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Abstract: Current equation-based risk stratification algorithms for kidney failure (KF) may have
limited applicability in real world settings, where missing information may impede their computation
for a large share of patients, hampering one from taking full advantage of the wealth of information
collected in electronic health records. To overcome such limitations, we trained and validated the
Prognostic Reasoning System for Chronic Kidney Disease (PROGRES-CKD), a novel algorithm
predicting end-stage kidney disease (ESKD). PROGRES-CKD is a naïve Bayes classifier predicting
ESKD onset within 6 and 24 months in adult, stage 3-to-5 CKD patients. PROGRES-CKD trained
on 17,775 CKD patients treated in the Fresenius Medical Care (FMC) NephroCare network. The
algorithm was validated in a second independent FMC cohort (n = 6760) and in the German Chronic
Kidney Disease (GCKD) study cohort (n = 4058). We contrasted PROGRES-CKD accuracy against the
performance of the Kidney Failure Risk Equation (KFRE). Discrimination accuracy in the validation
cohorts was excellent for both short-term (stage 4–5 CKD, FMC: AUC = 0.90, 95%CI 0.88–0.91; GCKD:
AUC = 0.91, 95% CI 0.86–0.97) and long-term (stage 3–5 CKD, FMC: AUC = 0.85, 95%CI 0.83–0.88;
GCKD: AUC = 0.85, 95%CI 0.83–0.88) forecasting horizons. The performance of PROGRES-CKD
was non-inferior to KFRE for the 24-month horizon and proved more accurate for the 6-month
horizon forecast in both validation cohorts. In the real world setting captured in the FMC validation
cohort, PROGRES-CKD was computable for all patients, whereas KFRE could be computed for
complete cases only (i.e., 30% and 16% of the cohort in 6- and 24-month horizons). PROGRES-CKD
accurately predicts KF onset among CKD patients. Contrary to equation-based scores, PROGRES-
CKD extends to patients with incomplete data and allows explicit assessment of prediction robustness
in case of missing values. PROGRES-CKD may efficiently assist physicians’ prognostic reasoning in
real-life applications.
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1. Introduction

Multiple behavioral and pharmacological interventions have proven effective in re-
ducing the burden of risk factors for chronic kidney disease (CKD) progression [1–4].
Furthermore, timely transition management (i.e., vascular access creation and training) for
patients needing Kidney Replacement Therapy (KRT) is associated with prolonged survival
and reduced complication rates once on dialysis, while delayed referrals are associated with
increased morbidity, mortality, and healthcare costs [5], as well as worse patient quality of
life [6]. Therefore, early identification of high risk patients is an essential prerequisite of
personalized clinical decision making [7–9].

Several prediction models were developed to assist physicians in forecasting CKD
progression [10]. However, most of them have not been consistently implemented in
clinical practice [9,11,12]. Indeed, the majority of published risk scores lack external
validation [11,13,14], leading to suboptimal discrimination in external populations [12] and
limited generalizability to clinical settings [11]. One prominent exception is represented by
the Kidney Failure Risk Equations (KFREs) developed by Tangri and colleagues [15], which
showed stable discrimination in different validation studies [16–18]. However, KFREs
do not provide short-term forecasts, are not calculable for patients with incomplete data,
and need re-calibration when applied to CKD populations with risk factor distributions
departing from those of the original derivation dataset.

To overcome such limitations, we developed the Prognostic Reasoning System for
Chronic Kidney Disease (PROGRES-CKD), a risk score application for adult patients
suffering from CKD stages 3–5. PROGRES-CKD is based on a naïve Bayes Classifier (NBC)
algorithm and it was trained on a large-multinational clinical dataset, reflecting real-world
clinical practice. The application includes PROGRES-CKD-6 for 6-month forecasting and
PROGRES-CKD-24 for 24-month forecasting.

In the present study, we reported the training and validation of both PROGRES-CKD-6
and PROGRES-CKD-24 in two independent samples of CKD patients: the FMC Nephro-
Care cohort (European Clinical Database, EuCliD®, [19,20]) and the German Chronic
Kidney Disease (GCKD) study cohort [21]. Moreover, we compared the PROGRES-CKD
discrimination accuracy and suitability for clinical practice against the KFREs equations.

