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Abstract

Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and
functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable
DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse
transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription
PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 39-59 exonuclease domain that confers high fidelity in PCR. An
easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-
enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and
mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three
common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research
and molecular diagnostics.
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Introduction

Reverse transcription PCR (RT-PCR) is a powerful analytical

and preparative method for detecting, quantifying and analyzing

gene expression and RNA viruses. Most RT-PCR protocols rely

on two DNA polymerase (Pol) enzymes; a retroviral reverse

transcriptase (RT) to copy RNA into cDNA and a thermostable

DNA Pol to amplify the target sequence. We describe a unique

single-enzyme alternative to the traditional format based on the

innate reverse transcriptase activity of the thermostable 3173 Pol,

which was recently isolated from a viral metagenomic library

[1,2]. We believe this is the first report of a reagent enzyme

produced from a viral metagenomic library, the first viral Pol

shown to be fully thermostable in vitro and the first single-enzyme

RT-PCR protocol with high sensitivity and specificity comparable

to two-enzyme systems.

Despite their wide use and general reliability, existing two-

enzyme RT-PCR systems have several documented performance

problems attributed to deficiencies inherent in retroviral RTs: 1)

poor reagent stability, 2) low fidelity, 3) frequent rearrangements

during cDNA synthesis, 4) secondary enzymatic activities (i.e.

RNase H and strand switching), 5) bias for specific primers and

templates, and 6) inhibition of PCR Pol enzymes [3,4,5,6,7].

These deficiencies are associated with cloning errors, amplifica-

tion bias, poor concordance between and within testing labs,

and target dependent variation in amplification efficiency

[8,9,10,11,12,13,14,15,16,17]. The two-enzyme systems require

an initial low temperature reverse transcription step that reduces

specificity, increases reaction time, and impairs synthesis through

complex secondary structures. The limited shelf stability in

solution of retroviral RTs has precluded development of complete

RT-PCR enzyme premixes popular for standard PCR. Alternative

chemistries based on an improved RT-PCR enzyme are a means

of addressing these shortcomings.

Numerous thermostable DNA polymerases have been described

and commercialized for PCR [18,19]. All of these fall into one of

two groups of high molecular identity and biochemical similarity;

bacterial Pol I-type enzymes and archaeal Pol II-type enzymes

[20]. Remarkably, no truly thermostable viral replicase-type Pol

has ever been described. The pool of useful RTs consists mainly of

retroviral Moloney Murine Leukemia Virus (MMLV) RT and its

derivatives and Avian Myeloblastosis Virus (AMV) RT. Substan-

tial effort has been devoted to engineering MMLV RT.

Truncating the MMLV RT protein to eliminate RNase H activity

[21] fortuitously increased thermostability [22]. However, none of

the engineered retroviral RTs are thermostable enough for PCR.
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The alternative bacterial and archaeal Pols also do not fulfill the

goal of a facile single-enzyme RT-PCR reagent. Thermus thermo-

philus (Tth) Pol I was originally induced to reverse transcribe by

inclusion of manganese ions in the reaction buffer [23]. However,

Tth Pol in the presence of manganese is highly inaccurate and

much less sensitive than the two-enzyme systems and therefore not

widely used. Notably absent is a thermostable RT suitable for

single enzyme RT-PCR that matches or exceeds the performance

of two-enzyme systems with regard to fidelity, sensitivity,

specificity and low bias.

Viral Pols are interesting alternatives to bacterial or archaeal Pol I

and Pol II enzymes, differing significantly in their biologic roles as

replicases rather than as short patch repair and lagging strand

polymerases [24]. These enzymes possess many important and

highly useful biochemical characteristics. Bacteriophage T5, T7 and

phi29 DNA polymerases are highly processive enzymes [25,26,27]

and the latter two are less prone to slippage [28]. T4 bacteriophage

DNA polymerase is extremely accurate [29]. While all of these

properties make viral Pols very useful as molecular biology reagents,

none is suitable for thermocycling based amplification due to limited

thermostability. The need for new Pols that combine the practical

advantages of viral enzymes with improved thermostability has

motivated the metagenomic screens of viral sequences from thermal

springs described in this report.

Viral metagenomes are an unexplored source of sequence

diversity for the development of new enzymes. A screen of hot

spring viral metagenomes identified thousands of open reading

frames [2] including many encoding putative thermostable viral

Pols. We describe the discovery and biochemical attributes of one of

these, 3173 Pol, its inherent RT activity and its incorporation into a

single-enzyme PyroScriptH 2X RT-PCR Master Mix. The sensi-

tivity, specificity and overall performance of this mix were

compared to available one- and two-enzyme systems using a

control MS2 RNA bacteriophage template, the clinically-relevant

influenza A RNA and commonly used reference mRNA transcripts.

Materials and Methods

Discovery and purification of 3173 Pol
Unless indicated otherwise, standard molecular methods were

used [30]. Primers and other oligonucleotides (Table 1) were

synthesized by IDT (Coralville, IA). Except where noted, the 3173

Pol reaction buffer used throughout was 20 mM Tris-HCl pH 8.8

at 25uC, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 0.1%

Triton X-100, and 200 mM of each dNTP (N = A,C,G,T).

Construction, sequencing and BLASTx analysis of viral metage-

nomic libraries have been described [2]. Clones identified by

BLASTx analysis as encoding likely pol genes were functionally

screened to detect expression of thermostable Pol activity. For these

screens, viral proteins were constitutively expressed in the original

clones by growth to saturation in 2 ml Luria Broth. Cells were

pelleted at 2,800 rcf and suspended in 50 mM Tris-HCl

pH 7.5,1 mM EDTA, 0.5 mM DTT, 0.1% Triton X-100, 10%

(v/v) glycerol. Cells were lysed by sonication and host proteins were

denatured by incubation at 70uC for 10 minutes. Soluble proteins

were collected from the supernatant after centrifugation at 11,000

rcf for 10 minutes and assayed for DNA Pol activity based on their

ability to extend a 59 fluorescently labeled oligonucleotide primer.

The labeled assay primer was annealed at room temperature to the

assay template and incubated for 10 minutes at 70uC with 5 ml of

each clarified lysate. Primer extension was detected using an ABI

310 Genetic Analyzer (Applied Biosystems, Foster City, CA) in

GeneScan mode. For preparative expression, the coding sequence

of 3173 Pol was inserted into pET28 and used to transform

BL21(DE3) cells according to the manufacturer (EMD Bioscience,

San Diego, CA). Pol proteins were expressed, extracted and heat-

treated as described for the functional screen and purified using

heparin-agarose and Q-sepharose chromatography.

Biochemical characterization of 3173 Pol
Pol units were determined by a radioactive nucleotide

incorporation assay [19] as the amount of enzyme that incorpo-

rates 10 nmol of deoxynucleotides per 30 minutes at 70uC.

