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Abstract: TonB-dependent transport system plays a critical role in the transport of nutrients across
the energy-deprived outer membrane of Gram-negative bacteria. It contains a specialized outer
membrane TonB-dependent transporter (TBDT) and energy generating (ExbB/ExbD) and transducing
(TonB) inner membrane multi-protein complex, called TonB complex. Very few TonB complex
protein-coding sequences exist in the genomes of Gram-negative bacteria. Interestingly, the TBDT
coding alleles are phenomenally high, especially in the genomes of bacteria surviving in complex
and stressful environments. Sphingomonads are known to survive in highly polluted environments
using rare, recalcitrant, and toxic substances as their sole source of carbon. Naturally, they also
contain a huge number of TBDTs in the outer membrane. Out of them, only a few align with the
well-characterized TBDTs. The functions of the remaining TBDTs are not known. Predictions made
based on genome context and expression pattern suggest their involvement in the transport of
xenobiotic compounds across the outer membrane.
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1. Introduction

The outer membrane of Gram-negative bacteria performs several important functions. It acts as a
barrier to prevent the entry of antibiotics and other toxic chemicals and protects the cell wall by denying
access to cell wall degrading enzymes. However, existence of an energy-deprived outer membrane is a
hurdle for the uptake of nutrients in Gram-negative bacteria [1]. A majority of nutrients gains entry into
periplasmic space by diffusing through the outer membrane via a pore-like structure formed in outer
membrane-associated β-barrel containing proteins, otherwise known as porins [2]. However, certain
scarcely available nutrients depend on active transport to cross the energy-deprived outer membrane.
The active transport mechanism of the outer membrane is known as TonB-dependent transport system.
The system contains two components, the inner membrane-associated TonB complex and an outer
membrane-associated TonB-dependent transporter (TBDT). The TonB complex contains proton motif
force (PMF) components, ExbB/ExbD, and energy transducer TonB in a ratio of 7:2:1 [3]. The TonB
complex has unique role in outer membrane transport. The PMF components ExbB/ExbD generate
energy by pumping protons across the inner membrane, while TonB transduces this energy to the outer
membrane-localized TBDT. The TonB protein contains three domains: the N-terminal transmembrane
helix, C-terminal domain, and a proline-rich rigid central domain. The N-terminal region is embedded
in the inner membrane and is associated with one of the transmembrane domains of ExbB [4].
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The longer C-terminal region extends into periplasmic space and specifically interacts with TonB-box of
the outer membrane-localized TBDT. These interactions of TonB and TBDT facilitate the transduction
of energy required to transport scarcely available nutrients across the outer membrane. The TBDT
possesses unique structural features and exhibits a two-domain structure. The C-terminal domain
embedded in the outer membrane contains one of the largest 22-stranded β-barrel with extracellular
loops. The N-terminal globular domain, through its unique structural features, establishes cross-talk
with the inner membrane-localized TonB complex. An energy coupling consensus pentapeptide
motif (ETVIV) designated as “TonB-box” physically interacts with the C-terminal domain of inner
membrane-localized, periplasmically exposed TonB [5]. The TBDT undergoes conformational changes
upon substrate binding. This conformational change induces structural transition from a state of order
to disorder in the TonB-box motif [6]. This disordered state of TonB-box of TBDT is recognized by TonB.
The TBDT and TonB interactions are transient, the disordered state of TonB-box returns to an ordered
state after completion of substrate transport [7]. TonB plays a critical role in supplying energy required
for the structural transition of TBDT. TonB harvests energy generated by PMF components ExbB/ExbD
and transduces it to TBDT (Figure 1).
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Figure 1. (A) Schematic diagram of TonB-dependent transport system. (B) Typical structural features of
an outer membrane transporter (TBDT), 22 β-barrel structure, N-terminal plug domain, and substrate
binding motif are indicated with arrows.

