu_taxonomy.txt
http://ftp://greengenes.microbio.me/greengenes_release/gg_13_8_otus/taxonomy/99_otu_taxonomy.txt


2.2. Building MAPMAT

By definition, any OTU-picking approach, using one of the OTUX ref-
erence databases as reference, will result in taxonomic annotations in
terms of OTUX OTU IDs corresponding to the specific OTUX data-
base. To enable cross-comparisons between studies targeting different
V-regions (thereby mandating use of different V-region-specific OTUX
databases), as well as between studies using other CAs, a ‘MAPMAT’
between different OTUX OTU IDs and conventionally used
Greengenes OTU IDs was created. The procedure of building mapping
back matrices has been exemplified below using the V4 region-specific
OTUX database. In this example, after compiling the OTUXV4

database, the propensity of association of a OTUXV4 ID (OTUXV4i) to
a Greengenes OTU ID (GGj) is calculated using the following formula,

MAPMATV4ij¼

No: of sequences clusteredinto OTUXV4i whose

full length counterparts are assigned to GGj

Total no: of sequences clustered into OTUXV4i

this is followed by populating the propensity matrix MAPMATV4,
for the OTUXV4 database by computing all values for MAPMATV4ij

wherein, i = 1! NOTUX (i.e. total number of OTUXV4 OTUs); j = 1
! NGG (i.e. total number of Greengenes OTUs); and MAPMATV4 is
a NGG �NOTUX matrix.

An example is shown in Supplementary Fig. S1, where an OTUX
ID OTUXVi is mapped to corresponding Greengenes OTUX IDs.
The percentages mentioned represent the propensities of OTUX ID
OTUXVi to be associated to any of the hypothetical Greengenes
OTU IDs GGx, GGy and GGz.

2.3. Creating validation datasets

Assessment of accuracy of taxonomic annotation of any OTU-picking
or taxonomic classification method, on a real metagenomic dataset

constituting short reads, poses a challenge since the origin (taxonomic
affiliation) of the sequenced reads are ‘unknown’. The annotation
results predicted by different available methods may vary from each
other, with respect to the assigned lineage as well as depth of assign-
ment, and cannot be used as a benchmark/standard for comparison.
To overcome this problem, multiple validation sets of simulated short
metagenomic reads were created and were classified into OTUs using
our method. The simulated metagenomes pertaining to 4 different
environments, viz. gut of healthy children (abbreviated as GUT),24

healthy human skin (abbreviated as SKIN),25 Mediterranean sea (ab-
breviated as SEA)26 and soil (SOIL),27 were generated using the fol-
lowing procedure. Publicly available datasets corresponding to
metagenomic samples from the above mentioned environments were
retrieved (Supplementary Table S1) and overall proportions of differ-
ent genera present in each of the environments were obtained from the
provided abundance tables (Supplementary Material S2). To create a
simulated metagenome pertaining to an environment, full length 16S
rRNA genes were randomly drawn from the RDP database (v10.3),28

ensuring that the proportions of the picked genera were similar to
those present in the chosen environment (only top 50 genera in each
environment considered). The sequences were drawn in the following
manner. Let it be assumed that there are ‘N’ full-length sequences be-
longing to genus ‘X’ (which may belong to different species/strains of
the same genus) in the RDP database. Further, let it be considered that
in a simulated metagenome (of a pre-defined size or total number of
sequences) pertaining to a specific environment, the genus ‘X’ needs to
be represented with ‘i’ number of sequences. To achieve this, ‘i’ ran-
dom sequences from the set of ‘N’ sequences (belonging to genus ‘X’)
were picked with replacement. The process was repeated for every ge-
nus constituting the desired simulated metagenome. 100 simulated
metagenomic datasets (each constituting 10,000 sequences) were cre-
ated for each of the four environments (abbreviated as DGUT/F, DSKIN/F,
DSEA/F and DSOIL/F). Specific V-regions or selected stretches of

Figure 1. A schematic representation of the OTUX method in context of CA of OTU picking and taxonomic classification of 16S rRNA amplicon sequencing

reads. The utility of the ‘MAPMAT’ in enabling comparison of taxonomic profiles obtained using different V-regions is also depicted.
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V-regions from each of the full-length 16S rRNA gene sequences
(constituting these simulated metagenomes) were further cropped
out to create corresponding simulated ‘short-read’ metagenomic
datasets (abbreviated as DGUT/Vi, DSKIN/Vi, DSEA/Vi and DSOIL/Vi),
mimicking targeted amplicon sequencing. The selected V-regions
(and stretches of V-regions) considered for validation included V4,
V1-V2, V1-V3, V2-V3, V3-V4, V3-V5, V3-V6, V4-V5, V4-V6, V5-
V6 and V6-V8, which are typically employed in 16S rRNA-based
microbiome studies.

