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Abstract: Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered
method of immunotherapy for cancer. The patient’s T-cells are modified to express a specific receptor
that sticks to the tumor antigen. This modified cell is then reintroduced into the patient’s body to fight
the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy
is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy
in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge,
challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles
were included in this review. Eligible studies were selected and reviewed by two researchers from
49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment,
provides modest benefits in solid tumors. Not taking into consideration the high manufacturing
and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor
microenvironment for CAR T-cell therapy in colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancers in 2019 and ranks second for
global cancer-related deaths [1]. The prognostic for advanced and metastatic disease is still modest.
Approximately one-third of patients are diagnosed with metastatic disease [2]. The median overall
survival (OS) with metastasis is about 30 months [3]. Chemotherapy combinations can prevent
metastasis and improve OS in first-line treatment of CRC patients [4–6]. Despite having multiple lines
of treatment for metastatic disease, OS remains low and decreases substantially with time. The addition
of targeted therapies achieved a better clinical outcome for these patients. Fluoropyrimidinedoublet
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(FOLFOX/CAPOX or FOLFIRI/CAPIRI) associated with biologic agents targeting the epidermal growth
factor receptor (EGFR) for RAS wild-type tumors or angiogenesis (VEGF) represent the backbone of
first and second-line treatment schedule. Targeted therapies such as cetuximab and panitumumab for
RAS wild-type patients or antiangiogenic drugs like bevacizumaborziv-afliberceptare the mainstay of
metastatic colorectal treatment [7]. The real struggle for clinicians is to find the right balance between
standard chemotherapy and new options. Finding the correct management with limited toxicities and
increased quality of life and OS is the goal.

A more accurate understanding of the interaction between the immune system and tumor cells
has changed therapeutic guidelines by developing new drugs. Immunotherapy with anti-PD-1 mAbs
(monoclonal antibodies) pembrolizumab and nivolumab, and anti-CTLA-4 mAbs like ipilimumab
have shown promising results in metastatic CRC [8] and are US Food and Drug Administration
(FDA) approved for microsatellite instability-high (MSI-H) CRC [9]. The combination of nivolumab
and ipilimumab also seems to improve OS and progression-free survival (PFS) in MSI-H metastatic
CRC patients and has an acceptable safety profile [10]. Immunotherapy seems to be less effective in
CRC compared with other tumor localizations, especially in the mismatch repair (MMR) proficient
phenotype and microsatellite stable (MSS) profile [11].

Even after current treatment strategies with chemotherapy, targeted therapies, and immunotherapies,
CRC patients develop recurrent disease [12]. Scientists are trying to develop stratification methods and
novel treatments for CRC patients. In addition to ongoing clinical trials [9] there are new experimental
options. Research in miRNAs [13] and exosomal miRNAs [14] has been promising in the last few years in
CRC research. Regarding a CRC vaccination [15], the need for individualization and organized vaccination
strategies are still a working process.

Chimeric antigen receptor (CAR) T-cell immunotherapy has become more popular in the last
decade in the war against cancer. CARs are laboratory made immune-receptors that modify lymphocytes
to target and eliminate cells that express a specific antigen on their surface. T-cells harvested from
the patient’s own blood (autologous) or healthy donor’s blood (allogeneic) are genetically engineered
to express a specific CAR. For safety reasons, CAR T-cells are conceived to target a specific antigen
for the tumor cell and not the normal cell [16]. We investigated the role of CAR T-cells in CRC.
We briefly present the main mechanism of action of CAR T-cells, toxicities and administration problems,
and implications for other solid tumors. In this review, we focus on literature data to understand
if CAR T-cell therapy has a place in the therapeutic sequences of CRC. Data that we present herein
confirms that CAR T-cell therapy is a viable method for CRC treatment with the right antigen selection
and a combinatorial therapeutic approach.

2. Search Criteria

Pubmed, Web of Science, and clinicaltrials.gov were searched with the MeSH terms and keywords
chimeric antigen receptor T-cell and colorectal cancer. All the studies that matched were included
through August 2019. By reviewing the titles and abstracts, the preliminary screening process identified
49 possible relevant publications. Two separate researchers double-checked the studies included in
this review. After eliminating duplicates, other topic articles, non-research work, non-English written
papers, and uncompleted reports, 22 articles were found to be relevant to CAR T-cell therapy in CRC.

3. Overview and Mechanism of Action of CAR T-Cells

Although CAR T-cell technology was described more than twenty years ago by Gross and
colleagues [17], clinical implementation came rather recently. The main interest of CAR T-cell
research was to find an active function of T lymphocytes targeting and destroying cancer cells [18].
In recent years, CAR T-cell therapy has come a long way as a personalized immunotherapy option.
CAR T-cell therapy trials have achieved long term remissions and complete responses in cancer
patients [19]. The process of CAR T-cell therapy is shown in Figure 1.
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Figure 1. Overview of chimeric antigen receptor (CAR) T-cell therapy. Process of extracting normal 
T-cells from the patient’s peripheral blood; integration of CARs in T-cells in the laboratory; in vitro 
cultivation and expansion of CAR T-cells that are re-infused into the patient’s bloodstream; CAR T-
cells proliferate and kill the tumor cells that bear the specific antigen the CARs are directed against. 

