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ABSTRACT

Protein–protein docking algorithms aim to predict
the structure of a complex given the atomic struc-
tures of the proteins that assemble it. The docking
procedure usually consists of two main steps:
docking candidate generation and their refinement.
The refinement stage aims to improve the accuracy
of the candidate solutions and to identify near-
native solutions among them. During protein–
protein interaction, both side chains and backbone
change their conformation. Refinement methods
should model these conformational changes in
order to obtain a more accurate model of the
complex. Handling protein backbone flexibility is a
major challenge for docking methodologies, since
backbone flexibility adds a huge number of degrees
of freedom to the search space. FiberDock is
the first docking refinement web server, which
accounts for both backbone and side-chain flexibil-
ity. Given a set of up to 100 potential docking
candidates, FiberDock models the backbone
and side-chain movements that occur during the
interaction, refines the structures and scores them
according to an energy function. The FiberDock web
server is free and available with no login require-
ment at http://bioinfo3d.cs.tau.ac.il/FiberDock/.

INTRODUCTION

Most of the activities of living cells are performed by
protein–protein interactions that form molecular
complexes. Accurate modeling of the 3D structure of a
complex assists in understanding its function in the cell.
Additionally, atomic structures of molecular complexes

are used in the field of drug design, permitting the
design of small molecules that prevent or induce the for-
mation of certain complexes. In some cases, the 3D struc-
ture of protein–protein complexes can be determined
experimentally by X-ray crystallography or NMR spec-
troscopy. However, it is an extremely difficult and
time-consuming task. Therefore, the ability to predict
the structure of complexes by computational means is
essential.
Protein–protein docking algorithms aim to predict

the structure of a complex given the atomic structures of
the proteins that assemble it. Due to protein flexibility, the
structure of each individual protein (unbound conform-
ation) is often rather different from its structure in the
complex (bound conformation). Docking algorithms
must therefore take the protein flexibility into account
(1). This is currently the major challenge in the docking
field. Protein flexibility, which includes both backbone
and side-chains movements, adds a huge number of
degrees of freedom to the search space, making it impos-
sible for naı̈ve search algorithms to find the native struc-
ture of the complex. Thus, a two-stage docking protocol is
often used: performing a fast soft rigid docking (rigid
docking that allows a certain amount of steric clashes),
followed by flexible refinement of the results. Applying a
soft rigid-docking method on the unbound structures of
two proteins often results in a near-native solution that is
poorly ranked due to steric clashes and bad shape com-
plementarity. The goal of the flexible refinement stage is to
model the conformational changes that the proteins
undergo, and thus to resolve the clashes and improve
their shape complementarity. Re-scoring the refined solu-
tions by a binding energy score significantly improves the
ranking of near-native models. Obviously, the success of
the flexible refinement stage strongly depends on the ex-
istence of a near native model in the initial rigid-docking
solutions.

*To whom correspondence should be addressed. Tel: +972-3-640-8268; Fax: +972-3-640-6476; Email: wolfson@tau.ac.il
The publisher or recipient acknowledges right of the US Government to retain a non-exclusive, royalty-free license in and to any copyright covering
the article.

Published online 11 May 2010 Nucleic Acids Research, 2010, Vol. 38, Web Server issue W457–W461
doi:10.1093/nar/gkq373

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Today, most docking refinement methods model only
the side-chain flexibility and adjust the rigid-body orien-
tations of the proteins. Modeling the backbone flexibility
is considered to be a more difficult task that is addressed
by only few, recently developed refinement methods (2–8).
There are many freely available web servers that deal

with different aspects of the docking field. Rigid-body
docking can be performed by PatchDock (9), ZDOCK
(10), GRAMM-X (11), Hex (12) and SymmDock (9).
ClusPro (13) filters, clusters and ranks docking solution
candidates. The RosettaDock web server (14) performs
local search in the vicinity of a single given input
complex structure by optimizing rigid-body orientation
and side-chain conformations. The NOMAD-Ref server
(15) uses normal mode analysis to refine one of the mol-
ecules in a single-docking model. The FireDock web
server (16), refines the rigid-body orientation and side-
chain conformations of up to 1000 rigid-body solution
candidates and re-scores the refined structures according
to a binding energy function. The HADDOCK web server
(17) performs experimental data-driven docking followed
by a semi-flexible refinement.
In this article, a web server of a new flexible refinement