Enzyme dilutions were incubated for 30 minutes at 70uC with

reaction buffer supplemented with 10 mg/ml activated calf

thymus DNA and 10 mCi/ml [33P] dCTP and unit activity was

determined based on counts adhering to a DE81 filter (Whatman,

Piscataway, NJ). Single-stranded exonuclease activity was deter-

mined by incubating the polymerase in standard buffer supple-

mented with a [33P] dCTP radiolabeled PCR product. This

substrate was heated to 95uC for 5 minutes and then cooled to 4uC
for 10 minutes prior to incubation with 3173 Pol in reaction

buffer. Counts due to free nucleotides were measured after

precipitation of polynucleotide substrate with 10% trichloroacetic

acid (TCA) for 10 minutes on ice.

Site directed mutagenesis was performed using the Quick-

ChangeH Site-Directed Mutagenesis Kits (Agilent, Santa Clara,

CA). Kinetics and thermal profiles were determined using the

radioactive incorporation assay under pseudo-first order condi-

tions of substrate excess [19]. Thermal stability (half-life) was

determined by pre-incubating the enzyme in reaction buffer for

varying times and measuring the remaining activity by the same

assay. Time points were determined in triplicate and decay

kinetics were calculated by least squares linear regression of the

inverse natural log of the remaining activity at the time points.

Standard PCR was performed using cycling conditions described

for PyroPhage 3173 DNA Pol by the manufacturer (Lucigen,

Middleton, WI). The processivity assay is a modification of

published methods [31]. M13f primer (Table 1) was 59 end labeled

with rhodamine. Mix A contained 50 nM primer, 50 nM

M13mp18 single strand DNA, and 0.5 nM of Pol in the standard

buffer. Mix B contained 0.25 mM each dNTP (N = A,C,G,T) and

0.6 mg/ml activated calf thymus DNA in reaction buffer. An

aliquot of Mix A was incubated at room temperature to anneal

primer. The reactions were pre-incubated with enzyme at 70uC
and an equal volume of Mix B preheated to 70uC was added.

Reactions were stopped at 0, 3, 5 and 10 minutes by addition of

50% formamide, 1 mM EDTA. The extension products were

resolved on an ABI PRISM 310 instrument using Data Collection

Software and peaks were identified and integrated by GeneScan

software (Applied Biosystems, Foster City, CA). Processivity was

calculated by the following equation:

Processivity~½½ 1|I 1ð Þð Þ�z½ 2|I 2ð Þð Þ�

z:::½ nð Þ| I nð Þð Þ��=½I 1ð ÞzI 2ð Þ . . . zI nð Þ��

where I = area of each peak, n = number of nt added.

Strand displacement was demonstrated by the ability of 3173

Pol to extend the M13f primer on an M13mp18 ssDNA template

for greater than the length of the phage genome (7,249 nt) as

determined by 1% agarose gel electrophoresis. Extension from

nicks was demonstrated by pre-incubating pUC19 plasmid with

Nt.BstNBI nicking enzyme (New England Biolabs, Ipswitch, MA)

and incubating the plasmid with 5 units of 3173 Pol for two hours

at 55uC. Synthesis was detected by agarose gel.

The Pol fidelity assay was a modification of the lacIq reversion

assay [32]. The template for this assay was constructed by inserting

RT-PCR Enzyme from a Viral Metagenome
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PCR-amplified lacIq coding DNA into the cloning site of

pSMART HCKan vector (Lucigen), creating pSMIQ. Primers

Fid-f and Fid-r (Table 1) were used to amplify a sequence

containing the lacIq and kan genes. 3173 wild-type and exo- Pols

were compared to Pfu (Agilent), Phusion (New England Biolabs)

and Taq (Lucigen) Pols. Each of the Pol enzymes was tested

according to the respective manufacturer recommendations. The

amplicons were digested with Eco0109 I restriction enzyme and

ligated to dephosphorylated, Eco0109 I-digested pUC19 vector.

The resulting construct was used to transform 10G supreme cells

(Lucigen) that were plated on YT agarose plates containing 0.02%

(w/v) X-Gal, 0.3 mM IPTG, 100 mg/ml carbenicillin, and 30 mg/

l kanamycin. The plates were incubated 20 hours at 37uC and the

number of blue and white colonies was determined visually.

Fidelity was calculated using the published formula [32]:

Fidelity = 2lnF/d * t, where F = fraction white colonies, d = num-

ber of duplications during PCR (log2 of fold amplification) and t is

the effective target size (t = 349 for lacIq).

The fluorogenic RT assay was performed by incubating

500 ng/ml polyA (Sigma-Aldrich, St. Louis, MO) with 25 ng/ml

Table 1. Primers and Other Oligonucleotides.

Name DNA Oligonucleotide Sequence 59 to 39 Info Source

Assay primer *ROX-TGTCTCAGACAGTCAGACTGCTGACAGATGACTTGCA This report

Assay Template AACGTGCAAGTCATCTGTCAGCAGTCTGACTGTCTGAGACA This report

Fid-f GTCTGAGGCCCTCAGTCCAGTTACGCTGGAGTCTGAGGCTCGT This report

Fid-r GAGGGCCTTCATTAGAAAAACTCATCGAGCATCAAGTGAA This report

M13-f CGCCAGGGTTTTCCCAGTCACGAC 6333 to 6310 X02513 This report

MS2-77-f GTCGCGGTAATTGGCGC 632 to 648 NC_001417 [40]

MS2-77-f GGCCACGTGTTTTGATCGA 708 to 690 NC_001417 [40]

MS2 AGCCAAGCAGCTAGTTACCAAATC 3557 to 3534 NC_001417 This report

MS2 AACTAGCCAAGCAGCTAGTTACCAA 3561 to 3537 NC_001417 This report

MS2 GGGTGGTAACTAGCCAAGCAGCTA 3568 to 3545 NC_001417 This report

MS2-160-r CCTGCCGGCCACGTGTTTTGATCGA 714 to 690 NC_001417 [40]

MS2-160-f TTTAGCAGAGGCCAGGTCGACAGCC 555 to 579 NC_001417 This report

#CF560 MS2-160-f CF560-TTTAGCAGAGGCCAGGTCGACAGCC 555 to 579 NC_001417 This report

MS2-89-f CCGCTCGTCGCGGTAATTGGCGC 626 to 648 NC_001417 [40]

MS2-124-f GCTCTAACTCGCGTTCACAGGCTTACAAAGTAACCT 1438 to 1473 NC_001417 [40]

MS2-124-r ACACCACCAACAGTCTGGGTTGCCAC 1561 to 1536 NC_001417 [40]