The TonB complex of TBDT is highly conserved among Gram-negative bacteria. The genome
sequences of Gram-negative bacteria contain a limited number of alleles to code for TonB complex
proteins, TonB and ExbB/ExbD. Though the overall structural features of TBDT are conserved, there
exist substantial differences in the residues of ligand binding sites. Such diversity in the residues of
ligand binding sites suggests the existence of specialized TBDTs for transport of a variety of scarcely
available nutrients in the environment. The copy number of TBDTs shows a very unique pattern
among Gram-negative bacteria. Genomes isolated from the cells grown in less stressful environments
show existence of a smaller number of TBDT coding alleles. Their numbers in such strains does not
exceed four to five alleles per genome. However, the number of alleles coding TBDTs ie more in
the genomes of cells isolated from harsh environments [8]. The gut microbiome sequences show an
unusually high number of TBDT coding sequences [9]. Similarly, in the genomes of sphingomonads,
namely Sphingobium japonicum, Sphingobium indicum, Sphingobium fuliginis, which live in harsh climates,
a very high number of TBDT coding alleles are identified. In fact, the number of TBDTs appears to
proportionately increase with the complexity of the environment [9]. However, there exists no study to
link the increased number of TBDTs and complexity of the habitat. Since sphingomonads survive in



Microorganisms 2020, 8, 359 3 of 14

habitats polluted with a variety of xenobiotics, in this study we attempt to examine if these TBDTs
have a role in the transport of xenobiotic compounds by examining the genome information of certain
Sphingomonadaceae members.

2. The TonB-Dependent Transport System

TonB-dependent transport system derived its name due to the fact that phage T1 failed to infect
the null mutants of tonA and tonB in Esterichia coli [10]. Subsequent studies performed to understand
this unusual observation have identified the physiological role of these two genes. The roles of these
two genes are now well established. The tonA codes for TBDT designated as FhuA and is involved in
the transport of ferrichrome [10]. Initial studies gave an impression that TonB-dependent transport
system, consisting of FhuA, serves exclusively for iron-siderophore complex uptake. However, recent
studies have dismantled this myth and showed the involvement of FhuA in the transport of antibiotics.
In addition to ferrichrome, FhuA successfully transported siderophore structural mimic Albomycin
and Rifamycin CGP 4832, which have no structural similarity with siderophores [11]. Similarly, the
outer membrane transporter, BtuB, of E. coli was found to be a member of the TBDT family and interacts
with the inner membrane-associated TonB complex to facilitate the active transport of vitamin B12

across the outer membrane [12]. Likewise, a wide variety of TBDTs was identified in many pathogenic
and non-pathogenic bacteria to translocate a variety of substrates across the outer membrane via
TonB-dependent transport system [13]. Transport of nickel complexes in human pathogen Helicobacter
pylori, maltodextrins in the environmental bacteria Caulobacter crescentus, and sucrose in plant pathogen
Xanthomonas campestris, pv. campestris are certain classical examples that show involvement of the
TonB-dependent transport system in the transport of substrates other than iron. Table 1 gives an
exhaustive list of substrates predicted to be transported through TonB-dependent transport system.

3. TonB-Dependent Transporters (TBDTs) and Environmental Adaptation

Sphingomonads survive in various stressful environments. They survive in a nutrient-poor
phyllosphere [14], extremely cold marine waters [15] and highly toxic and polluted environments
with metals [16], phenanthrene [17–20], polyethylene glycol [21], alkylphenols [22], dioxins [23],
naphthalene [20], diphenyl ethers [24], organophosphates [25,26] and organochlorides [27–29]. Their
survival under these stressful conditions depends on their ability to use these unusual substrates,
hitherto unknown to natural habitats, as a carbon source (Table 2). Such a task can be accomplished
with an efficient catabolic repertoire, an effective transport system. The genome sequences of these
strains indeed reveal the existence of a novel catabolic repertoire [26]. Interestingly their genomes also
contain an unusually high number of TBDTs.

4. Unique TonB Complex in Sphingobium fuliginis

Organophosphate (OP)-degrading sphingomonads contain phosphotriesterases (PTE), also known
as organophosphate hydrolase (OPH), capable of degrading the third ester linkage found in OP
insecticides and nerve agents [30]. The membrane-associated PTE target the membrane in a pre-folded
conformation following twin-arginine transport (Tat) pathway. The Tat pathway inserts PTE into the
inner membrane-facing periplasmic space of the cell. Recent studies have shown PTE as part of a
multiprotein membrane-associated TonB complex. Interestingly, the TonB complex components were
co-purified along with PTE. PTE are shown to interact physically with TonB complex components
ExbB/ExbD and TonB, showing the existence of a unique four-component TonB complex in S. fuliginis [31].
Co-purification of TonB complex components along with PTE and the inability of pte null mutants of
Sphingopyxis wildii to grow in a medium with OP insecticide methyl parathion as a source of phosphate
suggest the involvement of a novel TonB-dependent transport system in transport of OP insecticides.