2.4. Classifying and annotating metagenomic

sequences

Reference-based OTU-picking can be performed for a query set of
metagenomic sequences using an OTUXVi reference database
(wherein ‘i’ corresponds to the V-region or stretch of consecutive V-
regions which were targeted during amplicon sequencing). For the
purpose of validation, OTU-picking or taxonomic assignment exer-
cise was performed with multiple simulated metagenomic datasets as
well as using different OTUXVi reference databases (as appropriate
for the individual datasets). The following section illustrates this pro-
cess of annotation for a set of simulated query sequences correspond-
ing to an amplicon sequencing experiment targeting the V4 region,
using OTUXV4 as the reference database. The same methods can be
extended for classifying sequences generated in sequencing experi-
ments targeting a different V-region, by choosing an appropriate
OTUXVi reference database. In this work, a naı̈ve Bayesian classifier
(Wang’s algorithm),4 as implemented in the software ‘mothur’,29

was used for classification, wherein a bootstrap confidence threshold
of 80% was used for making assignments at the OTU level.
Subsequently, an OTU abundance profile (TOTUX) was generated by
cumulating the total number of sequenced reads from the given
metagenomic sample that could be attributed to each of the
OTUXV4 OTUs. It may be noted here that the choice of the naı̈ve
Bayesian classifier for the validation study was influenced by its wide
use in microbiome studies and annotation tools (e.g. RDP classifier).4

Other reference-based OTU-picking and taxonomic classification
methods can also be used while using OTUX as a reference database.
The classification results (obtained in terms of OTUXV4 OTUs) were
mapped back using the corresponding MAPMATV4 to represent the
results in terms of Greengenes (v13.8 – OTUs obtained at 99% iden-
tity) OTU IDs. This ‘mapping back’ can be performed using either a
‘one-to-one mapping’ (one OTX OTU mapped back to a single
Greengenes OTU) approach or a ‘one-to-many mapping’ (one OTX
OTU mapped back to multiple Greengenes OTUs) approach. These
mapping back approaches are described below.

2.4.1. One-to-one mapping
In this procedure, each query sequence is assigned to one particular
Greengenes OTU ID. For example, if a particular query sequence ‘s’
has been assigned to the OTU ‘x’ corresponding to the reference
database OTUXV4 (abbreviated as OTUXV4x), the MAPMATV4 ele-
ments {MAPMATV4xj} are retrieved (wherein ‘j’ = 1 ! NGG i.e. the
total no. of Greengenes OTUs). The maximum value of
{MAPMATV4xj} is then computed. The sequence ‘s’ can subsequently
be classified to the Greengenes OTU ‘y’ (abbreviated as GGy),
wherein MAPMATV4xy = max{MAPMATV4xj}. In effect, the OTUX
ID OTUXV4x is mapped to the Greengenes ID GGy since they have
the highest propensity of association as recorded in the MAPMAT.
The process, once repeated for all query sequences will subsequently

lead to a new OTU abundance profile (TGG), represented in terms of
Greengenes OTU IDs.

2.4.2. One-to-many mapping
Given that one OTUX ID may be associated with multiple
Greengenes IDs (and vice versa), the mapping back matrix can also
be utilized for one-to-many mapping to report abundance tables rep-
resenting relative abundance of the OTUs (such as percentage nor-
malized abundance). To begin with, the abundance profile TOTUX

needs to be generated as described above, wherein the total number
of sequences assigned to each of the OTUXV4 OTUs is represented.

TOTUX ¼

a
b
c

..

.

z

0
BBBBB@

1
CCCCCA

. . . . . . OTUXV41

. . . . . . OTUXV42

. . . . . . OTUXV43
..
.

. . . . . . OTUXV4i

:

For example, TOTUX can be represented in form of a column ma-
trix (of size NOTUX � 1) as depicted above wherein ‘i’ varies from 1
to the total number of OTUXV4 OTUs (i.e. NOTUX), and wherein ‘a’
is the number of sequences assigned to the OTU OTUXV41, ‘b’ is the
number of sequences assigned to OTUXV42, ‘c’ is the number of
sequences assigned to OTUXV43 and so on. Next, an OTU abun-
dance profile (TGGraw) is obtained for the set of query sequences, in
terms of Greeengenes OTU IDs by multiplying the matrix
MAPMATV4 with the matrix TOTUX. It may be noted that given the
nature of the MAPMAT matrix, the abundance values for each of
the Greengenes OTUs in TGGraw may be a fractional value.