method, called FiberDock, is presented. It is the first
docking refinement web server that handles both
backbone and side-chain flexibility and optimizes the
relative rigid-body orientation of the proteins. Side-chain
movements are modeled by a rotamer library and the
backbone flexibility is modeled by an unlimited number
of normal modes (18). Previous research has shown the
importance of using high-frequency normal modes for
modeling induced-fit conformational changes (19–21).
While other, previously developed, refinement methods
use only the first few normal modes, with the lowest fre-
quency (2,3), FiberDock uses both low- and high-
frequency modes. Hence, it is able to model both global
and local conformational changes.Themethodwasassessed
on 20 test systems in which the backbone conformation
of one protein changes upon interaction with the other.
The results indicated that the incorporation of backbone
flexibility in the refinement process considerably improves
the accuracy and the ranking of protein complexes (21).

THE FIBERDOCK METHOD

The FiberDock method refines soft rigid-docking solution
candidates and re-ranks them in order to identify the near
native models (21). The refinement takes into account
both backbone and side-chain flexibility. The method
combines a novel normal mode analysis (NMA) based
backbone refinement with our previously developed
side-chain optimization and rigid-body minimization
method, FireDock (22).
The NMA is performed in a pre-processing stage. In

this stage, the normal modes of the proteins are calculated
using the anisotropic network model (ANM) (18).
The FiberDock algorithm, which is applied on each

rigid-body solution candidate, includes four main stages:

(1) Side-chain optimization: The side-chain flexibility of
interface residues of both proteins is modeled by a

rotamer library. The optimal combination of rota-
mers is found by an integer linear programming
(ILP) technique (23).

(2) NMA-based backbone refinement: The refinement
performs up to 20 iterations which consist of the
following steps: (i) The van der Waals (vdW) forces
that the proteins apply on each other are calculated.
(ii) The 10 normal modes with the best correlation to
these forces are identified, and the backbone con-
formation of the proteins are minimized along these
normal modes. (iii) Monte Carlo (MC) rigid-body
minimization is performed. (iv) A score is calculated
for the current result and the result is saved if it is
better than the previous results.

(3) Rigid-body MC minimization: The rigid-body orienta-
tion of the ligand is optimized by a MC technique,
and a BFGS quasi-Newton minimization is per-
formed in each MC cycle (24,25).

(4) Ranking according to binding energy: This stage
attempts to identify near-native solutions among
the entire set of refined complexes. The calculated
binding energy includes a variety of energy terms,
such as desolvation energy [atomic contact energy
(ACE)], vdW interactions, partial electrostatics,
hydrogen and disulfide bonds, �-stacking, aliphatic
interactions, and more.

The method was tested on a set of 20 protein–protein
complexes in which the receptor’s interface RMSD,
between its bound and the unbound conformation,
varies in the range of 0.59–6.08Å. The results showed
that the method successfully models backbone movements
that occur during molecular interactions, and that the
inclusion of the backbone refinement stage improves
both the accuracy and the ranking of near-native
docking solution candidates (21). Figure 1 shows the
FiberDock results of refining two docking models (from
our test set) that are composed of an unbound conform-
ation of the receptor and a bound conformation of a
ligand, placed in a near-native orientation. The figure
shows that in both cases FiberDock correctly models the
backbone movement that is essential for generating a
high-accuracy docking model with no steric-clashes.

FIBERDOCK WEB-SERVER

Input

The FiberDock server can refine up to 100 rigid-docking
solution candidates. The user uploads or specifies codes of
two PDB (Protein Data Bank (27)) files, receptor and
ligand, and provides a list of up to 100 transformations.
Each transformation, when applied on the ligand,
produces a candidate docking solution. If no transform-
ation file is uploaded the identity transformation is used.
Alternatively, the user can upload a PDB file that contains
the rigid-docking solutions as a set of models. The candi-
date solutions for FiberDock can be generated by any
rigid-body docking methods favored by the user (such as
PatchDock (9,28), ZDOCK (10,29), GRAMM-X (11),
Hex (12), etc.). In addition, the user can choose whether
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to model backbone movements or not. The user can also
specify an e-mail address to which a link to the output
web page, containing the results, will be sent when the
refinement process is finished.

The server also includes optional advanced parameters
for adjusting the refinement and scoring parameters for a
specific biological system. These parameters are divided
into four groups according to the refinement stage they
affect.