The sphingomonads survive using a variety of organic compounds as a source of carbon and
energy [14]. They also contain a rather unusually high number of putative TBDTs when compared to
other Gram-negative bacteria surviving in relatively stress-free habitats [32]. Some of these TBDTs
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are induced when they are grown in the presence of these xenobiotic compounds. In Sphingomonas
alaskensis, a threefold increase is noticed in the expression of TBDTs to facilitate transport of nutrients
in increased viscous water [15]. Sphingomonads like Sphongobium sp. BA1, Sphingobium cupriresistence,
and Novosphingobium PPIY can also withstand the stress imposed by metal ions like Ni2+, Cu2+,
and Pb2+, respectively, due to increased expression of TBDTs [16]. Differential expression of TBDTs
was evident in Sphingomonas wittichii RW1 strains grown in the presence of dibenzofuran (DF) and
dibenzo-p-dioxin (DD). The substrate-specific induction pattern of TBDTs suggests the existence of
substrate-specific TonB-dependent transport systems in sphingomonads [33,34]. Supporting this
proposition, the induction of TBDTs involved in transport of alginate was only observed when
Sphingomonas sps. A1 cells were grown on alginate. These TBDTs directly incorporated alginate
molecules into the cytoplasm without degradation [35]. There are 148 TBDTs in Novosphingobium
resinovorans SA1 (Table 2). One of them showed a seven-fold increased expression when the cells were
grown in sulfanilic acid. Such an increase in TBDT amounts is believed to facilitate active transport of
polar sulfanilic acid across the outer membrane [36]. TonB-dependent transport system appears to
be advantageous to bacteria in more than one way. Since they transport large molecules across the
membrane, it helps bacteria to utilize complex substrates as a source of carbon. Further, the existence
of substrate-specific transporters facilitates adaptation of sphingomonads by scavenging nutrients that
occur at a very low concentration.

5. TBDTs of S. fuliginis

The fully annotated genome sequence of S. fuliginis has shown the existence of more than 100
putative TBDT (SfTBDT) coding sequences. Out of these 100, only 75 SfTBDTs have shown the existence
of a 22-stranded β-barrel and N-terminal plug domain, the typical characteristic feature of a TBDT.
A phylogenetic tree was constructed by including these uncharacterized SfTBDTs along with TBDTs
whose function is either experimentally characterized or predicted based on genome context (Figure 2,
Table 1). The phylogenetic tree thus constructed gave 16 TBDT clusters. Of these, only five clusters
(cluster numbers 4, 5, 6, 7, and 8) contained TBDTs with known functions. Interestingly, out of
75 putative SfTBDTs only 14 clustered with these five known groups of TBDT sequences. The genes
coding transporters often coexist with the genes associated with the metabolism of their cognate
substrates. They also contain identical promoters and other regulatory elements to ensure common
expression and repression pattern in response to a physiological condition. Therefore, such genomic
context of a transporter is taken as an indicator of its function [37]. As expected, the genome context of
these 14 TBDTs that clustered with TBDTs of known function supports the results obtained through
phylogenetic tree

However, the rest of the 61 putative SfTBDTs found in 11 clusters (cluster numbers 1, 2, 3, 9, 10, 11,
12, 13, 14, 15, and 16) of the phylogenetic tree showed no similarity with TBDTs of known function.
Transcriptome and proteome analysis was done for certain sphingomonads grown under certain
unique physiological conditions. These omics studies showed substrate specific expression patterns of
TBDTs [14,16,33,34,36,38–40]. About 32 TBDTs showed differential expression in the presence of heavy
metals, xenobiotics, temperature stress, and poor nutrient conditions (Table 1). The phylogenetic tree,
constructed by including the 61 uncharacterized SfTBDTs and the differentially expressed TBDTs of
sphingomonads, gave interesting insights into the functions of SfTBDTs. The SfTBDT (FIL70_RS22795,
FIL70_RS21195, and FIL70_RS 11370) clustered with TBDTs of S. alaskensis (Sala_1228, Sala_3108, and
Sala_0914) involved in the transport of nutrients facilitating its survival under cold stress conditions
(Figure 4). Similarly, the SfTBDTs (FIL70_RS22300, FIL70_RS01135, FIL70_RS18955, FIL70_RS02885, and
FIL70_RS21700) clustered with TBDTs of S. wittichii RW1 (Swit_4781, Swit_4088, Swit_3263, Swit_4696,
and Swit_0277) was predicted to be involved in the transport of dibenzo-p-dioxin (DD). These TBDTs
of S. wittichii were induced in the presence of DD or dibenzofuran (DF). Clustering of SfTBDTs
with the DD/DF responsive TBDT of S. wittichii indicates their role in outer membrane transport
of these xenobiotics. Similarly, some SfTBDTs (FIL70_RS20305, FIL70_RS06825, FIL70_RS06400,
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FIL70_RS07020, FIL70_RS06410, and FIL70_RS14490) clustered with sulfanilic acid-responsive TBDTs
of Novosphingobium resinovorans SA1 (BES08_08830, BES08_18055, BES08_26825, and BES08_18580).
Therefore, these SfTBDTs are implicated in the transport of sulfonated aromatic amines. Gene context
analysis was also carried out for two of the TBDTs (FIL_RS02885 and FIL_RS18955) to examine
if these two methods provide identical insights on the functions of TBDTs (Figure 5). These two
independent strategies followed indicated substrates only for 29 SfTBDTs. Gene context analysis was
performed to provide insight on the functional status of the remaining 46 SfTBDTs (Table 3). Although
experimental evidence is missing to assign a physiological role to a majority of TBDTs, existence of an
unusually high number of TBDTs suggests the presence of robust TonB-dependent transport systems
in sphingomonads. Such unique transport mechanisms, together with a novel catabolic repertoire,
appear to contribute to the survival of sphingomonads in harsh environments (Figure 3).