CAR T-cell therapy manipulates the immune system by collecting and using immune cells to 
treat cancer. The T-cell is genetically engineered to express special chimeric immunoreceptors (CARs) 
that give T-cells the ability to target a specific protein. For example, CD19 CAR T-cells are designed 
to develop CARs against CD19 antigen has a role both in lymphoma and leukemia [20]. Unlike the 
classical T-cell receptor design that has dual intracellular alpha and beta chains linked with a CD3 
complex and associates with the major histocompatibility complex, the CAR design also has an 
extracellular domain consisting of a single-chain variable fragment (scFv) and does not need the 
MHC to target specific tumor antigens [21].  

CAR T-cell therapy is a personalized immunotherapy method that has to follow certain steps to 
be used in the clinic. After the patient’s immune cells are engineered in vitro, they must be re-infused 
to complete the process. More descriptively, the whole process consists of the extraction of normal T-
cells from the peripheral blood of the patient by leukapheresis, and then CARs are integrated into the 
T-cells in the laboratory. Afterward follows an in vitro process of cultivation and expansion of the 
CAR T-cells. The final actions consist of the reinfusion of the final product of CAR T-cells back into 
the patient and the close monitoring for acute side effects [22]. After reinfusion, the engineered CAR 
T-cells proliferate and start a killing spree directed towards the tumor cells that bear the specific 
antigen the CARs are directed against [23]. To optimize efficacy and to minimize toxicities, current 
protocols suggest conditioning chemotherapy [24]. 

Considering their structure and production, we are currently in the fourth evolving generation 
of CAR T-cells. The first generation expressed only the CD3ζ molecule for signaling and was 
unsuccessful in clinical trials [25]. The second and the third generation had co-stimulatory molecules 
like CD28, 4-1BB, OX40, or CD27 in addition to CD3ζ to boost cytokines. The fourth generation of 
CAR T-cells is being designed to overcome the inhibitory effect of the tumoral microenvironment. 
Having the additional property of secreting cytokines like IL-2 and IL-12, it seems to have a better 
outcome in solid tumors [26]. 

There isan increasing number of clinical trials involving CAR T-cell therapy for breast, colorectal, 
prostate, and renal cancer [27]. Despite the high interest in this treatment, a significant limitation 
remains accessibility and cost. In 2017, the FDA approved CAR T-cell therapy for several 
hematological malignancies. Axicabtageneciloleucel (Yescarta) [28] was approved for diffuse large B-
cell lymphoma in the context of refractory or relapsed disease. It was also approved in the context of 
high grade or mediastinal large B-cell lymphoma. Tisagenlecleucel (Kymriah) [29], a CD19 directed 
4-1BB/CD3ζ CAR T-cell therapy, was approved rapidly for refractory and relapsed acute 
lymphoblastic leukemia for children and young adults. Later it was also approved for diffuse large 

Figure 1. Overview of chimeric antigen receptor (CAR) T-cell therapy. Process of extracting normal
T-cells from the patient’s peripheral blood; integration of CARs in T-cells in the laboratory; in vitro
cultivation and expansion of CAR T-cells that are re-infused into the patient’s bloodstream; CAR T-cells
proliferate and kill the tumor cells that bear the specific antigen the CARs are directed against.

CAR T-cell therapy manipulates the immune system by collecting and using immune cells
to treat cancer. The T-cell is genetically engineered to express special chimeric immunoreceptors
(CARs) that give T-cells the ability to target a specific protein. For example, CD19 CAR T-cells are
designed to develop CARs against CD19 antigen has a role both in lymphoma and leukemia [20].
Unlike the classical T-cell receptor design that has dual intracellular alpha and beta chains linked with
a CD3 complex and associates with the major histocompatibility complex, the CAR design also has an
extracellular domain consisting of a single-chain variable fragment (scFv) and does not need the MHC
to target specific tumor antigens [21].

CAR T-cell therapy is a personalized immunotherapy method that has to follow certain steps to
be used in the clinic. After the patient’s immune cells are engineered in vitro, they must be re-infused
to complete the process. More descriptively, the whole process consists of the extraction of normal
T-cells from the peripheral blood of the patient by leukapheresis, and then CARs are integrated into
the T-cells in the laboratory. Afterward follows an in vitro process of cultivation and expansion of
the CAR T-cells. The final actions consist of the reinfusion of the final product of CAR T-cells back
into the patient and the close monitoring for acute side effects [22]. After reinfusion, the engineered
CAR T-cells proliferate and start a killing spree directed towards the tumor cells that bear the specific
antigen the CARs are directed against [23]. To optimize efficacy and to minimize toxicities, current
protocols suggest conditioning chemotherapy [24].

Considering their structure and production, we are currently in the fourth evolving generation of
CAR T-cells. The first generation expressed only the CD3ζmolecule for signaling and was unsuccessful
in clinical trials [25]. The second and the third generation had co-stimulatory molecules like CD28,
4-1BB, OX40, or CD27 in addition to CD3ζ to boost cytokines. The fourth generation of CAR T-cells
is being designed to overcome the inhibitory effect of the tumoral microenvironment. Having the
additional property of secreting cytokines like IL-2 and IL-12, it seems to have a better outcome in
solid tumors [26].

