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Millions of microorganisms inhabit the human body and affect its homeostasis in multiple ways. 
Alterations in this microbial community have implications for the health and survival of the human 
hosts. It is believed that these microorganisms should be included as part of the human genome because 
of their influence on human physiology hence the term “microbiome” is commonly used to refer to 
these microbes along with their genetic make-up and their environmental interactions. In this article 
we attempt to provide an insight into this recently discovered vital organ of the human body which is 
yet to be fully explored. We herein discuss the composition and role of microbiome in human health and 
disease with a special emphasis in children and culture-independent techniques employed in mapping 
of the microbiome. Alteration in the gut microbiome has been associated with causation of several 
paediatric diseases like infantile colic, necrotizing enterocolitis, asthma, atopy, obesity, type -1 diabetes, 
and autism. Atopic dermatitis and psoriasis have also been associated with changes in the cutaneous 
microbiome. Respiratory microbial imbalances during infancy have been linked with wheezing and 
bronchial asthma. Dysbiosis in the regional microbiome has been linked with caries, periodontitis, and 
chronic rhinosinusitis. The future therapeutic implications of this rapidly evolving area of research are 
also highlighted.
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Introduction

 Humans inhabit a whole community of 
microorganisms in and on their body1. Almost 100 
trillion symbiotic microbes inhabit a single human 
body which is almost 10 times the number of cells 
present in an adult human. It amounts to almost 1-3 
per cent of the body weight2. The term “microbiome” 
was first used by Joshua Lederberg3 for “the ecological 
community of commensal, symbiotic, and pathogenic 
microorganisms that literally share the human body”. 
He suggested that these microorganisms should be 

included as part of the human genome because of 
their influence on human physiology. Research in 
the field of metagenomics suggests that the brigade 
of microorganisms living in close proximity, both 
in and on, human beings is indispensible for human 
survival. This has led to the hypothesis that the human 
being must be regarded as a super-organism in whom 
symbiotic microorganisms perform multiple tasks 
ranging from digestion of food to angiogenesis4,5. The 
disruption in this flora is associated with many disease 
conditions ranging from diarrhoea to neoplasia. 



Basic terminology

 The more commonly used term ‘microflora’ or 
microbial ‘flora’ is actually a misnomer as it technically 
means the plant or vegetable microbial community 
of a region. Recently, the term ‘micobiota’ has 
become prevalent which literally means all the living 
organisms of a region. Considering the fact that these 
organisms are an integral part of the human genetic 
landscape, the term ‘microbiome’ seems to be best 
suited as it symbolises all the microorganisms along 
with their genetic make-up as well as their interactions 
in a particular environment3. Conventionally, the major 
part of the research relevant to human microbiome has 
focussed on identification and study of the inhabiting 
bacteria, however, there also exists a ‘virome’ i.e. 
the viruses inhabiting the body, that are probably as 
important6. ‘Phylotypes’ or ‘operational taxonomic 
units’ (OTUs) are a group of microbes generally defined 
by the level of sequence similarity (percentage) between 
the 16S rRNA genes (e.g. ≥ 98% for a ‘species’-level 
phylotype)7.

 The recent advent in the knowledge of human 
microbiome is undoubtedly attributed to the preceding 
advances in the field of metagenomics. ‘Metagenomics’ 
is the science of directly analysing the genome (the 
complete set of DNA present in a single cell) contained 
in an environmental sample8. Metagenomics has opened 
up the avenues for obtaining the genetic information on 
potential biocatalysts, genomic links between function 
and phylogeny along with the evolutionary profile 
of the microbial community8. Three closely related 
fields that are coming up are ‘metatranscriptomics’ i.e. 
the study of the transcriptomes (reverse-transcribed 
RNA transcripts) of a group of interacting microbes9, 
‘metaproteomics’ i.e. the study of the entire protein 
complement of the microbial community10 and 
‘metabolomics’ i.e. the study of small-molecule 
metabolites of the microorganisms11. 

 Studies carried out in ‘germ-free animals’ i.e., 
the ones born and reared in sterile environments free 
of any microbiota have provided useful insight into 
the complex interactions taking place between the 
microbiome and its host12. Likewise, ‘gnotobiotic 
systems’ have been developed to get animals with 
desired microbiome by transferring or synthetically 
implanting the desired microbes from another host into 
the germ-free animals13. Researchers have developed 
gnotobiotic systems with humanized microbiota to 
evaluate the effects of controlled interventions14.