Figure 2. Phylogenetic tree constructed for SfTBDTs. The SfTBDTs clustered with functionally
characterized TBDT sequences are present in clusters 4, 5, 6, 7, and 8. Dashed lines of clades indicate
experimentally characterized TBDTs. Red lines of the clade indicate uncharacterized TBDTs from
Sphingobium fuliginis. TBDTs involved in transport of iron are highlighted with dark green; thiamin in
yellow; nickel and cobalt in turquoise; cobalamin in orange; copper in grey; colicin in blue; heme in red;
and all carbohydrates in dark pink.
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Table 1. Physiological role of TonB-dependent receptors (TBDTs).

Substrates TBDTs Genomes Evidence References

Iron-siderophore
complex

FauA Bordetella pertussis Ex [41]

FecA Escherichia coli Ex [42]

FepA Escherichia coli Ex [43]

FhuA Escherichia coli Ex [44]

FptA Pseudomonas aeruginosa Ex [45]

FpvA Pseudomonas aeruginosa Ex [46]

FrpB Neisseria meningitidis Ex [47]

FyuA Yersenia pestis Ex [48]

HemR Yersenia enterocolitica Ex [49]

TbpA Neisseria meningitidis Ex [47]

Cobalamins

BtuB Escherichia coli Ex [50]

BPSL0976 Burkholderia pseudomallei Pr [51]

PA1271 Pseudomonas aeruginosa Pr [51]

PA2911 Pseudomonas aeruginosa Pr [51]

RS02718 Ralstonia solanacearum Pr [51]

RSP_2402 Rhodbacter sphaeroides Pr [51]

Sucrose
SuxA Xanthomonas campestris Ex [8]

Sfri_3988 Shewanella frigidimarina Pr [8]

Maltose MalA Caulobacter vibrioides Ex [52]

Chitin

XCC2469 Xanthomonas campestris Pr [53]

XCC2944 Xanthomonas campestris Pr [53]

CPS_1021 Colwellia psychrerythraea Pr [53]

Sden_2708 Shewanella denitrificans Pr [53]

Xylan XCC4120 Xanthomonas campestris Pr [8]
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Table 1. Cont.

Substrates TBDTs Genomes Evidence References

Copper

NosA Pseudomonas stutzeri Pr [54,55]

OprC Pseudomonas aeruginosa Pr [54,55]

NosA Pseudomonas putida Ex [54,55]

OprC Pseudomonas putida Ex [54,55]

Nickel

FrpB4 Helicobacter pylori Ex [13]

Daro_3944 Dechloromonas aromatica Pr [56]

BLL6948 Bradyrhizobium diazoefficiens Pr [56]

IL54_0463 Sphingobium sp. ba1 Tr [16]

IL54_3057 Sphingobium sp. ba1 Tr [16]

Thiamin

BF0615 Bacteroides fragilis Pr [57]

CPS_0067 Colwellia psychrerythraea Pr [57]

Sputw3181_2365 Shewanella Pr [57]

GOX1347 Gluconobacter oxydans Pr [57]