There isan increasing number of clinical trials involving CAR T-cell therapy for breast, colorectal,
prostate, and renal cancer [27]. Despite the high interest in this treatment, a significant limitation
remains accessibility and cost. In 2017, the FDA approved CAR T-cell therapy for several hematological
malignancies. Axicabtageneciloleucel (Yescarta) [28] was approved for diffuse large B-cell lymphoma
in the context of refractory or relapsed disease. It was also approved in the context of high grade or
mediastinal large B-cell lymphoma. Tisagenlecleucel (Kymriah) [29], a CD19 directed 4-1BB/CD3ζ CAR
T-cell therapy, was approved rapidly for refractory and relapsed acute lymphoblastic leukemia for
children and young adults. Later it was also approved for diffuse large B-cell lymphoma and high-grade
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B-cell lymphoma. With the hope of finding suitable target antigens for expanding CAR T-cell therapy
to other hematological malignancies and solid tumors, many large clinical trials are needed.

4. Current Toxicities and Administration Difficulties of CAR T-cells

It is now well established that one of the most significant problems of CAR T-cell therapy is toxicity.
There is a clear difference between the toxicity that is encountered in liquid tumors compared to solid
tumors. The outcome after treatment with CAR T-cells for solid tumors is still modest. The main
side effect of CAR T-cell therapy in hematological tumors is cytokine release syndrome (CRS) [30].
There are also other toxicities like neurotoxicity, anaphylaxis, and on target/off tumor effects [31].

For cytokine release syndrome (CRS), there are a vast number of clinical symptoms. It is
not uncommon for the patients to face nausea, malaise, fevers, cardiac dysfunction, hypotension
or tachycardia, disseminated intravascular coagulation, or respiratory/renal impairment [32].
This syndrome correlates with CAR T-cell dose, response to therapy, and disease burden [33,34].
CRS can be explained as a response to the torrent of inflammatory cytokines released by the numerous
activated CAR T-cells. As cytokines are challenging to evaluate, C-reactive protein (CRP) is used as a
marker to assess the severity of CRS [35]. Treatment consists of administration in the first instance
with high-dose steroids, vasopressors, respiratory support, and supportive care. Tocilizumab, which is
an anti-IL-6R antibody, can be a beneficial treatment for some cases [36].

Neurotoxicity is generally reversible and consists of symptoms of confusion, aphasia, seizures,
and delirium. Even though the cause of neurotoxicity is unknown, there are two conjectures about this
toxicity in CAR T-cell therapy. The first is related to the high levels of cytokines liberated, and the
second to direct injury of the neurological tissue [37,38].

On target/off tumor effects that appears more often in the treatment of solid tumors are caused
by the presence of the target antigen for CAR T-cells on cancer cells and also in low levels in normal
tissue [39]. CAR T-cells acting on normal cells cause this sort of toxicity, underscoring the importance
of choosing the right target antigen for therapy.

A recent paper by Shah and Fry [40] described the barriers that CAR T-cell therapy faces to induce
long-term remission. The first of the four barriers is the failure to achieve remission either by problems
in manufacturing, infusion, or CAR T-cell activation and expansion. Lack of access is an issue, as is the
cost of treatment. The second barrier leading to disease relapse is constituted by antigen modulation,
which enables antigen escape responsible for resistance. This phenomenon is also found in solid
tumors. The third barrier is the toxicity of CAR T-cell therapy including cytokine release syndrome or
neurotoxicity. Finally, there are issues of adapting CAR T-cell therapy for other types of hematological
malignancies or solid tumors. For instance, anti-CD19 CAR T-cell therapy for adults with lymphoma is
correlated with a good response compared with the clinical response of CAR T-cell therapy in leukemia
and pediatric malignancies.

Of course, there are a series of limitations to CAR T-cell therapy like tumor type, patient population,
lymphodepletion regimen, and CAR T-cell design. Developing guidelines [41] and having an early
intervention concerning toxicity using adequate grading scales [42] can improve the results of this
promising method. However, data from the literature reports one severe event of a patient with
metastatic CRC that died after receiving Trastuzumab CAR T-cell therapy associated with IL-2 after
lymphodepletion chemotherapy. The cause of death was rapid respiratory failure onset due to reactivity
against pulmonary tissue [43].

Suicide genes or elimination genes come as a solution for these sorts of toxicities. Incorporating
genes like Herpes simplex virus thymidine kinase or Escherichia coli nitroreductase have some
downfalls. Introducing these systems into limited genetic space can cause immunogenic effects
resulting in premature elimination of CAR T-cells and subsequent toxicity [44]. Although suicide
gene engineering is part of the current clinical trials, proper procedures have not been established in
clinical practice.
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5. CAR T-Cell Therapy in Solid Tumors

CAR T-cell therapy is increasingly becoming a key player in the treatment of malignant diseases.
While clinical trials are still in high demand, the use of CAR T-cells in the therapy of hematologic
oncology such as acute lymphoblastic leukemia or lymphoma is generally accepted worldwide [45].
By targeting CD19 antigen on B-cells using CAR T-cell therapy, clinicians attained durable remissions
and clinical response in patients with B-cell non-Hodgkin lymphoma and acute lymphoblastic
lymphoma [46]. Efforts are being made to provide CAR T-cell treatment for other types of lymphoma
and myeloma.