TGGraw ¼ MAPMATV4 � TOTUX:

wherein, TGGraw is a column matrix of size (NGG � 1), and NGG is
the total number of Greengenes OTUs. Finally a percentage normal-
ized OTU abundance profile (TGG%) is obtained by performing the
following transformation on each element (Tj) of TGGraw

Tj ¼
TGGrawjPN
j¼1 TGGrawj

� 100:

wherein, TGG% is a column matrix of size (NGG � 1), and NGG is the
total number of Greengenes OTUs. The abundance of taxonomic
groups present in the metagenomic sample, as obtained in the form of
either of the three column matrices, viz. TOTUX, TGG and TGG%, can
further be represented at any desired taxonomic level utilizing the tax-
onomic hierarchy information associated with the Greengenes OTUs.

As mentioned earlier, the current version of OTUX approach has
been modelled around the Greengenes database and designed to pick
OTUs at the most stringent threshold suggested by Greengenes (i.e.
99% identity). The choice of threshold was guided by the rationale
that OTUs picked based on a more stringent identity threshold (e.g.
99%) can later be merged together to make larger OTU clusters cor-
responding to a lower threshold (e.g. 97%). Further, it has also been
reported that stringent average nucleotide identity cut-off of >99%
might be required to delineate a new species.30 Although clustering
at 97% identity threshold would generate lesser number of clusters
and make the data more amenable for analysis, a higher threshold of
99% is expected to be more suitable for accurate identification of
strains and ecotypes. However, given that some studies may also pre-
fer lower identity thresholds (e.g. 97%) for OTU clustering, the im-
plementation of OTUX approach (available at https://web.rniapps.
net/otux/) provides option to map back OTUX OTUs (originally
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picked at 99% identity threshold) to Greengenes OTU IDs corre-
sponding to OTUs clustered at identity thresholds of 99% as well as
97%.

2.5. Classifying simulated metagenomic sequences

(validation datasets)

The full length sequences belonging to each of the simulated metage-
nomic datasets (DGUT/F, DSKIN/F, DSEA/F and DSOIL/F) were first sub-
jected to ‘OTU picking’ (taxonomic classification at the OTU level)
against the Greengenes database (v13.8—ftp://greengenes.microbio.
me/greengenes_release/gg_13_8_otus/rep_set/99_otus.fasta) using
the naı̈ve Bayesian classifier (Wang’s algorithm) as implemented in
the software ‘mothur’ (with a bootstrap confidence threshold of
80%). Given that full-length 16S sequences were compared against a
full-length 16S rRNA sequence database, the results obtained using
the above procedure reflects the best achievable OTU-classification
using 16S rRNA amplicon sequencing (using the given algorithm)
and was considered as a ‘benchmark’ or the ‘gold standard’ (abbrevi-
ated as GS) of taxonomic classification for our validation study.

The simulated ‘short-read’ metagenomic sequences in the valida-
tion datasets were subsequently subjected to taxonomic classification
using the following three methods. For ease of explanation, examples
corresponding to the simulated metagenomic datasets pertaining to
V4 region (DGUT/V4, DSKIN/V4, DSEA/V4 and DSOIL/V4) have been used
in the following sections. The same methods have been followed for
validation using other simulated metagenomic datasets.

2.5.1. Conventional approach
Sequences present in each of the simulated metagenomes belonging
to the sets DGUT/V4, DSKIN/V4, DSEA/V4 and DSOIL/V4 were classified
using the naı̈ve Bayesian classifier (Wang’s algorithm as implemented
in the software ‘mothur’ with a bootstrap confidence threshold of
80%), considering the Greengenes OTU database as a reference (sim-
ilar approach as GS). These results represent taxonomic classification
that can be obtained using the CA of OTU-picking or taxonomic
classification wherein short-read sequences (encompassing a certain
region of a marker gene) are used as a query against a OTU database
constituted of full length marker gene sequences. For ease of compar-
ison, abundance profiles (as per Greengenes taxonomy) representing
the proportion of OTUs (and other taxonomic hierarchical levels),
both in terms of raw sequence counts as well as percentage normal-
ized abundance, were generated.