Cobalt Daro_1684 Dechloromonas aromatica Pr [56]

Pectin XCC0120 Xanthomonas campestris Pr [8]

Colicin CirA Escherichia coli Ex [58]

Heme
HasR Serratia marcescens Ex [49]

ShuA Shigella dysenteriae Ex [59]

Sulfanilic acid

BES08_08830 Novosphingobium resinovorans SA1 Tr [36]

BES08_18055 Novosphingobium resinovorans SA1 Tr [36]

BES08_18430 Novosphingobium resinovorans SA1 Tr [36]

BES08_18580 Novosphingobium resinovorans SA1 Tr [36]

BES08_22625 Novosphingobium resinovorans SA1 Tr [36]

BES08_23675 Novosphingobium resinovorans SA1 Tr [36]

BES08_26825 Novosphingobium resinovorans SA1 Tr [36]

Various substrates
under nutrient

limitation

Sala_0027 Sphingopyxis alaskensis RB2256 Tr [14]

Sala_0914 Sphingopyxis alaskensis RB2256 Tr [14]

Sala_1228 Sphingopyxis alaskensis RB2256 Tr [14]

Sala_1913 Sphingopyxis alaskensis RB2256 Tr [38]

Sala_3029 Sphingopyxis alaskensis RB2256 Tr [14]

Sala_3108 Sphingopyxis alaskensis RB2256 Tr [14]

Saro_0168 Novosphingobium aromaticivorans DSM
12444 Tr [14]

Saro_1603 Novosphingobium aromaticivorans DSM
12444 Tr [14]

SKA58_00625 Sphingomonas sp. SKA58 Tr [14]

SKA58_14617 Sphingomonas sp. SKA58 Tr [14]

SKA58_18137 Sphingomonas sp. SKA58 Tr [14]

Dibenzo-p-dioxin

Swit_0277 Sphingomonas wittichii RW1 Tr [33]

Swit_1066 Sphingomonas wittichii RW1 Tr [33]

Swit_3263 Sphingomonas wittichii RW1 Tr [33]

Swit_4088 Sphingomonas wittichii RW1 Tr [33]

Swit_4197 Sphingomonas wittichii RW1 Tr [33]
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Table 1. Cont.

Substrates TBDTs Genomes Evidence References

Dibenzofuran
Swit_0687 Sphingomonas wittichii RW1 Tr [33]

Swit_2477 Sphingomonas wittichii RW1 Tr [33]

Swit_3189 Sphingomonas wittichii RW1 Tr [33]

Swit_3918 Sphingomonas wittichii RW1 Tr [33]

Swit_4025 Sphingomonas wittichii RW1 Tr [33]

Swit_4696 Sphingomonas wittichii RW1 Tr [33]

Swit_4781 Sphingomonas wittichii RW1 Tr [33]

Ex: experimentally validated, Pr: predicted, Tr: transcriptome and proteome analysis.

Table 2. Distribution of TBDTs in sphingomonads.

Name of the Strain Seq ID Genome Size
(kb) Phenotype No. of TBDTs Refs

Sphingomonas wittichii RW1 NC_009511.1 5.38 Dibenzo-p-dioxin 153 [23]

Sphingobium sp. YBL2 NZ_CP010954.1 4.77 Phenylurea 83 [60]

Sphingopyxis sp. MG NZ_CP026381.1 4.15 Organo-phosphate 76 [26]

Sphingobium fuliginis ATCC
27551

NZ_CP041016.1,
NZ_CP041017.1 5.05 Organo-phosphate 102 [25]

Sphingobium indicum B90A NZ_CP013070.1 3.65 Hexachloro-cyclohexane 45 [61]

Sphingobium japonicum
UT26S

NC_014006.1,
NC_014013.1 4.19 Hexachloro-cyclohexane 66 [62]

Novosphingobium sp. PP1Y NC_015580.1 3.9 Fuel oils 48 [63]

Novosphingobium
aromaticivorans DSM 12444 NC_007794.1 3.5 Phenanthrene 55 [64]

Sphingobium sp. SYK-6 NC_015976.1 4.2 Lignin 75 [65]

Sphingobium
chlorophenolicum L-1

NC_015593.1,
NC_015594.1 4.45 Pentachlorophenol 99 [66]

Sphingobium sp. 22B GCA_001580035.1 5.36 Polycyclic aromatic
hydrocarbons (PAH) 85 [67]

Sphingobium sp. AM GCA_001550165.1 5.31 PAH 86 [68]