Most published work has mainly focused on hematologic disease, and results concerning solid
tumors have insufficient evidence for clinical use. There are various challenges for CAR T-cell therapy
in solid tumors.

Recent trials moved their attention to solid tumors by targeting different surface proteins.
From the multitude of targeted surface proteins like human epidermal growth factor receptor 2 (HER2),
diganglioside (GD2), carcinoembryonic antigen (CEA), mesothelin, and fibroblast activation protein
(FAP), only the first two (GD2 and HER2) were part of positive trials [47]. Only one trial using GD2
CARs for neuroblastoma resulted in complete remission [48]. Using HER 2 CARs for sarcoma or
HER1 for advanced relapsed or refractory non-small cell lung cancer showed stable disease or partial
response in the patients enrolled [49,50].

Several biological barriers exist in the process of successful trafficking of T-cells from blood to the
stromal elements of solid tumors. These barriers could explain the different results of CAR T-cell therapy
in hematological malignancies compared to solid tumors. Even if the prerequisite of trafficking and
infiltration is done, T-cells face some natural obstacles and become defective. One of the most critical
features is that CAR T-cells first have to identify the proper tumor-associated antigen (TAA). Then they
have to face the unwelcoming tumor microenvironment. The tumor microenvironment interferes with
the penetration of CAR T-cells into stromal tumor mass, promoting an immunosuppressive milieu [51].
Afterward, CAR T-cells encounter cytokines and soluble inhibitory factors. Suppressive immune cells
like regulatory T-cells (Treg) or tumor-associated macrophages (TAM) and other negative regulatory
systems also step in the way of the activated T-cells [52,53].

Researchers try to understand the interactions between the hostile microenvironment and the
host’s immune system with all its immunomodulatory effects. These two seem to be the culprits for the
resistance mechanisms of CAR T-cell therapy in solid tumors. By changing the design of CAR T-cells
incorporating co-stimulatory molecules, ligands, targeted therapies, or immunomodulatory agents
can improve the clinical outcome [54]. Wang et al. [55] suggest that targeting more than one antigen
and building a dual-targeted CAR can overcome the risk of antigen escape relapse and diminish the
effect of antigen heterogeneity. Off-target toxicity is still a big issue to consider in classically designed
CAR T-cells and in novel dual-targeted cells [56]. PD-1/PD-L1 blockade may be a successful plan for
boosting the potency of CAR T-cell therapies in solid tumors [57].

Recent data assume that new mechanisms of antigen recognition through CARs can make a
difference in solid tumors. Trying to modulate the immunological synapse formation can improve
efficacy. The density of the target antigen can also control the efficacy of treatment in solid tumors [58].

Personalized modification of CAR T-cell construction, finding a more suitable T-cell subset for
engineering, incorporating anti-cancer cytokines, manipulating PD1/CTLA4 checkpoints, infiltrating
soluble immunosuppressive factors like TGF-β and IL10, are some proposed changes that can make a
difference [59]. An opportunity for modifying CAR design and construction for use on other cells than
immune cells like the design of a tumor cell vaccine exists as a promising research direction [60].

Many experts now contend that we should change the general approach of CAR-T cell therapy
in solid tumors. We should focus more on CAR-T local delivery and on associating chemotherapy
or immune checkpoint inhibitors with the regimen for metastatic disease. Targeting two different
antigens seems a reliable solution to broadening the spectrum of therapeutics. Scientists should
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consider developing CAR T-cell therapy for adjuvant treatment after resection to prevent recurrence or
metastasis [61].

6. CAR T-Cell Therapy in Gastrointestinal Malignancies

Gastrointestinal tumors are the most common types of human cancers encountered worldwide.
There is a modest improvement in survival by integrating novel chemotherapeutic and radiotherapeutic
schedules. Due to the increasing burden of cancer, it is necessary to incorporate alternative strategies
like CAR T-cell therapy to improve outcomes. CAR T-cell therapy has shown modest benefits in solid
tumors. There are several attempts to find the right formula for CAR T-cells in gastrointestinal tumors.

6.1. Pancreatic Cancer

CAR T-cell therapy is studied intensively in pancreatic cancer. Like most solid tumors, pancreatic
cancer presents a series of tumor-specific antigens that can serve as promising targets for CAR T-cell
therapy. Overexpressed antigens like carcinoembryonic antigen, mesothelin, human epidermal growth
factor receptor 2 (HER-2), and mucin 1 (MUC1) show great potential [62–64]. With this in mind,
an article from 2017 [65] summarized the possible targets of CAR T-cells in pancreatic cancer and
added CD24, prostate stem cell antigen, and natural killer receptors for the construction of CARs.
By showing high expression, mesothelin appears to be the most promising target for CARs [66–69].
Other research [70] focused on blocking IL-10 with the purpose of tackling the immunosuppressive
effect of the tumor microenvironment and enhancing mesothelin CAR T-cell activity. A phase I trial
showed good results using mesothelin mRNA CAR T-cell therapy against pancreatic cancer metastases.
The trial also revealed a satisfactory safety profile [71]. In lung metastases from pancreatic cancer,
mesothelin CAR T-cell design showed impressive results [72]. Combining mesothelial CAR T-cells
with cytokine-armed oncolytic adenovirus expressing TNF-α or IL-2 enhanced the efficacy of the
chimeric antigen receptor therapy [73].