Mapping the microbiome

 The foundation of present day microbiology was 
laid down in the nineteenth century after Robert Koch 
developed the technique of selectively growing and 
isolating bacteria in culture medium. Until recently 
we were dependent on the conventional methods of 
‘cultivating’ bacterial ‘pure cultures’ for isolating 
the microorganisms in a sample and then depending 
on growth on a particular type of medium, colony 
morphology and consumption or production of a 
particular metabolite to finally identify it. But the 
observation that only a few of the microbes out of the 
many visualised microscopically could be isolated 
by culture prompted scientists to develop the newer 
‘culture-independent’ techniques to recognise these 
yet unidentified microbes15. Escherichia coli that was 
considered as the major component of gut microbiota 
actually constitutes much less than 1 per cent of gut 
bacteria, but as it grows easily in culture, it can be 
detected even at low abundance16. It is estimated that 
almost 20-60 per cent of our microbiome, depending 
on the region of the body, cannot be cultured by the 
conventional methods17. 

 The prokaryotic cell contains 16S RNA gene 
in its ribosome that has about 1500 nucleotide; it 
is highly conserved between different species of 
bacteria but has several hypervariable regions that 
can allow identification at genus or species level13. 
Sequence analysis of 16S rRNA gene is thus utilised 
in many phylogenetic studies to simultaneously 
amplify the genetic regions of clusters of diverse 
bacteria by PCR. Initial DNA sequencing techniques 
were based on tedious fingerprinting methods for 
the separation of 16S RNA like denaturing gradient 
gel electrophoresis (DGGE) and restriction fragment 
length polymorphism (RFLP)12. Sanger technique 
which was developed in 1977 was used for more 
than two decades for sequencing of the amplified and 
cloned 16S RNA. It was based on the classical chain 
termination methods which could be used only on 
short strands (100-1000 base pairs). Cloning longer 
DNA strands became possible with the advent of Shot-
gun sequencing by which longer sequences could be 
subdivided into smaller fragments, and subsequently 
re-assembled to give the overall sequence18. With 
the recent technological explosion, many low-cost, 
high-throughput sequencing technologies have been 
developed that parallelize the sequencing process 
and can produce millions of sequences concurrently. 
These ‘highly-parallelized’ or ‘next-generation’ 
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sequencing techniques like 454 Pyrosequencing, 
Sequencing by Synthesis (Illumina) And Sequencing 
by Ligation (SOLiD) are much more accurate and 
less time consuming19. Whole-Genome Shotgun 
(WGS) metagenomic sequencing has emerged as an 
important strategy enabling scientists to analyze the 
DNA extracted directly from a sample and evaluate not 
only its composition (taxonomic diversity), but also the 
metabolic tasks (functional metagenomics) performed 
by the microbial community12,13. The sequenced clones 
are utilised for the purpose of identification by finding 
the closest match in the existing gene database bank 
if available; and the novel sequences are added to the 
database to facilitate future research.

 Virus identification is a relatively tougher task as 
the viruses lack this 16S RNA gene. Probably that is the 
reason why the researchers believe that virome research 
has lagged much behind than that has occurred for their 
bacterial counterparts6. But with the advent of shotgun 
sequencing that enables deciphering each and every 
sequence of DNA in the sample, viral metagenomics is 
being utilised to discover the role of human virome in 
health and disease20,21.

 The task of mapping the human microbiome has 
been taken up by scientists around the world through 
large scale projects like Human Microbiome Project 
(HMP) and Metagenomics of the Human Intestinal 
Tract (MetaHIT). The United States National Institutes 
of Health (NIH) launched the HMP in 2008 with the 
goal of characterizing healthy human microbiome 
using the culture-independent methods, to determine 
whether perturbations in the microbiome affect health/
disease status, to provide a standardized data resource 
and new technological approaches to enable further 
research, and to evaluate the ethical, legal, and social 
implications of the same17. The European Commission 
initiated the MetaHIT in 2008 to decipher the intestinal 
metagenome and analyze their association with human 
phenotypes22. These projects have helped scientists to 
discover an enormous database comprising thousands 
of taxonomic profiles that constitute more than trillion 
bytes of data of metagenomic sequences22,23. 