For the side-chain optimization stage, the user can
decide if the optimization will be preformed on both
proteins, one of them or none. In addition, the user can
specify the level of side-chain optimization: restricted or
full. When the restricted level is chosen, only the side
chains that form steric clashes will be allowed to move.
The full side-chain optimization level will allow all the side
chains in the protein–protein interface to be flexible. By
default, the restricted level is chosen, because studies
have shown that many of the side chains in the inter-
face keep their unbound conformation within a complex
(30–32).

The parameters of the backbone refinement stage
include the number of lowest frequency normal modes
that will be considered in the refinement. By specifying a
small number (10 for example), the user restricts the
backbone movements to be relatively global, whereas a
high number of normal modes will allow the algorithm
to use high-frequency modes, which describe local move-
ments (if they correlate well with the chemical forces that
the proteins apply on each other). In addition, the user can
set the level of backbone flexibility. In order to prevent
the backbone from over distorting, a penalty term is

introduced into the backbone minimization step. The
level of backbone flexibility determines the weight of this
penalty term. The higher the level, the lower the weight.
A value of 0.95 (the default value) was found to suit most
of our test cases.
For the rigid-body optimization stage, the user can

set the number of MC iterations. In general, increasing
this value improves the search for a local minima in the
vicinity of the ligand’s current position. However, accord-
ing to our experience, the optimization usually converges
after 50 iterations.
The complex type parameter (Default, Antibody-

Antigen or Enzyme-Inhibitor), is used for adjusting the
weights of the scoring function for a specific biological
system. The parameter of atomic radius scale influences
the extent of acceptable steric clashes in the final refined
solutions. This parameter scales down the radius of the
atoms, affecting the VdW terms that are used in all
of the three refinement stages and the final calculated
binding energy.

Output

When the refinement is finished, a web page with the
results is generated and a link to it is sent to the e-mail
address specified by the user. This web page (Figure 2)
contains a table in which each row corresponds to a
single refined solution. Each row specifies the rank of
the solution according to the binding energy value, its
original number (according to the given transformation
file), the global binding energy value and the values of
four of the energy terms (Attractive VdW, repulsive
VdW, ACE and hydrogen bonds). The table is sorted by
the binding energy of the refined solution. The user can
view the 3D structure of each refined complex in a Jmol
applet window (33). The different structures can be viewed
simultaneously, allowing the user to easily compare differ-
ent models. The PDB files of the refined solutions can be
downloaded, and so can the full results table that details
the values of all the energy terms, for each solution. This
table also specifies the linear combination of normal
modes that generates the refined backbone conformation
of the receptor and the ligand.

CONCLUSIONS

Handling backbone flexibility is currently the main chal-
lenge in the docking field. In many cases, even a slight
backbone movement prevents near-native rigid-docking
solutions from being highly ranked, since these models
will often contain steric clashes. Therefore, flexible refine-
ment is needed in order to resolve these clashes by
backbone and side-chain movements and a minimization
of the rigid-body orientation. The FiberDock method was
developed to meet this challenge. This new method mimics
an induced fit-process. The backbone and side-chain
movements are inferred from the vdW forces that the
proteins apply on each other. The method models
backbone movements by normal modes. It uses both
low- and high-frequency modes and therefore is able to

Figure 1. FiberDock results of refining two docking models of com-
plexes: (A) HIV-1 neutralizing antibody in complex with its V3 loop
peptide antigen, PDB-ID: 1GGI and (B) Ran-Importin b, PDB-ID:
1IBR, which are composed of an unbound conformation of the
receptor and a bound conformation of a ligand, placed in a near-native
orientation. The unbound structure of the receptor (the starting con-
formation of the refinement) is colored in red and the bound complex
structure is in blue. The predicted complex structure by FiberDock is in
green. In both cases FiberDock correctly modeled the backbone move-
ment (marked by arrows) that is essential for generating a high-
accuracy docking model with no steric clashes. This image was
produced using the UCSF Chimera package (26).
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model both global and local conformational changes, such
as opening of binding sites and loop movements.
In order to make this method available for the entire

biological community, a clear and user-friendly web server
was developed, which requires no previous knowledge in
docking algorithms. This is the first web server for flexible
docking refinement, which models both backbone and
side-chain flexibility. It refines a single rigid-body
docking solution in an average time of 14s. Therefore, it
can be used for refining and re-ranking of up to 100 solu-
tions in a reasonable time. The FiberDock software (for
Linux users) can also be downloaded from the web site.
The downloaded version does not restrict the amount of
refined docking solutions. We believe that this server will
be very useful to the biological community. It can help
model new structures of protein–protein complexes and
as such improve our understanding of protein functions
in the living cell.
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