Another approach was targeting prostate stem cell antigen and protecting cells from
immunosuppressive cytokines by manipulating the tumor microenvironment [74]. Abate-Daga and
colleagues [75] proposed targeting prostate stem cell antigen in a humanized mouse model of pancreatic
cancer. Modulating the dense stromal surroundings of pancreatic cancer and adapting the cells to the
tumor microenvironment seems like proper options to improve clinical benefit [76]. With a different
CAR construct, humanized CD47-CAR T-cells eliminated with excellent specificity ovarian, cervical,
and pancreatic cancer cells [77]. Zhang E et al. [78] constructed a dual CAR-modified T-cell to eradicate
AsPC-1 pancreatic cells that have high expression of carcinoembryonicantigen (CEA) and mesothelin
(MSLN). A study using switchable CAR T-cells to target HER-2 on patient-derived xenograft models
from patients with aggressive metastatic pancreatic cancer showed considerable potency [79]. Whilding
et al. hypothesized that controlling IL-8 might control tumor burden in solid tumors by accomplishing
a higher therapeutic activity in pancreatic and ovarian tumor xenografts. This result was possible by
expressing IL-8 receptors CXCR1 and CXCR2 in a CAR T-cell construct to target the tumor-associated
αvβ6 integrin [80].

These findings mentioned above confirm that CAR T-cell therapy for pancreatic cancer is
developing fast, and its potential needs to be confirmed in future trials and studies [81,82].

6.2. Hepatocellular Carcinoma

Accumulating data show that hepatocellular carcinoma has limited therapeutic options.
Hoseini et al. outline the possibility of using CAR T-cell therapy and bispecific antibodies for
hepatocellular carcinoma treatment. Bispecific antibodies can redirect natural killer cells toward
cancer cells paving the way for CAR T-cells to infiltrate the tumor site [83]. Although no clinical CAR
T-cell trials for hepatocellular cancer have been completed to date, some preclinical and clinical evidence
suggests a potent antitumor activity for therapies targeting CEA, MUC-1, and GPC-3 antigens [84,85].
Most results in experimental studies have come from targeting GPC-3, either using an inducible
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armored IL-12 construct [86] or by directly eliminating GPC-3 positive HCC cells [87,88]. Another
approach was by a dual-CAR construct expressing GPC-3 and asialoglycoprotein receptor 1 (ASGR1)
with less toxicity [89]. One study [90] proved in vitro and in vivo that by disrupting programmed
death 1 receptor (PD-1) on the Glypican-3 (GPC3)-targeted second-generation CAR T-cells showed a
much stronger activity against hepatocellular carcinoma.

For immunotherapy to be effective in hepatocellular carcinoma, it needs a more combinatorial
perspective by associating checkpoint inhibitors with immune cell therapy [91,92]. There is still a long
way for CAR T-cell therapy in HCC from bench to bedside.

6.3. Gastric Cancer

There is little evidence about CAR T-cell therapy in gastric cancer. The data available is rather
recent proposes several targets for CARs. The first study showed that the construction of a CAR T-cell
that targets monoclonal antibody 3H11 had a promising response in gastric cancer, although it does
not overcome the current biological barriers of solid tumors [93]. The second [94] study used the fact
that folate 1 receptor (FOLR1) expression is overexpressed in gastric cancer in comparison to normal
tissue. The results confirmed that FOLR1 CAR T-cells could recognize and exhibit anti-tumor activity
in FOLR1-positive gastric cancer cells. The third study chose natural killer group 2D(NKG2D) ligand
as a target for a second-generation CAR design. The final NKG2D-CAR T-cells compound showed
cytolytic activity against gastric cancer cells. Adding cisplatin increased the responsiveness to the CAR
T-cell construct [95]. The latest research concerning gastric cancer involved targeting claudin18.2 for
their CAR T-cell construction [96].

6.4. Esophageal Cancer

Clinical trials of CAR T-cell therapy in thoracic malignancies are scarce. The main targets for
CARs of esophageal cancer were epithelial cell adhesion molecule (EpCAM) and HER2 [97]. We found
one experimental study that targeted EphA2 for esophageal squamous cell carcinoma (ESCC) CAR
T-cell construction. The EphA2 CAR T-cells showed a better esophageal cell kill ratio than T-cells and
were also dose-dependent [98].

6.5. Biliary Tract Cancer

Immunotherapy has shown clinical benefit in hepatobiliary cancer but only in a small subset
of patients. Recently investigators have examined the possible implication of CAR T-cells in
biliary tract cancer [99]. CAR T-cell therapies studies and trials in biliary tract cancers propose
mesothelin [100], EGFR [101,102], or HER2 [103] as targets because of their tendency to be overexpressed
in these malignancies.