2.5.2. De novo OTU-picking approach using CROP
(CR)
Metagenomic sequences belonging to each of the validation sets
(DGUT/V4, DSKIN/V4, DSEA/V4 and DSOIL/V4) were clustered de novo at
99% identity using the software CROP,31 wherein each cluster repre-
sents a OTU. Subsequently, in order to obtain taxonomic classifica-
tion of the respective clusters/OTUs, the representative sequences
from each of the clusters were classified using the Greengenes OTU
database as a reference. The taxonomic profile TCR reports abun-
dance of OTUs generated using CROP, wherein abundance of each
OTU is equivalent to its cluster size.

2.5.3. OTUX approach (OTUX)
Metagenomic sequences belonging to each of the validation sets
(DGUT/V4, DSKIN/V4, DSEA/V4 and DSOIL/V4) were also classified using
the naı̈ve Bayesian classifier (Wang’s algorithm as implemented in

the software mother with a bootstrap confidence threshold of 80%),
using the OTUXV4 database as a reference. These results represent
the taxonomic classification that can be obtained using the novel
OTUX approach of OTU-picking and taxonomic classification
wherein short-read sequences (covering a certain region of a marker
gene) are used as query against a pre-computed OTU database corre-
sponding to a specific hypervariable region (V4 in this case). It may
be noted that the obtained OTU abundance profile (TOTUX) reports
the results in terms of OTUXV4 OTU IDs. For ease of comparison,
these results are also mapped back in terms of Greengenes OTU IDs
and are provided in form of OTU abundance profile TGG (using one-
to-one mapping approach), wherein raw counts of sequences
assigned to individual Greengenes OTUs are depicted. Furthermore,
percentage normalized abundance profile(s) TGG% (using one-to-
many mapping approach) are also generated, wherein abundance/
proportion of OTUs (and/or other taxa) is represented in percent
normalized terms.

2.6. Validation tests

The correctness of taxonomic assignments obtained with OTUX and
CA approaches were assessed by comparing them against the bench-
mark/‘GS’, which corresponds to OTU assignments obtained using
full-length 16S rRNA gene sequences searched against the
Greengenes reference database. The comparison was based on the
following parameters. First, the accuracy of taxonomic assignments
by CA and OTUX at OTU, Genus, and Family level(s) were assessed
in terms of correct number of assignments (with reference to GS
results). During this assessment, one-to-one mapping of OTUX IDs
to Greengenes IDs had been used. Subsequently, a t-test was per-
formed to assess the performance of OTUX with respect to CA
(based on results of 100 simulated metagenomic datasets). The
approaches were also compared on the basis of computational time
required for classification.

To evaluate the overall accuracy as well as coherence of taxo-
nomic assignments obtained using different V-regions and methods,
the widely used Unifrac distance metric was chosen.32 Unifrac is a
dissimilarity measure which considers phylogenetic information of
constituent microbes while comparing microbiome samples, thereby
allowing assessment of overall accuracy considering all taxonomic
hierarchical levels. Pairwise weighted Unifrac distances were calcu-
lated between percentage normalized abundance tables generated by
GS, OTUX, CA and CR. In case of OTUX, CA and CR, taxonomic
profiles obtained using all relevant V-regions or stretches of V-
regions were considered. For this assessment, percentage normalized
OTUX abundance profiles (TGG%) were generated using one-to-
many mapping approach between OTUX IDs and Greengenes IDs.
Dendograms were constructed from the pairwise Unifrac distances
(averaged for 100 simulated metagenomic datasets) using UPGMA
clustering, as implemented in the programme ‘Neighbor’ included in
the Phylip package,33 considering GS as an outgroup. This process
was repeated for the simulated metagenomes corresponding to all
four selected environments (DGUT, DSKIN, DSEA and DSOIL). Different
diversity measures for the taxonomic profiles obtained with GS,
OTUX, CA and CR approaches, viz. Shannon diversity, Simpson in-
dex (evenness), Chao1 index (species richness) and number of ob-
served species, were also computed for the DGUT environment, using
the R Phyloseq package.34

In addition to checking for phylogenetic accuracy, it was also es-
sential to validate whether OTUX results were closer to de novo
OTU-picking results, when compared with the CA. For this purpose,
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the clusters generated using CROP (wherein each of these clusters
represent an OTU) were compared against OTUs identified by
OTUX and CA. 100 largest clusters/OTUs (for any selected V-re-
gion/stretches of V-regions) obtained from OTUX, CA and CROP
were selected. Jaccard similarity was calculated between each cluster
i obtained by OTUX against all the clusters obtained using CROP
with the following formula,