MS2-93-f CCCGCGCTCTGAGAGCGGCTCTATTG 2227 to 2252 NC_001417 [40]

MS2-93-r GCCTAAATTCATATGACTCGTTATAGCGGACCGCGT 2319 to 2284 NC_001417 [40]

MS2-217-f GGGCGTCGACCGAAGTCCTGCAAAAG 497 to 522 NC_001417 This report

MS2-218-f GGCGTCGACCGAAGTCCTGCAAAAGG 498 to 523 NC_001417 This report

MS2-362-f ACAAGCGAAGTGGGTCATCGTGGGGT 353 to 378 NC_001417 This report

MS2-243-f GAAGTGCCGCAGAACGTTGCGAACC 472 to 496 NC_001417 This report

MS2-294-f GCACGCTCCTGCTACAGCCTCTTCC 421 to 445 NC_001417 This report

FluA-f CCCAGTGAGCGAGGACTGCAGCGTA 230 to 254 V01099 This report

FluA-r CCCGTTCCCATTAAGGGCATTTTGGACAAAGC 289 to 258 V01099 This report

actin-144-f CCTGGCACCCAGCACAAT 1041 to 1058 NM_001101 [58]

actin-144-r GGGCCGGACTCGTCATAC 1184 to 1167 NM_001101 [58]

actin-821-f GCACCACACCTTCTACAATG 342 to 361 NM_001101 [59]

actin-821-r TGCTTGCTGATCCACATCTG 1163 to 1144 NM_001101 [59]

GAPDH-f TGAAGGTCGGAGTCAACGGATTTG 113 to 136 NM_002046 [60]

GAPDH-r CATGTGGGCCATGAGGTCCACCAC 1095 to 1072 NM_002046 [60]

mglobulin-f GGCTATCCAGCGTACTCCAAA 117 to 137 NM_004048 [61]

mglobulin-r CGGCAGGCATACTCATCTTTTT 362 to 341 NM_004048 [61]

cyclophilin-f CAGACAAGGTCCCAAAGACAG 160 to 180 NM_021130 [62]

cyclophilin-r TTGCCATCCAACCACTCAGTC 457 to 437 NM_021130 [62]

*ROX = Carboxy-X-rhodamine.
#CF560 = CalFluor 560.
doi:10.1371/journal.pone.0038371.t001
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oligo-dT (Invitrogen, Carlsbad, CA) in 25 ml manufacturer

recommended buffer containing 250 nM dTTP using the iCycler

MyiQ qPCR instrument (BioRad, Hercules, CA). The 3173 Pol

and Taq reactions contained 5 Pol units, the AMV RT (Promega,

Madison, WI) reaction contained 10 units and the MMLV RT

(New England Biolabs) reaction contained 200 units based on unit

definitions of the suppliers. Reactions lacking dTTP were

preincubated at 37uC to equilibrate secondary structures of the

substrate and reduce high initial fluorescence background. Next

37uC dTTP was added to start the reaction. One hundred

fluorescence reads were performed every six seconds at 37uC
followed by an additional one hundred fluorescence reads at 65uC.

Direct incubation at 65uC does not detect RT activity because the

reaction temperature is greater than the melting temperature of

the oligo dT primers on the polyA template. Data analysis was

performed by linear least squares regression of a plot of

fluorescence data in RFU versus reaction time in seconds using

data from 30 to 150 seconds of incubation at 37uC and data from

30 to 90 seconds of incubation at 65uC.

RT primer extension assays were performed using the same

conditions as the fluorogenic RT assay. Reactions with polyA

template employed hexachlorofluorescein (HEX) labeled dT20

oligonucleotide instead of oligo dT primer. The RT primer

extension assay reactions with MS2 RNA template and Cal-

Fluor560-labeled (Biosearch Technologies, Novato, CA) MS2-

specific primer (MS2 160-r, Table 2) were incubated for

10 minutes at 37uC, and then 30 minutes at 65uC. For PAGE

analysis, reactions were stopped by incubation for 5 minutes at

95uC in 1M urea and held on ice prior to electrophoresis on

denaturing 5 or 10% polyacrylamide 1X TBE gels (BioRad). HEX

and CalFluor560 fluorescence was detected by a Pharos FX

fluorescence scanner (BioRad).

RT-PCR
MS2 RNA bacteriophage (Accession Number NC_001417) was

cultivated using published procedures [33]. The MS2 phage

particles were precipitated from 0.5 M NaCl and 10% PEG-8000,

purified by isopycnic centrifugation in 1.40 g/ml CsCl and

dialyzed into 10 mM Tris-HCl pH 7.4, 100 mM NaCl, 0.1 mM

MgSO4. Phage preparations were adjusted to 50% glycerol and

stored frozen. RNA was isolated from thawed aliquots with either

the QIAamp MinElute Virus Spin Kit (QIAGEN, Valencia, CA)

or the Tri Reagent LS reagent (Molecular Research Center, Inc.,

Cincinnati, OH) according to manufacturer instructions. Influenza

A RNA was isolated from cultures of MCDK cells infected with

Influenza A strain A/Puerto Rico/8/1934 (H1N1). Infected cells

were clarified by centrifugation and RNA isolated by QIAamp

MinElute Virus Spin Kit was frozen immediately. No DNase

treatment was used for either preparation. For detection of

transcripts, total human liver RNA (Ambion, Austin, TX) was used.

For quantification, MS2 RNA was re-suspended in 100 mM EDTA

and the RNA concentration was estimated by absorbance at 260 nm

with an extinction coefficient of 40 mg ml21 OD21. The estimated

MS2 RNA copy number was calculated from the determined

concentration using an average molecular weight for an RNA base of

340 g mole21 and the MS2 genome length of 3,569 nt.

Two-step RT-PCR reactions were performed using either 5

units 3173 Pol, exonuclease negative mutant or 200 Units MMLV

Table 2. RT-PCR conditions.

Kit

Reverse
Transcription

Denature

at 946C

PCR

Denature at 946C
PCR
Anneal

PCR
Extension Finishing

Run
Timea

Temp. Time Time Time Temp. Time Temp. Time

PyroScript None NA 2 min 15 sec NA 72uC 30 sec NA 58 min

Quanta 50uC 5 min 2 min 15 sec NA 72uC 30 sec NA 63 min

Transcriptor 50uC 30 min 7 min 10 sec NA 68uC 30 sec 68uC 7 min 100 min

Superscript 55uC 30 min 2 min 15 sec 66uC 30 sec 68uC 30 sec 68uC 5 min 119 min

aNot including thermal melt. NA is not applicable.
doi:10.1371/journal.pone.0038371.t002

Figure 1. Polymerase assay for detection of expression clones containing thermostable Pol activity from a boiling hot spring
metagenomic library. Clones judged by sequence to encode complete pol genes were cultivated and thermostable proteins extracted as
described in the Methods. Extension of a 37 nucleotide (nt) ROX-labeled primer (peak 1) on a 41 nt template oligonucleotide by a polymerase
results in a shift from 37 to 41 nt (peak 2). If a single nucleotide non-templated extension occurs as seen with Taq Pol, a peak at 42 nt results (peak
3). Degradation of the ROX-labeled substrate by 39 to 59 exonuclease activity results in peaks of less than 37 nt (peak 4). nt: size of standard markers
in nucleotides.
doi:10.1371/journal.pone.0038371.g001
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RT (NEB). RNA was combined with primers and annealed in

water at 70uC for 5 minutes followed by incubation on ice.