7. CAR T-Cell Therapy Studies for CRC

Potential targets for CAR T-cell therapy in CRC are shown in Figure 2. Hege et al. [104] reported
one of the first human trials concerning CAR T-cells for metastatic CRC. It consisted of two phase 1
trials (C9701 and C9702), which used the same CART72 cells. CART72 cells were designed as first
generation CAR T-cells that targeted tumor-associated glycoprotein (TAG)-72 and included a CD3-zeta
intracellular signaling domain. The difference between the two trials was the administration of CART72.
Trial C9701 had the CART72 administrated intravenously in an escalating dose, and trial C9702 had
direct hepatic artery infusion in patients with colorectal liver metastases. The results showed a good
safety profile despite a short-term persistence in blood, and the fact that trafficking to tumor tissue
was limited. In addition, CART72 immunogenicity was associated with fast clearance after infusion of
CAR-T cells.
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Figure 2. Targets for CAR T-cell therapy in CRC: Anti-4-1BB; CEA; guanylylcyclase2C (GUCY2C); 
TAG-72; EpCAM; epithelial glycoprotein 40(EGP40); NKG2D; HER-2; interferon alpha and beta 
receptor subunit 1(IFNAR1); prominin-1 (CD133); epithelial glycoprotein-2 (EGP-2). 

Two articles described guanylylcyclase2C (GUCY2C) as a possible target for CARs. The first 
article [105] provides evidence that GUCY2C CAR T-cells can treat parenchymal CRC metastases in 
a mouse model without autoimmunity. The second article [106] demonstrated the effectiveness of 
GUCY2C targeted CAR T-cell therapy against metastatic tumors in mouse models and in xenograft 
models of human CRC. 

Initial studies with chimeric antigen receptor targeting CEA antigen-expressing CRC and its 
liver metastases indicate specific anti-tumor activity and the probability of avoiding 
immunosuppression [107]. Using CEA-positive CRC patients, the NCT02349724 Phase I trial 
developed CEA CAR T-cell therapy. Ten refractory and relapsed patients with metastases were 
enrolled in this trial. The endpoint showed good tolerability of CEA CAR T-cells even with high 
doses, and some efficacy in the patients treated [108]. Another approach was using CAR T-cells in a 
CEA-positive mouse model induced to develop colitis. The results of the study demonstrated that 
CEA CAR T-cells can ameliorate ulcerative colitis and can delay the transformation to CRC [109]. The 
combination of CEA CAR T-cells with recombinant human IL-12 has improved anti-tumor activity 
in colorectal, pancreatic, and gastric cell lines [110].  

Retroviral genetic transduction of the single-chain variable domain anti-carcinoembryonic Ag 
(CEA) Fcε receptor I γ-chain fusion (scFv anti-CEA) receptor amplified expression of this receptor in 
naïve mouse T lymphocytes as shown by Darcy et al. Additionally, they established that the altered 
T-cells were capable of inducing CEA-positive cell lysis via perforin-mediated pathways and 
emphasized the importance of interferon γ in colorectal tumor control. Complete tumoral eradication 
could not be obtained in interferon γ deficient T-cells [111]. 
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Figure 2. Targets for CAR T-cell therapy in CRC: Anti-4-1BB; CEA; guanylylcyclase2C (GUCY2C);
TAG-72; EpCAM; epithelial glycoprotein 40(EGP40); NKG2D; HER-2; interferon alpha and beta receptor
subunit 1(IFNAR1); prominin-1 (CD133); epithelial glycoprotein-2 (EGP-2).

Two articles described guanylylcyclase2C (GUCY2C) as a possible target for CARs. The first
article [105] provides evidence that GUCY2C CAR T-cells can treat parenchymal CRC metastases in
a mouse model without autoimmunity. The second article [106] demonstrated the effectiveness of
GUCY2C targeted CAR T-cell therapy against metastatic tumors in mouse models and in xenograft
models of human CRC.

Initial studies with chimeric antigen receptor targeting CEA antigen-expressing CRC
and its liver metastases indicate specific anti-tumor activity and the probability of avoiding
immunosuppression [107]. Using CEA-positive CRC patients, the NCT02349724 Phase I trial developed
CEA CAR T-cell therapy. Ten refractory and relapsed patients with metastases were enrolled in this
trial. The endpoint showed good tolerability of CEA CAR T-cells even with high doses, and some
efficacy in the patients treated [108]. Another approach was using CAR T-cells in a CEA-positive
mouse model induced to develop colitis. The results of the study demonstrated that CEA CAR T-cells
can ameliorate ulcerative colitis and can delay the transformation to CRC [109]. The combination
of CEA CAR T-cells with recombinant human IL-12 has improved anti-tumor activity in colorectal,
pancreatic, and gastric cell lines [110].

Retroviral genetic transduction of the single-chain variable domain anti-carcinoembryonic Ag
(CEA) Fcε receptor I γ-chain fusion (scFv anti-CEA) receptor amplified expression of this receptor
in naïve mouse T lymphocytes as shown by Darcy et al. Additionally, they established that the
altered T-cells were capable of inducing CEA-positive cell lysis via perforin-mediated pathways and
emphasized the importance of interferon γ in colorectal tumor control. Complete tumoral eradication
could not be obtained in interferon γ deficient T-cells [111].

Oncoretroviral transfection is exceedingly useful in transducing chimeric T-cell receptor in
fast-dividing T-cells, but involves quickly multiplying cells and production of high virus titers.
The transfection of peripheral blood lymphocytes (PBL) with retroviruses proved low efficiency.
Lentiviruses can transduce non-dividing cells. The association of a lentivirus with vesicular stomatitis
virus G protein gave highly efficient PBL transduction of chimeric T-cell receptor. PBL-modified
cells proliferated in vitro on exposure to CEA-positive cells and showed an antitumoral effect on
CEA-positive CRC mouse models [112].