Composition and biodiversity of healthy human 
microbiome

 The human body is home for taxonomically diverse 
classes of friendly microbes ranging from eukaryotes, 
archaea, bacteria and even viruses23. The gastrointestinal 
tract is the largest reservoir of commensals in the body 
and hence has been studied most extensively12,14,24-27. 

Other sites which have been sampled and analysed 
include skin, oral cavity, nasal cavity, lower respiratory 
tract, and vagina. Costello et al26 in their study of 
multiple body sites were able to detect members of 22 
bacterial phyla, of which > 90 per cent was contributed 
by four predominant phyla, viz., Actinobacteria 
(36.6%), Firmicutes (34.3%), Proteobacteria (11.9%), 
and Bacteroidetes (9.5%)26,28- 30. Though the number of 
phyla is limited, the biodiversity increases at the level 
of class, family, genus and becomes enormous at the 
level of species24. Each body habitat is dominated by 
certain signature microbes like Propionibacterium on 
the skin and Lactobacillus in the vagina17,31,32. 

 Bacteroidetes and Firmicutes are the predominant 
phyla inhabiting the gut amounting to more than 95 per 
cent of the adult gut microbiome25-27,30. Family members 
share more similar gut microbiome as compared to 
unrelated individuals7,33. Each adult individual has 
a unique microbiome whose composition tends to 
remain stable over a period of time33. Neonates are 
born with an almost sterile gastrointestinal tract. 
Environmental exposures during infancy lead to 
dense colonization of the gut that is highly variable 
over time but by the end of infancy the microbiome 
converges to resemble almost like an adult33. The 
amount and variety of microorganisms inhabiting the 
gut during this time have a significant impact on the 
development of a person’s immune system with life-
long consequences34. Multiple factors affect the timing 
and composition of this ecosystem in the neonatal 
gut. Penders et al35 observed that infants delivered by 
caesarean section had lower colonization rates and 
counts of bifidobacteria and Bacteroides fragilis but 
higher prevalence and counts of Clostridium difficile 
and E. coli. Breastfed infants at the age of one month 
were predominantly colonized with bifidobacteria 
whereas formula-fed infants were colonized with 
E. coli, C. difficile, B. fragilis, and lactobacilli. 
Hospitalization and prematurity were associated with 
higher rates of colonization with C. difficile. Use of oral 
antibiotic decreased the levels of obligate anaerobes 
like bifidobacteria and Bacteroides. Infants having 
an older sibling demonstrated higher bifidobacterial 
counts. They concluded that term infants, delivered 
vaginally at home and exclusively breastfed have the 
most beneficial gut microbial composition, i.e. having 
large number of bifidobacteria and less of C. difficile 
and E. coli35. Antibiotics are known to inhibit the 
healthy microbiota allowing pathogenic microbes like 
C. difficile to proliferate. Antibiotic exposure, direct as 
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well as indirectly through breast milk in neonates has 
been shown to result in significant alterations in the gut 
microbiome that may last for days to months35,36.

 The predominant phyla present on the skin 
are Actinobacteria, Firmicutes, and Proteobacteria 
whereas Bacteroidetes which is predominant in the gut 
is a minor component of the skin37,38. In comparison to 
adults, infant skin shows Firmicutes predominance39. 
Akin to gut microbiome, the cutaneous microbiome also 
evolves during infancy with staphylococci dominance 
during the initial period giving way to a more diverse 
ecosystem by the end of the first year39. Skin is an 
indispensible physical and immune barrier for humans 
hence its early microbial colonization is an important 
determinant of body’s defence against pathogens. The 
microbial composition of infants as well as adults is 
highly variable but site specific depending upon local 
anatomy, lipid content, pH, sweat, and sebum secretion 
at the site40. This could be the underlying reason as to 
why certain diseases of the skin that have been linked 
with microbial causation have predilection for specific 
skin sites like acne, atopic dermatitis, psoriasis and 
seborrhoeic dermatitis40. 

 Majority of the bacteria sampled at the nostrils 
belong to Firmicutes and Actinobacteria; but 
Proteobacteria are very few unlike the skin elsewhere41. 
Oropharynx is known to inhabit microbes belonging 
to Firmicutes, Proteobacteria, and Bacteroidetes41. Till 
date, very few researchers have been able to characterize 
the healthy lower respiratory tract microbiome as 
obtaining pure lung derived samples not contaminated 
by upper airway microbes is a relatively difficult task. 
Charlson et al42 have observed that the lung microbiome 
is similar in composition to upper respiratory tract but 
has a lesser biomass and hypothesised that it probably 
originates by micro-aspiration from upper airways. 
Pyrosequencing techniques have established that the 
female genital microbiome is dominated by lactobacilli 
that belong to phylum Firmicutes32.