Primers used were oligo dT 12–18 mer, random hexamers,

random nonamers, and gene specific primers. No primer and no

RT controls were performed. First strand synthesis was performed

in manufacturer recommended buffer with 0.5 mM dNTPs for

5 minutes at 25uC and then for 30 minutes at 37uC for the oligo

dT, random hexamer, random nonamer and control reactions.

Gene specific RT reactions were incubated for 30 minutes at 42uC
for MMLV and 60uC for 3173 Pol. Reactions were terminated by

incubation at 95uC for 5 minutes. Following reverse transcription

a tenth of the reaction was PCR amplified by Taq Polymerase

(Lucigen) in 40 cycles of PCR.

For one-step RT-PCR reactions the following conditions were

used. The PyroScriptH RT-PCR 2X Master Mix (Lucigen)

containing 2.5 units of 3173 Pol, was used in reactions at 1X

concentration with primers at 200 mM each. The SuperScriptH III

One-Step RT-PCR System with PlatinumH Taq DNA Polymerase

(Life Technologies, Carlsbad, CA), the qScriptTM One-Step SYBRH
Green qRT-PCR Kit (Quanta Biosciences, Gaithersburg, MD), the

TranscriptorH One-Step RT-PCR Kit (Roche Applied Science,

Mannheim, Germany) and Tth DNA polymerase (Epicentre

Technologies, Madison, WI) were used according to manufacturer

instructions. PCR and real-time PCR were performed using an

iCyclerH MyiQTM thermal cycler (BioRad) on sample sizes of 25 ml

employing the cycling conditions specified by the respective RT-PCR

kit manufacturers (Table 2). For qPCR, amplification data was

acquired during the PCR extension step, a thermal melt was

performed from 70–95uC. For the Roche and the Lucigen reagents, a

fluorescent DNA-binding dye, EvaGreen (Biotium, Hayward, CA),

was added at 0.56. Data acquisition used the iQ Optical System

software version 2.1 (Bio-Rad) and analysis was performed using

MultiCode-RTx Analysis software version 1.6.2.10 (EraGen Biosci-

ences, Madison, WI).

Results

Discovery and expression of 3173 Pol
A viral metagenomic library was constructed from Octopus hot

spring (93uC) in Yellowstone National Park and 21,198 Sanger

sequence reads were analyzed [2]. BLASTx alignment [34] to the

Genbank protein sequence database identified hundreds of

potential pol genes. Analysis of paired end reads of individual

metagenomic clones suggested 59 complete pol genes. All of these

were tested for expression of Pol activity using a primer extension

assay, and ten clones displayed detectable thermostable Pol

activity. The most thermostable of these activities was from clone

number 3173, encoding 3173 Pol (Figure 1). This enzyme belongs

to a family of thermostable viral Pols identified in this and other

screens that have strongest sequence similarity to Pol I-type

enzymes from the Aquificales family. The 3173 Pol (Genbank acc.

no. ADL99605.1) shares 32% amino acid identity with Thermocrinis

albus Pol I (Genbank acc. no. ADC89878.1), but no significant

sequence similarity to any previously described viral protein.

Biochemical Analysis
The 3173 Pol was over-expressed in E. coli and purified. Its

biochemical attributes are summarized in Table 3. Protein

sequence alignment identified a Pol domain and a 39-59

exonuclease domain, but no detectable 59-39 exonuclease domain.

The primer extension Pol assay also detected 39-59 exonuclease

activity in the purified Pol preparation (Figure 1) and this activity

was further confirmed by digestion and release of acid soluble

counts from a radiolabeled DNA fragment (Table S1). The

identification of a proofreading exonuclease domain suggested

high fidelity synthesis. A variant of the lacIq forward mutation

fidelity assay [35] was used to determine the fidelity of 3173 Pol in

PCR amplification of a DNA target (Table 3). The wild-type 3173

Pol had a fidelity of 6.76104.

Proofreading exonuclease activity can complicate PCR by

degrading unmodified primers and templates [36]. Since fidelity of

incorporation is less important for detection and quantification,

the exonuclease activity of the 3173 Pol was eliminated to create a

more robust enzyme for routine RT-PCR. Sequence alignment to

the 39-59 exonuclease domains of known Pols [37] predicted that

aspartate 49 and glutamate 51 of 3173 Pol would be required for

exonuclease activity. Substitution of either acidic residue with

alanine eliminated measurable exonuclease activity. As would be

expected, disabling the proofreading exonuclease reduced PCR

fidelity to 0.96104. The D49A mutant of 3173 Pol (PyroPhage

3173 DNA Polymerase, Exonuclease Minus, Lucigen) was used for

all of the remaining work.

We determined the processivity of the 3173 enzyme using a

variant of the ‘‘enzyme trap’’ method [38], in which Pol was

preloaded onto a fluorophore-labeled primer/template complex.

Excess activated calf thymus DNA was added simultaneously with

Table 3. Biochemical attributes of PyroPhage 3173 Pol.

39-59 exonuclease Strong

59-39 exonuclease None

Strand displacement Strong

Extension from nicks Strong

Thermostability (TK @94u) 11.1+/21.4 min.

Km dNTPs 40 mM

Km DNA 5.3 nM

Processivity 47 nt

39 ends of amplicons blunt (wt)
single nt extended (exo-)

Fidelity 86104 (wt)
0.96104 (exo-)

doi:10.1371/journal.pone.0038371.t003
Figure 2. Biochemical characterization of 3173 Pol. The thermal
profile of the 3173 Pol was determined by assay at the indicated
temperatures. Activity relative to maximal (77uC) is shown.
doi:10.1371/journal.pone.0038371.g002
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nucleotides to capture the Pol in non-detected extension products

after enzyme dissociation from the primer/template. Primer

extension has traditionally been detected by polyacrylamide gel

electrophoresis. Capillary electrophoresis of fluorescently tagged

primer extension products allows quantitative determination of

processivity by direct measurement of the number of nucleotides

incorporated and the amount of each extension product based on

electrophoretic mobility and peak integration. Reactions where

the observed lengths of extension no longer increased with time

were chosen for analysis. This approach showed a mean

processivity of 47 nucleotides for 3173 Pol. The same analysis

indicated processivity of 9 and 37 nucleotides for Taq and Bacillus

stearothermophilus (Bst) Pol I enzymes, respectively. The 3173

enzyme has a half-life at 94uC of about eleven minutes. In

contrast Taq Pol measured under the same conditions lost 45%

activity over the two hour assay. The thermal profile of 3173 Pol

(Figure 2) shows peak activity at 77uC, with approximately half

maximal activity at 55uC.