CAR T-cell therapy was associated with anti-4-1BB on human-Her2 mouse models to enhance the
anti-tumor activity. The study revealed that anti-4-1BB monoclonal antibody could augment the effect
of CAR T-cell therapy by suppressing the host’s tumor microenvironment. This protocol could be of
use for solid tumors like CRC after first line adoptive therapy failure [113].
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Daly et al. conducted one of the first studies using CAR T-cell therapy for CRC [114]. The study
redirected T-cells using a chimeric receptor which recognized epithelial glycoprotein 40(EGP40) as
the selected antigen. Resultsof another study showed that MiR-153 has the property to enhance CAR
T-cell therapy in CRC. MiR-153 inhibits indoleamine 2,3-dyoxygenase 1(IDO1) in CRC cells and acts as
a tumor suppressor [115].

Intraperitoneal infusion of CAR T-cells combined with depleting antibodies against
myeloid-derived suppressor cells (MDSC) and regulatory T-cells (Treg) showed considerable results
in CRC mouse models. Regional delivery of CAR T-cell compared to systemic infusions resulted
in enhanced anti-tumor effects for peritoneal carcinomatosis [116]. For peritoneal carcinomatosis,
an EpCAMtargeting CAR T-cell construct exhibited anti-tumor efficacy for mouse models of human
ovarian cancer and CRC [117]. EpCAM proved to be a suitable target for CARs in a xenograft mouse
model. The EpCAM CAR T-cell delayed tumor growth and displayed an excellent safety profile [118].
Deng et al. [119] showed that NKG2D CAR T-cells exhibit specific cytotoxicity in human CRC cell lines.
The study was conducted in vivo and in vitro showing promising immunotherapeutic activity. In a
patient-derived xenograft mouse model with CRC, HER-2 CAR T-cell therapy selectively killed HER-2
positive tumor cells. Besides the establishment of a new study model for immunotherapy, the study
revealed that the cells were protected from tumor re-challenge after infusion [120].

Knowing that the hostile microenvironment is part of the resistance system of CAR T-cell therapy
in CRC, a study evaluated the implication of Interferon-alpha/beta receptor alpha chain (IFNAR1).
It showed that genetic or pharmacologic stabilization of IFNAR1 can influence tumor growth and can
enhance chimeric antigen receptor T-cell therapy in solid tumors [121].

One preliminary study that is part of an ongoing clinical trial showed that CD133 could be an
interesting target for CAR T-cell therapy. Infusion with CAR T-133 cells for positive CD133 metastatic
pancreatic cancer, hepatocellular cancer, and CRC showed effective response with tolerable toxicity.
Another practical implication was that by repeating cell infusions, a more extended period of stable
disease resulted [122].

From another perspective, the use of antibiotics proved to diminish the effect of CD4+ CAR
T-cells in a CRC mouse model. Chemotherapy with cyclophosphamide was used for the conditioning
regimen in mice [123]. Using colorectal carcinoma cells positive for EGP-2 researchers proved that there
was no significant difference in T-bodies activity with either ζ-chain or the γ-chain in chimeric T-cell
receptor construction. This confirmed the option of using both ζ-chain or γ-chain in clinical trials [124].
Sasaki et al. generated gene-modified Tc1 and Th1 cells from one CRC patient. These gene-modified
T-cells showed high cytotoxicity and produced INF-γ in the tumors expressing CEA [125].

CAR T-Cells Ongoing Trials in CRC

Several ongoing trials (Table 1) are investigating the use of CAR T-cell in the treatment of CRC.
A phase I, open-label clinical trial is assessing the safety, cellular kinetics, and efficiency of CYAD-101,
an allogenic CAR T-cell therapy targeting ligands of NKG2D, administered concurrently with FOLFOX
in patients with unresectable metastatic CRC [126].

Two clinical trials are researching the efficiency and safety of NKR-2 CAR T-cells in metastatic
CRC patients. The first trial with NCT03370198 ID [130] investigates the biweekly hepatic transarterial
administration of NKR-2 CAR T-cells in patients with unresectable liver metastases. On the other hand,
the second trial [131] studies the safety and efficiency of NKR-2 cells administered alongside FOLFOX
in potentially resectable liver metastases from CRC.
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Table 1. Ongoing clinical trials of CAR T-cell therapy conducted in CRC.