Sphingobium sp. ba1 GCA_000743655.1 4.45 Growth in high nickel ion
concentration 75 [16]

Novosphingobium
resinovorans SA1 NZ_CP017075.1 6.91 Sulfanilic acid 148 [36]

Sphingopyxis alaskensis
RB2256 NC_008048.1 3.35 Cold marine water 39 [38]

Sphingomonas wittichii DC-6 NZ_CP021181.1 5.92 Dibenzo-p-dioxin 141 [69]

Acinetobacter baumannii AYE CU459141.1 3.96 Multi-drug resistance 06 [70]

Acinetobacter baumannii
DS002 CP027704.1 3.43 Organo-phosphate 05 [32]

Pseudomonas putida strain
JBC17 CP029693.1 6.84 Dichloro-benzene 14 [71]

Table 3. Predicted functions of SfTBDTs using gene context analysis.

TBDTs of S. fuliginis Function Based on Gene Context Analysis

FIL70_RS23660 Amino acid transport and metabolism

FIL70_RS20615 Carbohydrate transport and metabolism

FIL70_RS04685 Amino acid transport and metabolism and inorganic ion transport and metabolism (iron)

FIL70_RS06045 Inorganic ion transport and metabolism (iron)
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Table 3. Cont.

TBDTs of S. fuliginis Function Based on Gene Context Analysis

FIL70_RS14890 Nucleotide transport and metabolism

FIL70_RS23225 Lipid transport and metabolism

FIL70_RS08780 Carbohydrate transport and metabolism (xylan)

FIL70_RS20485 Lipid/carbohydrate transport and metabolism

FIL70_RS23345 Carbohydrate/xylulose/xylan transport and metabolism

FIL70_RS21485 Carbohydrate transport and metabolism

FIL70_RS21415 Amino acid/carbohydrate transport and metabolism

FIL70_RS19055 Inorganic ion transport and metabolism (sulfonate)

FIL70_RS18835 Amino acid transport and metabolism/coenzyme transport and metabolism

FIL70_RS11115 Carbohydrate transport and metabolism

FIL70_RS12850 Amino acid transport and metabolism

FIL70_RS19130 Inorganic ion transport and metabolism (iron)/secondary metabolites biosynthesis, transport,
and catabolism (sulfonate)

FIL70_RS02520 Nucleotide transport and metabolism

FIL70_RS22785 Inorganic ion transport and metabolism (nickel)

FIL70_RS00175 Inorganic ion transport and metabolism

FIL70_RS22500 Cobalamin transport and metabolism and inorganic ion transport and metabolism

FIL70_RS23300 Lipid transport and metabolism, secondary metabolites biosynthesis, transport and
catabolism, inorganic ion transport and metabolism (zinc)

FIL70_RS08535 Lipid transport and metabolism

FIL70_RS12160 Carbohydrate transport and metabolism

FIL70_RS11645 Lipid transport and metabolism

FIL70_RS21180 Lipid transport and metabolism

FIL70_RS21080 Lipid transport and metabolism

FIL70_RS04130 Benzoate transport

FIL70_RS00710 Inorganic ion transport and metabolism and flavin transport and metabolism

FIL70_RS20730 Coenzyme transport and metabolism (flavin transport and metabolism)

FIL70_RS20690 Coenzyme transport and metabolism (flavin transport and metabolism)

FIL70_RS20805 Flavin/secondary metabolite transport and metabolism

FIL70_RS12115 Coenzyme transport and metabolism/secondary metabolite transport and metabolism

FIL70_RS23235 Inorganic ion transport and metabolism

FIL70_RS21680 Lipid transport and metabolism

FIL70_RS03790 Lipid transport and metabolism

FIL70_RS12075 Lipid transport and metabolism

FIL70_RS11540 Lipid transport and metabolism

FIL70_RS08565 Carbohydrate transport and metabolism

FIL70_RS08525 Carbohydrate transport and metabolism

FIL70_RS21930 Lipid transport and metabolism

FIL70_RS22035 Lipid transport and metabolism

FIL70_RS23200 Carbohydrate transport and metabolism

FIL70_RS20020 Inorganic ion transport and metabolism/secondary metabolites biosynthesis, transport, and
catabolism

FIL70_RS08430 Coenzyme transport and metabolism/lipid transport and metabolism

FIL70_RS18910 Inorganic ion transport and metabolism

FIL70_RS19370 Lipid transport and metabolism
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