Both radioactive and fluorogenic incorporation assays indicated

strong RNA-dependent DNA synthesis (reverse transcription)

activity for 3173 Pol in buffers containing either magnesium or

manganese (not shown). We used two assays (Figure 3) to compare

the RT activities of the wild-type and exonuclease deficient 3173

Pols to those of AMV and MMLV RTs at 37uC or 65uC on an oligo

dT primed poly A substrate. The AMV and MMLV had higher RT

activity at 37uC while the 3173 Pol RT was much more active at

65uC using the fluorogenic incorporation assay (Figure 3A). The

Taq polymerase and no enzyme controls had no detectable RT

activity at either temperature. Extension products from a 59-

fluorophore-labeled dT20 primer were resolved by denaturing

polyacrylamide gel to further demonstrate RT activity and to assess

the relative lengths of the extension products of the 3173 Pol and

MMLV RT (Figure 3B). Both RTs were able to efficiently extend

the primer when polyA RNA template was provided. The length

distribution of the 3173 Pol cDNAs was visibly shorter than that

produced by the MMLV RT, although a subset of the 3173

extension products appeared to be so large that they barely entered

the gel. Incubation of the DNA primer:RNA template complex with

the Taq Pol negative control resulted in a structure-dependent 59-39

exonuclease cleavage product that migrated at the dye front [39]. As

Figure 3. Reverse transcriptase assays. A. Fluorogenic assay. RT
activity was measured by detection of RNA:DNA heteroduplex by
fluorescence of EvaGreen binding. Oligo dT primed poly A was
incubated at 37uC and 65uC in the presence of indicated Pol enzymes
in manufacturer recommended buffers and dTTP. Fluorescence
measurements were obtained every 6 seconds for 10 minutes. The
initial slopes from a plot of RFU vs. time in seconds were determined by
linear least square regression from 30 to 150 seconds at 37uC and from
30 to 90 seconds at 65uC. Error bars are standard error of regression
slope. B. RT primer extension assay. HEX-labeled dT20 primed poly A
was incubated 10 minutes at 37uC and then 10 minutes at 65uC in the
presence of indicated Pol enzymes and dTTP in manufacturer
recommended buffers. Primer extension products were resolved by
10% denaturing PAGE and imaged on a Molecular Imager FX (Bio-Rad).
Left facing triangle indicates migration of unextended dT20 primer and
asterisk indicates bromophenol blue dye front. C. RT MS2-specific
primer extension. 59-labeled primer was annealed to MS2 RNA and
incubated 10 minutes at 37uC and then 30 minutes at 65uC in the
presence of indicated Pol enzymes with dNTPS (N = A,C,G,T) in
manufacturer recommended buffers. Primer extension products were
resolved by 5% denaturing PAGE. Lane 1 No RNA+MMLV RT; Lane 2:
MS2 RNA No RT; Lane 3 MS2 RNA+MMLV RT, Lane 3 MS2 RNA+3173 Pol.
Molecular weight in bases indicted. Red Arrow: ,650 base MMLV
extension product. Blue Arrow: ,715 base PyroScript extension
product. Green arrow: Non-templated MMLV reaction product.
doi:10.1371/journal.pone.0038371.g003
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an additional test to compare the RT activity of the 3173 Pol to that

of MMLV-RT on a complex RNA substrate, a primer specific to

bases 714 to 690 of the negative sense RNA MS2 genome [40] was

59-fluorophore-labeled. The labeled cDNA primer was extended

using extracted MS2 RNA as a template (Figure 3C). The 3173 Pol

and MMLV RT were both able to extend the primer to produce

faint, nearly full-length products although the 3173 Pol product was

detectably longer than that of MMLV RT. The 3173 Pol also

synthesized a larger amount of several shorter length extension

products from 175 to 300 bases in length. The MMLV RT formed a

visible template-independent product in the absence of added RNA

template that was not resolved by the gel, while the 3173 Pol did not.

Use of 3173 Pol in RT-PCR
We compared the first strand cDNA synthesis by 3173 Pol to

that by MMLV RT using biological RNA templates. Production

of cDNA was detected by two-step PCR amplification in which

cDNA synthesis was primed by random, target-specific, oligo dT

or no primers and detected by PCR with target-specific primers

(Figure 4). The RNA targets were MS2 bacteriophage and a

human mRNA. The 3173 Pol readily synthesized 77 bp MS2 [40]

(Lanes A1–7) and 144 bp beta-actin cDNAs (Lane B2, 3, 5, 6, 7)

but generally failed to synthesize cDNA targets longer than

,400 bp (Panel C). Of the two longer target sequences tested,

only the 821 bp beta-actin sequence (Lane C3) was reverse

transcribed by the 3173 Pol and this synthesis appeared less

efficient than that of MMLV RT. Interestingly, both enzymes

appeared to reverse transcribe with primers that would not be

expected to prime near the target. (A1, A11, B14) and even in the

absence of primers (Lane A7, B17, C17). In the case of 3173 Pol, it

is likely that both cDNA synthesis and amplification occur during

the PCR step so the presence or absence of primers during cDNA

synthesis may be inconsequential. The basis of the product in the

MMLV RT reaction is not known.

Under favorable conditions 3173 Pol did reverse transcribe

mRNA transcripts (Figure 5). The 3173 Pol was compared to

MMLV RT for the detection of three shorter target sequences in

common high-abundance reference genes using the two-step RT-

PCR protocol. Both enzymes appear to transcribe the targets with

similar efficiency and specificity. The amount of PCR product for

all three transcripts appeared visibly greater in the 3173 Pol

reactions, although we cannot rule out the contribution of residual

thermostable 3173 Pol to the PCR reaction yield.

To facilitate RT-PCR, the exonuclease deficient 3173 Pol was

combined with buffer and deoxynucleotides to formulate Pyro-

ScriptH RT-PCR 2X Master Mix (Lucigen) for single-enzyme, one

step RT-PCR. Preliminary testing indicated that an initial lower

temperature RT extension prior to thermal cycling did not improve

results with the PyroScript enzyme (not shown). Therefore this step

was eliminated from PyroScript RT-PCR protocols. In contrast to

the typical RT-PCR primers designed for the lower extension

temperatures of MMLV or AMV RTs, primers used with melting

temperatures of about 72uC significantly improved RT-PCR

performance of the PyroScript enzyme mix.