Target Pathology Trial ID Study Phase Administration Patient Number Year Reference

EGFR IL-12 Metastatic colorectal cancer NCT03542799 I/II Systemic 20 2018 [127]

EGFR EGFR-positive colorectal Cancer NCT03152435 I/II Systemic 20 2017 [128]

NKG2D Metastatic colorectal cancer NCT03692429 I Systemic 36 2018 [126]

CEA Metastatic colorectal cancer NCT02959151 I/II

Vascular
interventional

therapy or
intratumoral

injection

20 2016 [129]

NKR-2 Unresectable liver metastasis of
colorectal cancer NCT03370198 I Hepatic

transarterial 18 2017 [130]

NKR-2 Potentially resectable liver metastasis
of colorectal cancer NCT03310008 I Systemic 36 2017 [131]

MUC 1 Colorectal cancer NCT02617134 I/II Systemic 20 2015 [132]

HER2 Colorectal cancer NCT02713984 I/II Systemic 60 2016 [133]

CEA Colorectal cancer NCT02349724 I Systemic 75 2015 [134]

CEA Peritoneal metastases or malignant
ascites of Colorectal cancer NCT03682744 I Intraperitoneal

infusion 18 2018 [135]

C-MET Colorectal cancer NCT03638206 I/II Systemic 73 2018 [136]

EpCAM Colorectal cancer NCT03013712 I/II

Vascular
interventional

therapy 60 2017 [137]

Endoscopy
mediated
infusion

CD133 Colorectal cancer NCT02541370 I/II Systemic 20 2015 [138]

CEA CEA + liver metastases from
gastrointestinal tumors including

colorectal cancer

NCT02850536 I
Hepatic

transarterial 5 2015 [139]

Intrapancreatic
retrograde

venous
infusion

HER2 Colorectal cancer NCT03740256 I Systemic
&Intratumoral 39 2018 [140]

CEA
CEA + adenocarcinoma with liver
metastases from gastrointestinal

tumors including colorectal cancer
NCT02416466 I

Hepatic
transarterial

administration
8 2015 [141]

EGFR and EGFR IL 12 CAR T-cell safety and feasibility in the treatment of metastatic CRC are
also being currently evaluated in phase I and II studies [127,128]. Various trials are investigating
the use of anti-carcinoembryonic antigen targeted CAR T-cells in several CEA-positive malignancies,
including CRC. Concerning the administration protocol, trials with CEA as a target for CARs prefer
systemic, hepatic transarterial administration, vascular interventional, or intraperitoneal infusion.
In addition tometastatic colorectal cancer, CEA is used as a target for other solid tumors like lung,
gastric, pancreatic, hepatocellular, or breast cancer [129,134,135,139,141].

Anti HER2 CAR T-cells are studied in HER2 positive cancers in preclinical studies [133].
NCT03740256 [140] phase 1 trial is investigating the efficiency and safety of HER 2 chimeric antigen
receptor-modified adenovirus-specific cytotoxic T lymphocytes administered in association with
intratumoral injection of CAdVEC, an oncolytic adenovirus. The administration of CAdVEC is
proposed to create a pro-inflammatory tumor microenvironment that will promote the recruitment
and expansion of the transferred CAR T-cells.

The use of CAR T-cells targeted against MUC1 is proposed for relapsed or refractory solid
tumors like glioma, metastatic colonic adenocarcinoma, and gastric cancer, which exhibit confirmed
MUC1 positive status [132]. C-MET appears as a target for colorectal cancer, hepatoma, ovarian,
and renal cancer in phase I/II CAR T-cell trial with over 73 participants. The trial consists of a
multi-target gene-modified CAR T/TCR T-cell that includes ten different tumor-specific antibodies [136].
Other ongoing trials use CAR T-cells targeting EpCAM [137], or CD 133 [138] -positive CRC to assess
safety and feasibility for both solid tumors like colorectal cancer as well as hematological malignancies.
The completion date for the trial concerning CD133 targeted CAR T-cells is December 2019. Preliminary
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data suggest that CD133 is an attractive therapeutic target for relapsed or refractory malignancies,
including CRC. The trial underlines the safety profile and efficient activity of CART-133 therapy for
CD133 positive metastatic cancers.

8. Conclusions and Further Perspectives

Despite the recent developments in CAR T-cells therapy for hematological malignancies, the use
of these therapies in solid tumors is still debatable. CAR T-cell therapy has become mainstream for
hematologists even though there are a series of limitations to the treatment. Adoptive cell therapy
should be conducted in highly specialized clinical centers with staff that is trained in dealing with
common side effects. Product manufacturing and infrastructure for clinical implementation is well
accepted in many centers worldwide, but a more specific focus on solid tumors is in need.

As summarized in this review, there are many promising CAR T-cell therapeutic strategies
for colorectal cancer that have shown success in preclinical models or early phase clinical trials.
The primary role of immunotherapy as CAR T-cell is confirmed in the durable response of the
treatment. One of the major issues is that durable response is available only for a small subset of
patients in colorectal cancer. The objective of CAR T-cells therapy is to find the right target for CARs or
the right combination with novel checkpoint inhibitors or monoclonal antibodies. This approach can
help to broaden the spectrum of patients that can obtain a sustainable clinical benefit.

Chimeric antigen receptor T-cell therapy is an immunological concept that has been in development
for years. Treatment of hematological malignancies with this method has changed the way we treat
cancer and makes us see the possibilities of treating solid tumors. Recent data show that CAR T-cell
therapy could be useful in gastrointestinal tumors in colorectal, pancreatic, gastric, or hepatobiliary
cancer. This has opened the door for further studies and trials, although there is extensive work needed
to implement this therapeutic method in colorectal cancer. Colorectal cancer is one of the most studied
cancers and one of the few with promising immunotherapy results. CAR T-cell therapy will hopefully
deliver substantial clinical benefit for colorectal cancer.
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