JaccardSimilarityij ¼
i \ j
i [ j

where, j represents each cluster obtained using CROP and j = 1!
100 (total number of selected clusters). The cluster pair with highest
Jaccard similarity was considered. Similarly, a reciprocal search was
also performed wherein the closest OTUX cluster to any of the
CROP clusters were identified. Consequently, 200 pairs of closest
clusters (in terms of Jaccard similarity) were obtained between
OTUX and CROP, with a fraction of them being reciprocal best hits.
An average Jaccard similarity score was calculated using the
formula,

Average Jaccard Similarity ¼
P

Jaccard similarityij

200
:

The similarity in OTU clustering between OTUX and CROP was
subsequently evaluated in terms of average Jaccard similarity and the
number of reciprocal best hits. For comparison, the similarity be-
tween CA and CROP approaches was also evaluated using the above
mentioned steps. Additional analyses were also performed to evalu-
ate the effect of different sequence identity thresholds for clustering
as well as the effects of inclusion of relatively smaller clusters (in ad-
dition to the 100 largest clusters) during calculation of average
Jaccard similarity. To this end, the above mentioned analyses were
extended for the top 300 and 500 (most populous) clusters generated
for the simulated gut microbiome (GUT) dataset with de novo clus-
tering (CROP) thresholds set at 99%, 97% as well as 95%.

3. Results and discussion

3.1. OTUX approach provides higher proportion of

correct taxonomic classifications

Table 1 provides a comparison of taxonomic classification accuracy
of the proposed OTUX approach, with respect to CA, while classify-
ing different simulated microbiome datasets. As mentioned earlier,
CA involves reference-based OTU picking from a query set of short
16S rRNA gene reads using an OTU database consisting of full
length 16S rRNA gene sequences. In this study, Greengenes version
13.8, containing OTUs clustered at 99% sequence identity, was used
as the reference database for CA. In contrast, OTUX approach
involves reference-based OTU picking of the same short reads using
an appropriate OTUX V-region database (consisting sequences clus-
tered with 99% identity). OTUs identified using OTUX approach,
initially classified in terms of OTUX database identifiers (OTUX
IDs), was ‘mapped back’ to be represented in terms of Greengenes
IDs (see Materials and methods), so as to enable comparison against
CA. Results obtained with both CA and OTUX approaches were
evaluated with reference to a ‘GS’, which corresponded to the refer-
ence-based OTU-picking results (in terms of Greengenes IDs) that
could be obtained using full length 16S rRNA gene amplicons in-
stead of short-read sequences (see Materials and methods). In terms
of number of sequences correctly assigned at the OTU level, OTUX

approach significantly (P < 0.001) outperforms CA in almost all
cases, irrespective of the type of microbiome sample or the targeted
V-region (Table 1). Barring a couple of occasions, OTUX is observed
to consistently assign over 50% of the query reads to appropriate
OTUs, with accuracies reaching as high as 70% in some cases. More
than often, OTUX could correctly assign almost double the number
of reads compared with CA. CA provides better result than OTUX
only in a single instance, wherein infant gut microbiome (GUT) sam-
ples were probed using V1–V3 region. In addition to the number of
correct OTU assignments, the results of OTUX were also evaluated
in terms of overall correctness of the obtained taxonomic profiles for
the simulated microbiome samples considering different levels of tax-
onomic hierarchy (Table 1; Supplementary Table S2A and B;
Supplementary Material S3). Weighted-UniFrac distances between
the taxonomic abundance profiles obtained using OTUX (see
Materials and methods) and those obtained using GS (using full-
length 16S rRNA gene sequences) were computed for this purpose.
For comparison, distances between taxonomic profiles obtained us-
ing CA and GS were also calculated. Echoing earlier results, taxo-
nomic abundance profiles obtained with OTUX are found to be
more similar to the GS taxonomic profiles as compared with the pro-
files obtained with CA, in almost all cases. The only exceptions per-
tain to the profiles generated for the infant gut (GUT) microbiome
corresponding to experiments targeting the V1–V2 and V1–V3
regions. In summary, OTUX approach appears to be a more reliable
method for reference-based OTU picking, providing greater accuracy
in taxonomic classification than existing CAs utilizing full-length 16S
rRNA sequence databases.