To assess sensitivity and specificity of the PyroScript master mix

reagent in one step RT-PCR, a quantitated control target was

prepared from RNA bacteriophage MS2 [41]. We used the one-

enzyme PyroScript RT-PCR mix with nine primer sets (Table 1)

to amplify regions of the MS2 RNA genome [40] up to 362 bp.

The mix proved effective for these primer sets and this range of

target sizes (Figure 6A). Amplification efficiency for longer target

lengths was poor as judged by a substantial increase in qPCR cycle

threshold with amplicons greater than about 400 bp (not shown).

To demonstrate quantitation and sensitivity, the 160 bp MS2

primer set from Figure 6A was chosen as well suited for both

qPCR and electrophoresis analysis and combined with PyroScript

to amplify a ten-fold dilution series from 1,200,000 to 1.2 target

copies of MS2 RNA (Figure 6B). The estimated limit of detection

was between one and ten RNA copies. The water-only control

gave a negative response demonstrating high specificity, which is

supported by the melt-curve analysis (Figure 6C) and agarose gel

electrophoresis of the product (not shown). Linear quantitation

was seen over the full six-log dilution series (Figure 6D) suggesting

a broad quantitation range.

The most common single enzyme RT-PCR method uses Tth

Pol [23]. We compared the RT-PCR sensitivity, specificity and

quantitation of the PyroScript mix with Tth Pol. The 160 bp MS2

target from Figure 6 was amplified by each enzyme over a dilution

range of 1022 to 1028 (estimated at 120,000 to 0.12 copies) using

manufacturer recommended conditions for each (Figure 7). The

near single copy sensitivity and six-log linear detection range seen

with PyroScript 3173 RT contrasts with the ,120,000 copy

detection limit and absence of a linear quantitation range seen

with Tth Pol. A small amount of false product was detectable in the

negative control by RT-qPCR but not by agarose gel. Significant

false background PCR products generated by the Tth Pol system

were readily detectable by both agarose gel and melt-curve

analysis.

Figure 4. Two step RT-PCR comparing 3173 Pol and MMLV RT. A. MS2 viral RNA and B., C. total human liver RNA were reverse transcribed
using either 3173 Pol or MMLV RT and then PCR amplified using Taq Polymerase. Target amplicons: A. MS2 RNA phage 77 bp amplicon, 2% gel, B.
Human beta-actin 144 bp amplicon, 2% gel, C. Human beta-actin 821 bp amplicon, 1% gel. Lanes: 1,11: oligo dT primer; 2–4,12–14: Gene specific
primers; 5,15: random hexamers; 6,16: random nonamers; 7,17: No primer plus RT; 8: No RT enzyme; 9: PCR No Target Control; 10: Molecular Weight
Marker (MW), 100 bp (50 bp lowest) for Panels A, B and 1000 bp (300, 500, 700 lowest) for Panel C. Correct PCR product size indicated by black
triangle.
doi:10.1371/journal.pone.0038371.g004

Figure 5. RT-PCR detection of human transcript RNAs. Beta-
actin, beta2-microglobulin and cyclophilin target sequences of the
indicated sizes were amplified from human liver total RNA using the
primers described in Table 1. Shown are products of two step reactions
where either MMLV RT or 3173 Pol were used for first strand cDNA
synthesis, as indicated. Taq Pol was used for PCR. Products were
resolved on a 1% agarose gel.
doi:10.1371/journal.pone.0038371.g005
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Since two-enzyme systems using MMLV RT derivatives and Taq

Pol are far more commonly used than single-enzyme systems, we

compared the performance of single-enzyme PyroScript mix to

three widely used mixes that are based on the two enzyme MMLV

RT plus Taq Pol combination, but are referred to as ‘‘one-step’’

systems. The comparators were: SuperScriptH III One-Step RT-

PCR System with PlatinumH Taq DNA Polymerase (Life Tech-

nologies), the qScriptTM One-Step SYBRH Green qRT-PCR Kit

(Quanta), and the TranscriptorH One-Step RT-PCR Kit (Roche).

MS2 RNA extract was amplified using primers targeting the 160 bp

product from Figure 6. Three dilutions of MS2 RNA (the lower

dilutions from Figure 6D) and a water-only control were amplified

by 40 cycles of RT-qPCR using each of the respective reagents

(Figure 8A). All of the reagents appeared to have similar limits of

detection and amplified the expected product as seen by electro-

phoresis. All of the reagents produced a weak background

amplification product of about 60 bp, from both the lowest RNA

dilution and the water-only control. The Transcriptor kit repro-

ducibly amplified more false product than did the other three.

Similar slopes from plots of qPCR cycle threshold versus fold target

dilution show that all four reagent mixes amplified the MS2 target

with similar efficiency although the qScript reagent appeared to

amplify the target a few cycles later than the other three mixes.

The ability of these four reagents to amplify human influenza A

virus RNA was also compared. Cultured influenza A Puerto Rico/

8/1934 (H1N1) RNA was extracted from cell medium and

amplified by 40 cycles of one-step RT-PCR (Figure 8B). The

results with influenza A were similar to those seen for the MS2

target. All four reagents appeared to have similar limits of

detection for the influenza A RNA extract and amplified the

intended 60 bp target from the second lowest dilution of RNA.

The PyroScript RT-PCR reaction was largely free of extraneous

bands. In contrast, the Transcriptor and the Superscript-based

mixes produced spurious bands, primarily of a size greater than

the expected amplicon size. The Transcriptor kit also produced

false products in the negative control reaction. Again the slopes of

plots of qPCR cycle threshold versus fold dilution show that all

four reagent mixes amplified the MS2 target with similar

efficiency. In contrast with MS2, both the qScript and the

PyroScript reagent were found to amplify influenza A several

cycles later than the SuperScript and Transcriptor master mixes

did.

Discussion

The 3173 Pol based PyroScript RT-PCR master mix represents

a practical alternative to two-enzyme (e.g. MMLV RTs/Taq Pol)

RT-PCR systems and provides both theoretical and demonstrated

advantages. No truly viable substitute for the two-enzyme systems

has been described previously. Among bacterial DNA Pols that

can be induced to use RNA templates, only the Tth Pol is

thermostable enough for PCR, but its performance in RT-PCR in

general has not proven competitive with the two-enzyme mixes.

Since the upper limit for eukaryotic life is around 62uC, it seems

unlikely that retroviruses will ever provide RTs thermostable for

single-enzyme RT-PCR.

While the two-enzyme systems are widely used and generally

reliable, deficiencies inherent in these systems have restricted

certain improvements in RT-PCR. For example, secondary

activities, including RNase H and terminal transferase, are

associated with strand switching [4,6] and insertion errors [42].