 It is not only the taxonomic composition, but also 
the taxonomic diversity that has been implicated in 
causation of several diseases. Two parameters that 
are routinely employed for this purpose are alpha 
diversity, i.e. how many kinds of taxa or lineages are 
within a sample and beta diversity, i.e. how many 
kinds of taxa or lineages are shared among samples 
from same habitat among different subjects43. Data 
from NIH-HMP demonstrated that saliva had the 
maximum variety of bacteria (highest alpha diversity) 
but different individuals had similar microorganisms 
(lowest beta diversity) in their saliva43. On the other 

hand, skin microbiome showed intermediate alpha 
diversity but highest beta diversity, whereas vaginal 
samples demonstrated the lowest alpha as well as beta 
diversity at the genus level. Temporal analysis has 
revealed that each adult harbours a unique microbiome 
that stays more or less stable over time as compared to 
the population as a whole both in terms of microbial 
composition as well as metabolic functions43.

 Studies evaluating the metagenomics have proved 
that in spite of variations in the taxonomic profile, the 
metabolic functions carried out by the microbiome of 
a particular body site were similar among different 
individuals. This has prompted scientists to hypothesise 
about the possible existence of a ‘Core Microbiome’ 
that might be sharing a set of genes and/or metabolic 
capabilities7. Tap and colleagues30 observed that 
inspite of presence of a large number of species in the 
gut a limited number of OTUs were shared amongst 
many individuals and hence these might represent the 
phylogenetic core of human gut microbiome. Recently, 
Li and colleagues44 attempted to characterize the core 
microbiome of different body habitats using two 
parameters viz. ubiquity and abundance. These have 
been represented in the Figure.

Microbiome and diseases of childhood

 Gut microbiome plays a vital role in several body 
functions like nutrient processing and assimilation; 
defence against pathogenic microbes; and even 
stimulation of angiogenesis4,5,45,46. Alteration in this 
ecosystem has been associated with causation of several 
diseases of the gut in children, like infantile colic 
and necrotizing enterocolitis (NEC)47-51. Imbalances 
in intestinal microbiome have been implicated in 
causation of many non-gastrointestinal disorders as 
well, like asthma, atopy, obesity, type -1 diabetes, and 
autism as depicted in the Table7,27,47-64. 

 Several skin disorders like atopic dermatitis and 
psoriasis have been associated with changes in the 
local cutaneous microbiome57-59. Similarly alterations 
in respiratory microbiome during infancy have been 
linked with wheezing as well as future development of 
bronchial asthma60,61. Researchers have demonstrated 
the role of altered microbiome in many oronasal 
diseases like caries, periodontitis, and chronic 
rhinosinusitis62-64. 

Virome 

 Majority of the viruses that inhabit humans are the 
bacteriophages, i.e. viruses that infect bacteria. Hence 
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Figure. Representation of the core taxa at different human microbial habitats.
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the human virome apart from influencing the cellular 
processes directly could be acting indirectly by altering 
the symbiotic bacterial functioning, composition, or 
abundance6. Lysholm et al21 analysed the respiratory 
secretions of children with severe lower respiratory tract 
infection by metagenomic sequencing and observed 
that three of the RNA virus families were responsible 
for more than 90 per cent of these infections. These 
were Paramyxoviridae - human respiratory syncytial 
virus (hRSV), human metapneumovirus (hMPV) and 
human parainfluenza virus (hPIV); Orthomyxoviridae 
- influenza virus; and Picornaviridae - human 
rhinovirus (HRV)21. It has been observed that viruses 
that may be non-pathogenic otherwise, interact with 
various susceptibility genes in predisposed individuals 
and result in diseases like Crohn’s disease, type-I 
diabetes and bronchial asthma which would not have 
manifested if either the susceptibility allele or the virus 
was absent65,66. On the other hand, certain pathogenic 
viruses like herpes viruses tend to adapt to the host 
body causing lifelong infection, are at times considered 
a part of the human virome67. EBV and other herpes 
viruses have been implicated in causation of allergic 
and atopic diseases like asthma and eczema by 
immunomodulatory mechanisms67. Wylie et al68 carried 

out sequence analysis of the human virome in nasal 
swabs from febrile and afebrile children and observed 
that children with unexplained fevers had more viruses 
than healthy kids hinting towards a viral aetiology. 
This knowledge could be utilized in developing tests 
that would help in rapid identification of the virus and 
thus avoid unnecessary antibiotic usage.