As mentioned earlier, one of the major reasons behind incorrect
taxonomic assignment of short-read sequences to a different taxo-
nomic lineage pertain to un-even evolutionary rate along the length
of the 16S rRNA gene. The ‘mapping matrices’ introduced in the
OTUX approach (see Building MAPMAT section) probably address
this issue to some extent. Although in case of CA, finding high level
of similarity of a very short stretch of sequence against a Greengenes
(GG) OTU might result in a direct attribution of the short sequence
to the lineage of the given GG OTU, the OTUX approach acknowl-
edges that such a short semi-identical stretch could have alternate
origins. The ‘mapping matrices’ presented in this work captures the
propensities of association of such semi-identical short stretches of
sequences (which have been clustered to form OTUX OTUs), to mul-
tiple GG OTUs/taxonomic lineages. It is based on these propensities
that the final taxonomic abundance tables (according to GG line-
ages) are generated in the OTUX approach. Although this method
(of propensity-based assignments) may also lead to incorrect assign-
ments in some cases, overall the validation results indicate better per-
formance of the OTUX approach compared with the direct
assignments obtained with CA.

To evaluate whether the relatively better performance of OTUX
spanned all the taxonomic lineages, or were limited to certain specific
clades, the proportions of correct and incorrect assignments by
OTUX and CA, cumulated at genus and family levels were analysed
(Supplementary Material S4). Neither OTUX nor CA could provide
unbiased performance for all the taxonomic lineages while using dif-
ferent V-regions/stretches of V-regions. However, it was observed
that in most cases the proportions of correct assignments by OTUX
(averaged over all families or genera) were higher compared with
CA. Further, the standard deviations in proportions of correct
assignments across families/genera were also observed to be mostly
equivalent or slightly lower for OTUX, reiterating the utility of the
newly proposed taxonomic classification approach.
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3.2. OTU clusters identified by OTUX are similar to

those obtained using de novo OTU-picking approach

Given the observed improvements in reference-based OTU-picking
and taxonomic classification achieved using OTUX, it was impera-
tive to check how close are these results to those obtained using any
sequence similarity based de novo OTU clustering method. Figure 2
depicts a comparison of OTU picking results obtained using CROP
(CR), a popular de novo OTU clustering method, with those
obtained using OTUX and CA. Since the three compared methods
do not generate any common identifier(s) for the different OTU clus-
ters obtained, ‘Jaccard similarity’ was computed to check the similar-
ities between clusters generated by different methods (see Materials
and methods). Similar clusters would share a greater proportion of
query sequences, thereby resulting in a higher Jaccard similarity.
Although comparing between OTUX and CR clusters, 100 largest
clusters (in terms of number of query sequences in each cluster) gen-
erated by both the methods were selected, and pairwise Jaccard simi-
larities were computed. For each of the 100 OTUX clusters, most
similar CR clusters were identified based on Jaccard similarity.
Similarly, for each of the 100 CR clusters, most similar OTUX clus-
ters were also identified using reciprocal searches. Average Jaccard
similarity values corresponding to these 2 � 100 closest pairs of clus-
ters were considered as a measure of overall similarity in OTU

clustering obtained using the two methods. Further, the number of
reciprocal best hits between OTUX and CR clusters was also used as
an indicator to evaluate the similarity between clustering results.
Similarity between OTU clustering by CA and CR was also evalu-
ated in a similar manner. As evident from Fig. 2, the results obtained
using OTUX are relatively more similar to CR results when com-
pared with results obtained with CA. The results of OTUX and CR
are observed to be around 1.2–1.7 times more similar to each other
in terms of average Jaccard similarity as compared with the similarity
between CA and CR approaches. Even in terms of number of recip-
rocal best hits identified between the sets of clusters, OTUX and CR
are more closely associated. Similar results were observed on extend-
ing the comparison for the top 300 and 500 (most populous) clusters
generated for the simulated gut microbiome dataset with de novo
clustering (CROP) thresholds set at 99, 97 and 95% (Supplementary
Fig. S2). These results assume further significance when viewed in
context of execution time. It is expected that both CA and OTUX,
being reference-based OTU-picking approaches, would have quicker
execution time when compared with de novo OTU clustering
approaches.10 Comparison of execution times between OTUX and
CA revealed an overall equivalent performance for both approaches,
with minor variations depending on the targeted V-region
(Supplementary Table S3A and B). A reasonable execution time

Table 1. Taxonomic classification results obtained with the proposed OTUX approach and CA

Simulated
microbiomes

Classification
accuracies

Target V-region

V1V2 V1V3 V2V3 V3V4 V3V5 V3V6 V4 V4V5 V4V6 V5V6 V6V8

Comparison of taxonomic assignmentsa at OTU level (out of 10,000 reads; averaged for 100 randomly generated simulated datasets)