Replication of native retroviral genomes depends on specific

sequences within the terminal repeats [43], which may be related

to a significant bias seen with certain combinations of primer

Figure 6. Single-enzyme, one step RT-PCR amplification of MS2
phage RNA using 3173 Pol. MS2 RNA was amplified by 40 cycles of
RT-PCR using the primers shown in Table 1 and 3173 Pol. A. Products
from 89 to 362 bp in length were amplified using one-step single-
enzyme RT-PCR cycling conditions: 15 sec @ 94uC, (10 s @ 94uC, 30 s @
72uC)*40. Products were resolved by 2% agarose gel electrophoresis. B.
The MS2 RNA was diluted from 101 to 107-fold and amplified using a
primer pair corresponding to the 160 bp fragment in Panel A. Real-time
PCR fluorescence in RFU (relative fluorescence units) vs. PCR cycles. C.
Post-amplification thermal melt in -dRFU/dTemperature vs. Tempera-
ture (uC). Light blue region indicates melt curves for specific products.
D. Standard curve PCR Cycle threshold vs. log10 RNA copy number in
triplicate with linear least squares best fit line.
doi:10.1371/journal.pone.0038371.g006
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sequences and reverse transcriptases [44] used in vitro. In

particular, the two 39-terminal nucleotides of the primers can

account for a 35,000-fold range in the frequency of misincorpora-

tion, a measured Km variation of 100-fold and Vmax range of

several-fold when used with MMLV or AMV RTs [5]. These

preferences are possible causes of amplification errors, amplifica-

tion bias [8], poor concordance between tests [9,45] and sequences

that are completely refractory to reverse transcription [44,45].

Extensive effort has been directed at engineering retroviral RTs

to disable or eliminate the RNase H domain implicated in RT-

dependent rearrangement [21]. Although such RTs produce fewer

rearrangements, inactivation of RNase H also increases misincor-

poration and bias due to impaired amplification of specific

sequences [3,4,46]. Additional mutations incorporated into

SuperScript III RT (Life Technologies) to increase thermostability

may have resulted in lower sensitivity [10] and exacerbated the

interference with Taq Pol [16], but still have not provided

adequate thermostability for single-enzyme RT-PCR. Alternative

approaches of evolving or engineering thermostable Pols to use

RNA templates [47,48] have shown promise, but, to our

knowledge, have not yet provided a commercial RT-PCR reagent.

To discover new thermostable enzyme activities, we investigated

the previously unexplored resource encoded in the genomes of

viral populations in thermal springs. Viruses are a highly abundant

and diverse source of genetic variation [2,49] and a promising

source of new reagent enzymes [1]. A viral metagenomic library

originating from a thermal hot spring provided a new enzyme,

3173 Pol, with efficient reverse transcription activity and

thermostability for PCR. The physiological role of the RT activity

of 3173 Pol is not clear. Lacking a cultivated virus/host

combination, the replication mechanism of the source virus can

only be inferred from sequence data. Based on the method of

library construction, the virion has a double-stranded DNA

genome. Thus, the overall viral replication mechanism is distinct

from retroviruses.

In our experiments, the half-life of 3173 Pol at 94uC was

11 minutes compared to more than two hours for Taq Pol when

assayed under the same conditions. A previously reported half-life

of Taq Pol at 95uC is 20 minutes [50]. Although the thermosta-

bility of 3173 Pol is significantly lower than Taq and most other

commonly used thermostable Pols, it is clearly adequate for PCR

since product continues to accumulate up to forty cycles (Figures 6

and 7). The combination of thermostability and reverse transcrip-

tase activity in one enzyme has practical implications. Because the

two enzyme RT systems contain a thermolabile protein compo-

nent, the use of hot start technologies to improve specificity of

reverse transcription is not practical. The 3173 Pol should allow

‘‘hot start’’ methods to function during reverse transcription as

well as amplification, which should improve specificity (data not

shown).

The thermal profile of 3173 Pol (Figure 2) shows a peak of

activity at 77uC, similar to Taq Pol, but nearly half of its activity

remains at 55uC, significantly higher than the 10–20% reported

for Taq Pol [50]. The higher reverse transcription temperature,

combined with the strand displacement activity, should improve

specificity and allow synthesis through difficult, structured and G/

Figure 7. Comparison of 3173 Pol to Tth Pol in single enzyme RT-PCR detection of MS2 RNA. 3173 Pol, exonuclease minus (left, red) and
Tth Pol (right, green) were used according to manufacturer recommendations to amplify a 102 to 108-fold dilution series of MS2 RNA and a water no
target control using primers targeting the 160 bp product from Figure 6. A. Electrophoresis 2% agarose gel. Center lane is 100 bp DNA ladder. B.
Top: Real-time PCR fluorescence in RFU (relative fluorescence units) vs. PCR cycles and Bottom: melt data in -dRFU/dTemperature vs. Temperature
(uC). Blue region indicates melt curves for specific products.
doi:10.1371/journal.pone.0038371.g007
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C rich RNA templates and may have been the basis of the lower

amount of spurious products in PyroScript reactions seen in

Figure 8. This broad thermal profile, strand displacement and

initiation at nicks have enabled certain isothermal amplification

schemes [51,52] (manuscript in preparation).

One advantage of a thermostable RT is that the initial lower

temperature incubation step can be eliminated, reducing overall

reaction time and potentially increasing priming specificity. The

high stability of 3173 Pol in solution compared to MMLV RT also

allows the formulation of a complete PyroScript RT-PCR master

mix, which lacks only analyte-specific primers and target. This

formulation is stable for over a year at 220uC and simplifies

reaction set up and reduces the potential for formulation errors.

A drawback of the two-enzyme systems is reduced efficiency

during early rounds of RT-PCR amplification of low abundance

targets when Taq Pol is used with MMLV RT [7,12,13,14,15,16].

This inhibition has some sequence specificity [12,16], which

presumably biases amplification and may compromise the

measurement of differential gene expression levels and the

reliability of internal and external quantification standards. One

explanation for this effect is that heating eliminates RT activity

without fully disrupting DNA binding and this interferes with the

efficiency of PCR amplification. The result is an underestimation

of low abundance target concentration. If this is true, the

availability of a single enzyme that reverse transcribes and

amplifies should eliminate this effect.

We report other biochemical attributes likely to affect RT-PCR.

Affinity for template influences the sensitivity and specificity of

amplification, but has not been widely described for other Pols.

This affinity can have an important impact on certain applications.

For example, Bst Pol has a higher template affinity for DNA than

Taq Pol, allowing use of lower template concentrations when

DNA sequencing [53]. Also important is affinity for nucleotides.