Microbiome research in children in the Indian 
context

 Very few paediatric studies have been carried out in 
India to evaluate the role of microbiome in health and 
disease. A study from Pune observed that the intestinal 
flora of infants born by caesarean section was more 
diverse as compared to infants delivered vaginally69. 
The most abundant bacterial species present in 
vaginally delivered infants were Acinetobacter spp., 
Bifidobacterium spp. and Staphylococcus spp. whereas 
caesarean delivered infants’ faecal microbiota was 
dominated by Citrobacter spp., E. coli and C. difficile 
but lacked in Bifidobacterium spp. In another study 
published from Vellore, it was observed that one 
species of Bifidobacterium i.e. B. longum subspecies 
infantis colonized and predominated the neonatal 
gut70. They also observed that asymptomatic rotavirus 
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Table. Paediatric diseases implicated to result from dysbiosis in human microbiome

Regional microbiome Disease Authors Observations

Gastrointestinal system Infantile colic de Weerth et al47 Microbial flora of infants with colic had significantly 
lower diversity with predominance of Proteobacteria 
and significantly reduced number of Bifidobacteria and 
lactobacilli as compared to controls.

Necrotizing 
enterocolitis 
(NEC)

Fell48

de la Cochetiere 
et al49 
Mai et al50

Abnormal gut microbial patterns have been observed in 
neonates with NEC in all these studies.

Azcarate-Peril  
et al51

Study in preterm piglets has demonstrated an important role 
of Clostridium spp., and members of the Actinobacteria and 
Cyanobacteria in the pathogenesis of NEC.

Bronchial asthma Azad and 
Kozyrskyij52

Studies have linked factors like caesarean delivery, 
breastfeeding, perinatal stress, probiotics, and antibiotics, 
which influence intestinal microbial evolution during 
infancy, with the development of bronchial asthma in 
childhood suggesting an important role of gut microbiome in 
perinatal programming of asthma.

Atopy Candela et al53 Gut microbiome of atopic children was found to have 
a decreased number of immunomodulatory bacteria of 
Clostridium cluster IV, Faecalibacterium prausnitzii, and 
Akkermansia muciniphila along with a relative increase in 
the members of Enterobacteriaceae.

Obesity Turnbaugh and 
colleagues7,27,54

The relative proportion of Bacteroidetes to Firmicutes was 
seen to be decreased in obese people in comparison to 
lean subjects and it has been hypothesized that this obese 
microbiome has an increased capacity to harvest energy 
from the diet.

Diabetes Giongo et al55 Studied the role of gut microbiome in development of 
autoimmunity underlying type-1 diabetes mellitus (TIDM) 
in genetically predisposed young children and observed that 
their bacterial biodiversity decreased with time as compared 
to controls. They also observed the predominance of a single 
species, Bacteroides ovatus that might serve as a tool for 
early diagnosis of T1DM in future. 

Autism Louis56 Several researchers have linked alterations in gut 
microbiome with autistic spectrum disorders but there is 
disparity in the various results with a lack of a particular 
trend in microbial composition.

Skin Atopic dermatitis Kong et al57 Increase in Staphylococcus aureus and S. epidermidis is 
observed during disease flares; whereas following therapy 
there occurs increase in Streptococcus, Propionibacterium, 
and Corynebacterium species.

Dekio et al58 Observed the presence of several microbial species on skin 
of atopic subjects that were not previously linked with 
atopic dermatitis. Stenotrophomonas maltophilia was the 
predominant species in this study.

Psoriasis Gao et al59 A significant increase in Firmicutes along with a reduction in 
Proteobacteria and Actinobacteria was observed.

Contd...
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Regional microbiome Disease Authors Observations

Respiratory System Wheezing, 
bronchial asthma

Bisgaard et al60 This longitudinal study observed that asymptomatic neonates 
whose upper airways were found to be colonized with 
S. pneumoniae, Haemophilus influenzae, or Moraxella 
catarrhalis showed higher susceptibility to develop recurrent 
wheezing and asthma during childhood.