GUT OTUX Correct assignments 4386.8 4355.2 5461.2 6265.4 6600.5 6957.4 5795.3 6869.8 6849.7 5862.2 6771.3
Wrong assignments 47.2 84.3 102.5 151.9 229.2 97.4 175.9 57.4 78.5 110.1 40.3
W-Unifracb from GS 0.324 0.292 0.234 0.236 0.213 0.202 0.288 0.216 0.207 0.236 0.215

CA Correct assignments 3618.6 4464.1 3808.6 3084.6 3759.3 4748.2 2318.5 2872.7 4162.0 3084.7 3429.6
Wrong assignments 555.2 244.4 1020.9 1582.2 935.7 490.4 2631.3 814.5 531.8 1785.7 1154.7
W-Unifracb from GS 0.318 0.272 0.280 0.310 0.289 0.238 0.332 0.361 0.270 0.300 0.311

SKIN OTUX Correct assignments 4034.4 4257.3 5377.9 5431.8 5710.8 5759.2 3800.5 5027.3 5800.2 5472.8 5295.9
Wrong assignments 52.7 44.9 59.8 163.7 47.5 52.6 34.0 38.3 46.8 52.9 63.8
W-Unifracb from GS 0.218 0.193 0.101 0.123 0.129 0.115 0.237 0.118 0.125 0.104 0.104

CA Correct assignments 1330.5 1789.3 1807.7 1478.2 2254.9 3238.6 320.4 1172.1 2164.7 1491.7 1816.6
Wrong assignments 1508.7 625.9 1477.0 1965.6 1476.7 727.5 1652.0 1466.1 1460.9 2346.1 1692.2
W-Unifracb from GS 0.402 0.388 0.345 0.349 0.317 0.266 0.469 0.387 0.319 0.333 0.336

SEA OTUX Correct assignments 5017.8 6085.1 6348.9 6290.1 6297.6 7037.4 4932.7 6495.9 6652.1 6253.7 6695.5
Wrong assignments 18.1 11.0 24.0 77.8 9.2 16.7 1.7 7.6 15.9 13.3 32.6
W-Unifracb from GS 0.249 0.152 0.121 0.127 0.145 0.145 0.249 0.146 0.116 0.155 0.130

CA Correct assignments 2579.8 3471.2 3180.7 3287.6 4562.6 4753.3 2183.1 3197.9 4240.4 2866.6 4047.9
Wrong assignments 1450.0 1638.7 1415.3 1174.7 1108.1 1049.9 1531.6 925.8 1095.9 1644.5 1801.0
W-Unifracb from GS 0.385 0.316 0.333 0.319 0.224 0.218 0.397 0.328 0.256 0.335 0.256

SOIL OTUX Correct assignments 5109.9 5086.0 5540.1 5431.8 5948.4 5800.0 4155.5 5257.0 5613.2 5222.1 5814.4
Wrong assignments 46.5 45.4 54.6 225.5 69.0 51.4 68.3 71.5 47.7 45.5 85.7
W-Unifracb from GS 0.145 0.114 0.078 0.123 0.127 0.153 0.225 0.133 0.120 0.162 0.125

CA Correct assignments 4089.1 4680.5 4703.2 1478.2 5176.7 5637.2 2287.0 3806.7 5357.6 3714.7 4388.2
Wrong assignments 690.0 248.5 191.5 444.4 301.4 129.3 685.9 806.1 279.4 833.5 390.7
W-Unifracb from GS 0.187 0.158 0.154 0.349 0.104 0.084 0.334 0.184 0.089 0.193 0.156

Performance of both the approaches have been evaluated with multiple simulated microbiome datasets mimicking different types of environmental samples,
(viz., infant gut, skin, sea and soil), and amplicon sequencing experiments targeting different V-regions of the bacterial 16S rRNA gene. Cases wherein the number
of correct assignments by OTUX are significantly higher (t-test; P < 0.001) have been highlighted in bold.

aCA and OTUX approaches have been evaluated considering results obtained with full-length 16S rRNA genes to be ‘correct’ or the ‘GS’. Only number of aver-
age correct assignments and wrong assignments has been depicted. The remaining reads (out of 10,000) could not be classified at OTU level.

bWeighted UNIFRAC distance of taxonomic abundance profile from actual taxonomic diversity (GS: gold-standard).
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coupled to a clustering solution closer to a de novo approach, as well
as simultaneously improving on accuracy of taxonomic classifica-
tion, certainly provides OTUX approach an edge over the conven-
tional reference-based OTU picking.