The nucleotide dissociation constants for Pol I enzymes from T.

thermophilus and three thermostable Bacillus species were reportedly

between 115 and 85 mM [54]. Processivity is probably related to

affinity for template. The phi29 Pol has a processivity value of

greater than 70,000 nt [27]. The processivity of 3173 (47 nt) is

comparatively modest but still higher than either Bst or Taq Pols

(37 and 9 nt, respectively). While processivity measurements are

highly dependent on reaction conditions, the measured result for

Taq is comparable with previously published values [50].

Although it is not as important for detection and quantification

applications, fidelity is critical for preparative cDNA synthesis

methods and for transcriptome sequencing. Published methods of

fidelity measurement use DNA templates [35]. Using a variant of

these methods, the wild-type 3173 Pol had a fidelity of 6.76104

similar to our measurements for the most accurate PCR enzymes,

Pfu and Phusion Pols (5.86104 and 7.56104 respectively) when

assayed in parallel. An exonuclease deficient mutant of 3173 Pol

had a PCR fidelity of 0.96104, similar to the value measured for

Taq Pol (1.46104) and slightly below the reported range of 2.5 to

5.06104 for Taq Pol [32,35]. Published in vitro fidelity measure-

ments for MMLV RT are especially difficult to compare since the

assay conditions and temperatures are quite different; however,

the reported fidelity for MMLV RT is between 1.7 and 3.06104

[55]. Measurement of the fidelity of 3173 Pol on RNA templates

will require extensive studies beyond the scope of this report. If the

fidelity on RNA is similar to the fidelity on DNA, 3173 Pol could

prove especially valuable as an RNA sequencing enzyme for

transcriptomics research. Thus, the determination of 3173 Pol

fidelity is the basis of ongoing study.

Figure 8. Comparison of 3173 Pol (PyroScript) RT-PCR mix with two enzyme RT-PCR systems in detection of MS2 and influenza A.
Ten-fold serial dilutions of an MS2, an influenza A RNA preparation and a water only control (NTC) were amplified by one-step RT-PCR reagent mixes
(PyroScript, qScript (Quanta), Transcriptor (Roche), and SuperScript (Invitrogen), as indicated. A. MS2 detection. Left panel: 2% agarose gel, each
group of four wells are 1024, 1026, 1027-fold target dilutions and NTC, MW is 100 bp DNA ladder (50 bp smallest band). Right Panel: RT-qPCR analysis
of 1023, 1024, 1025, and 1026-fold target dilutions. B. Influenza A RNA detection. Left panel: 4–20% gradient polyacrylamide gel, each group of three
wells are 1026, 1027-fold target dilutions and NTC, MW is 25 bp DNA ladder (50 bp smallest band). Right Panel: RT-qPCR analysis of 1023, 1024, 1025,
and 1026-fold target dilutions.
doi:10.1371/journal.pone.0038371.g008
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The PyroScript mix was comparable in sensitivity to three

leading commercial two-step RT-PCR kits when used to detect

either MS2 phage or influenza A RNA. Background amplification

in the absence of target, especially after 40 cycles of PCR, is

problematic in clinical diagnostic tests where RNA target copies

may approach single molecule levels. This problem is exacerbated

in two-enzyme, one-step RT-PCR since the retroviral RTs are not

thermostable and background reduction during reverse transcrip-

tion using hot start methods for these RTs are not possible. We

found that both the MS2 and the influenza one-step RT-PCR

amplification reactions exhibited some propensity for non-specific

product formation. However, all of the one-step kits produced

background at similar or higher levels. Furthermore, these

background products were often generated in earlier cycles than

the 3173 enzyme false products. The yield of end product formed

by the Transcriptor and by the Superscript reagents appeared

greater than those of the Quanta and the PyroScript mixes

(Figure 5), likely due to higher recommended amounts of primers

used by these reactions (500 nM vs. 200 nM). However, the higher

concentration of primers probably resulted in increased back-

ground observed with the Transcriptor and SuperScript reagents.

With additional effort, reaction parameters for any of the enzymes

could undoubtedly be optimized for specificity or for yield. This

higher yield of end product does not appear to affect qPCR results.

While the PyroScript enzyme mix shows utility for a range of

detection applications, we noted some limitations. The use of 3173

Pol for amplification of targets greater than about 350 nt is not

reproducible although both the 3173 wild-type and exo- mutants

generate PCR products from DNA targets up to 5 kb and higher

(data not shown). This is consistent with the shorter length of

cDNA products that we observed in the labeled primer extension

experiments (Figure 3B). Figure 3C indicates a small amount of

full-length, 714 nt cDNA product, although the bulk of product is

less than 300 nt. Each of these shorter products terminates within

a region of secondary structure of the MS2 RNA associated with

RNase sensitivity [56] so these apparent size limits may reflect

labile sites in target RNA and may have to do with RNA stability

at the high extension temperatures used with 3173 Pol (72uC) than

with inherent properties of the enzyme. Most detection modes

amplify much shorter targets, but preparative RT-PCR with 3173

Pol will likely be affected by this observed limitation. In contrast to

the two-enzyme mixes, use of 3173 Pol in RT-PCR was

significantly more reliable when the primers were designed to

anneal at the higher (72uC) annealing/extension temperature of

the two step PCR protocol. Throughout the RT-qPCR studies, we

used dye binding as the detection mode. An alternative detection

chemistry uses hydrolysis probes commonly known as TaqManH
probes (Life Technologies) [57]. This chemistry was not tested

since the 3173 Pol lacks the 59-39 exonuclease activity required to

cleave a TaqMan probe. Finally, while the 3173 Pol reliably

detected high abundance transcripts, as shown in Figure 6, it was

noticeably less consistent with less abundant targets. The reason

for this inconsistency is not fully understood and is under

investigation. One explanation may be that the enzyme is sensitive

to high abundances of non-target sequences, typical in total RNA

extracts. This effect has been seen to a lesser extent with MMLV

RT-based RT-PCR [10] and with optimization may be amelio-

rated. Such abundant non-target RNA is generally absent in viral

RNA preparations and the 3173 Pol has proven especially useful

for detection and quantification of RNA viruses. For detection of

RNA viruses the PyroScript mix appears to be competitive with

two enzymes systems that use a retroviral RT and a thermostable

Taq Pol. Since RNA viruses including influenza, HIV, Dengue,

West Nile and SARS coronavirus represent a substantial portion

of emerging pathogens worldwide, an improved means of

detecting and quantifying these viruses could have an important

impact on global health care.

Supporting Information

Table S1 Exonuclease Assay. The indicated number of units of

enzyme were incubated with [33P]-labeled PCR product for

10 minutes at 70uC as described in methods. Shown are the

percent counts released with background (water-only control)

subtracted. Not detected is indicated when counts are not

significantly above background counts, i.e. ,10%.
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