Hilty et al61 Molecular analysis of 16S RNA derived from respiratory 
secretions of asthmatic subjects demonstrated the 
predominance of members of the phylum Proteobacteria which 
include pathogens Haemophilus, Moraxella and Neisseria 
spp. with relatively lesser predominance of Bacteroidetes 
(particularly Prevotella spp.) as compared to controls.

Oral cavity Dental caries Luo et al62 Alteration in salivary flora is associated with dental caries in 
children with a higher biodiversity observed in patients.

Periodontitis Hajishengallis  
et al63

Porphyromonas gingivalis which is a low-abundance oral 
anaerobic bacterium has been observed to cause periodontitis 
by disturbing the local microbial homeostasis. 

Nasal cavity Rhinosinusitis Abreu et al64 Patients with chronic rhinosinusitis were seen to have a 
significantly reduced bacterial diversity with a relative 
reduction in lactobacilli and predominance of a single 
species Corynebacterium tuberculostearicum, in 
comparison to healthy controls. The pathogenic role of C. 
tuberculostearicum and the protective role of Lactobacillus 
sakei was also confirmed in a murine model.

infection in neonates did not alter the development of 
the intestinal microbiota in terms of bifidobacterial 
diversity or colonization.

Future implications 

 The observed gut microbiome dysbiosis in 
diseases like gastroenteritis, necrotizing enterocolitis, 
inflammatory bowel disease, malabsorption, obesity 
and atopy can open up the avenues for prevention and 
management of these diseases by several ways. Animal 
studies have demonstrated that many gut bacteria 
produce immunomodulatory, anti-inflammatory, 
and growth promoting molecules71-73. These 
microorganisms also produce antibacterial substances 
like bacteriocin and lacticin that inhibit the growth of 
pathogens like C. difficile74,75. Further characterization 
of human microbiome might help to utilize these 
bacterial derivatives as therapeutic agents to control 
various disease states. The term “pharmabiotic” has 
thus been used to denote any material that has been 
obtained from the intestinal microbiome and can be 
utilized for health promotion, be it a molecular by- 
product or a microorganism itself.

 Microbiological modification of gut microbiome 
in a desired manner can be attempted by means of 

administering various prebiotics and probiotics, 
separately or in combination as synbiotics. These 
“functional food ingredients” are being utilized to enrich 
the gut microbiome with bacteria like Bifidobacterium 
and Lactobacillus that are believed to be health 
promoting76. The role of prebiotics and probiotics has 
been well established in acute gastroenteritis as well 
as antibiotic associated diarrhoea. In a meta-analysis 
by Deshpande et al77, it was observed that probiotic 
supplementation in preterm neonates not only reduced 
the risk of necrotizing enterocolitis but also the risk 
of mortality. Similarly in a meta-analysis by Brenner 
et al78, probiotic usage in patients of irritable bowel 
syndrome has been found to be efficacious.

 Faecal microbiota transplantation (FMT) has been 
tried by occasional researchers in the last century also 
as a therapeutic intervention for antibiotic associated 
diarrhoea caused by C. difficile. A systematic review 
found out its efficacy to the tune of 92 per cent but 
further research is required to standardize the procedure; 
evaluate its safety and suitability before it is approved 
as a treatment modality by the regulatory agencies79,80.

 de Weerth et al47 in their study on infants with 
colic, observed the consistent presence of a few 
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Proteobacteria linked to Escherichia, Klebsiella, 
Serratia, Vibrio, Yersinia, and Pseudomonas with the 
colic phenotype. Saulnier et al81 have been able to link 
specific “signature” microbes with several diseases 
like irritable bowel syndrome. These disease specific 
signature phylotypes might serve to devise diagnostic 
as well as therapeutic strategies in the future.

 Recent advances in pharmacogenomics that focus 
on the role of genetics in an individual’s response to 
a drug have prompted researchers to explore other 
environmental influences that affect drug metabolism. 
Gut microbiome is one such important determinant. 
Personalized drug therapy to improve efficacy and 
reduce adverse effects might become feasible with 
an approach utilizing pre-dose metabolite profiling to 
predict an individual’s response to a drug. This novel 
approach has been termed as pharmaco-metabonomic 
approach82. 

 The ultimate objective of the microbiome research 
is to utilize this knowledge to predict the risk of disease 
development, develop newer techniques to diagnose 
related diseases and evolve therapeutic approaches for 
manipulation of the human microbiome for betterment 
of mankind.
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