3.3. OTUX approach results obtained using different

V-regions are coherent and better descriptors of

taxonomic diversity

Despite the promising results mentioned above, utilizing OTUX for a
cross-study comparison of microbiome datasets (targeting different V-
regions) only finds relevance if OTUX results obtained with different
V-regions are coherent. Figure 3 depicts four dendograms, wherein the
taxonomic profiles corresponding to the simulated microbiome data-
sets obtained with OTUX, CA and CR, have been clustered based on
pair wise weighted UniFrac distances (UPGMA method). Nodes in the
tree correspond to the results obtained when different V-regions were
targeted. Although OTUs identified using OTUX approach were
mapped back to be represented in terms of Greengenes IDs and taxon-
omy, the cluster representatives of each of the OTUs generated using
CR were also annotated in terms of Greengenes taxonomy to enable
comparison with CA approach (see Materials and methods). The ‘GS’
result was used as an ‘outgroup’ during clustering. The clustering pat-
terns in Fig. 3 indicate that results obtained using the same method (ei-
ther of OTUX, CA or CR) group together irrespective of the targeted
V-region. Although this observation assures of a certain level of coher-
ence between results obtained using any given method, the proximity
of the OTUX results cluster to the GS result is worth noting. Not only
are the results obtained using OTUX approach coherent, but they are
also consistently better representatives of the taxonomic diversity of
the sampled environment, irrespective of the targeted V-region. In addi-
tion to the comparison based on weighted UniFrac distances, different
diversity measures, like Shannon diversity, Simpson index (evenness),
Chao1 index (species richness) and number of observed OTUs pertain-
ing to the simulated gut microbiome, were computed based on the
OTUs identified using CA, CR and OTUX approaches (Supplementary

Table S4). These results were also compared in context of the diversity
values corresponding to the GS taxonomic profiles. For most of the
regions, diversity values obtained with OTUX were closer to the GS di-
versity values, when compared with CA and CROP methods.

It is however important to note here that certain other biologically
important differences and methodological biases (in addition to
those resulting from the choice of V-regions) may be inherent to se-
quenced data from different studies and protocols. The possible
effects of these potential biases, on the robustness of taxonomic
assignments obtained with CA and OTUX was tested using real
microbiome sampling data from an earlier study.35 Microbiomes
pertaining to six different environments had been sampled in the ear-
lier study, wherein the DNA sequencing for each of the samples were
done on both Illumina (MiSeq 2 � 250 bp paired end protocol) and
Roche 454 (GS FLX using Titanium) platforms. Taxonomic assign-
ments for both the Illumina as well as Roche generated datasets from
this study were performed with OTUX and CA, followed by a com-
parison of the similarity of the taxonomic profiles generated based
on weighted Unifrac distances. Taxonomic profiles generated from
Illumina and Roche datasets using OTUX method were observed to
be more similar to each other than those generated by CA, in case of
four (out of six) of the sampled environments (Supplementary
Table S5). It may be noted here that the study specific biases pertain-
ing to sequencing chemistry, sample storage/handling and other
methodological differences, cannot be expected to be completely
overcome by using in silico taxonomic classification methods such as
OTUX or other CAs. However, given that the results indicate at
OTUX’s ability to arrive at more coherent taxonomic profiles when
compared with the CA, OTUX is expected to have better utility
while performing cross-study taxonomic comparisons.

4. Conclusion

In summary, adopting OTUX approach of OTU picking can enable
easy and accurate cross-study comparison of taxonomic profiles,

Figure 2. Similarity of OTU clusters obtained using OTUX and CA when compared with de novo OTU clusters obtained using CROP (CR) for different simulated

microbiome datasets pertaining to (A) GUT, (B) SKIN, (C) SEA and (D) SOIL. The bars indicate average Jaccard similarity (in terms of query sequence reads) be-

tween 100 largest clusters identified by the compared methods (see Materials and methods). The number mentioned above each bar represents the percentage

of reciprocal best hits identified between the 100 largest clusters identified by compared methods (see Materials and methods).
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even when targeted V-regions might vary across different studies.
Although performing such comparisons at a large scale (with several
microbiome datasets) using de novo OTU clustering approach might
be computationally prohibitive, using CA like approaches might con-
note a compromise in accuracy of the comparison. In contrast, such
comparisons using OTUX approach not only provides more accurate
taxonomic annotations (even at the OTU level), but also attains the
same with lesser computational expenses.

Availability

Freely available for academic use on the web at https://web.rniapps.
net/otux/
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