2. Materials and Methods

In reporting PROGRES-CKD training and validation studies we adhered to the Trans-
parent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) statement [22] and to the Guidelines for Developing and Reporting Machine
Learning Predictive Models in Biomedical Research [23].

2.1. Description of Naïve Bayes Classifiers

All PROGRES-CKD models are NBCs. NBCs are probabilistic models based on appli-
cation of the Bayes’ theorem. The basic assumption of NBCs is conditional independence
of predictors given the outcome. NBCs are represented through directed acyclic graphs
(Figure 1). NBCs have been previously used in medical applications for diagnostic and
prognostic reasoning in several therapeutic areas [24,25]. In fact, once derived and vali-
dated, NBCs generate metrics informing medical prognostic reasoning. First, they generate
a risk score representing the expected incidence of a disease/event given a vector of known
patient characteristics. Furthermore, NBCs can be used to generate value of information
(VOI) statistics and impact metrics. VOI statistics represent the reduction in uncertainty
(i.e., entropy) in the outcome variable that would be obtained had the value of missing
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variables been observed instead [26]. Therefore, it can be used to prioritize additional
diagnostic testing or biomarker assays for patients with incomplete medical records. Third,
NBCs can provide impact metrics (i.e., Normalized Likelihood (NL) [27]) for each observed
variable. Impact metrics can be interpreted as the magnitude of association of different
subsets of evidence on the outcome variable.
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Figure 1. The Bayesian Network structure of PROGRES-CKD. (a) PROGRESS-CKD-6; (b) PROGRESS-
CKD-24.

2.2. PROGRES-CKD Training

In this application of NBCs, we aimed at developing a model to predict the risk of
KRT initiation within 6 and 24 months. The risk score is anchored at 0.00 = no risk at all to
1.00 = certainty of failure within the prediction horizons.

We derived model weights for the PROGRES-CKD by a data-driven algorithm, ex-
ploiting the wealth of information collected in the European Clinical Database (EuCliD®,
Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany), a large, multina-
tional, database of CKD patients. All nephrology clinics belonging to the Fresenius Medical
Care (FMC) NephroCare network confer data collected for healthcare practice into this cen-
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tralized data-repository. EuCliD® is a fully codified database recording clinical, laboratory,
socio-demographic, treatment and prescription data for each medical encounter [19,20]. In-
formation is collected by healthcare professionals either manually or by means of interfaces
to existing local data managing systems.

All non-dialysis dependent, stage 3–5 CKD patients receiving care in outpatient
renal clinics belonging to the NephroCare network from 2017 to 2018 were screened for
eligibility. We enrolled only patients who received at least one outpatient visit and one
serum creatinine (s-cr) assessment. The endpoints of interest were KRT initiation within
6 and 24 months. We excluded patients dying before reaching the endpoint or before
the end-of-follow-up (i.e., 6 or 24 months, depending on endpoint of interest). Overall,
22,535 subjects met the inclusion criteria. This initial dataset was randomly partitioned into
2 analytical samples: development (70%, n = 17,775), and validation (30%, n = 6760). The
derivation of NBC weights was obtained with Hugin 8.5.

2.3. Measures
2.3.1. Endpoint Definition

The primary endpoint was KRT initiation within 6 and 24 months. Outcome definition
does not include episodes of dialysis treatment for acute and transient kidney derangement.

We defined patients as “lost to follow” when no additional s-cr assessments after end of
follow-up date and no dialysis-dependence onset notes were present in the clinical records.

2.3.2. Input Variables

A list of all the variables included in the final model is provided in Table 1. The final
model for the 6-month forecast incorporates 28 independent variables, while the model for
the 24-month forecast includes 34 variables.

Table 1. Variables included in PROGRES-CKD models.

PROGRES-CKD-6 PROGRES-CKD-24

Group Variable n = 28 n = 34

Demographics and anthropometrics
Age X X
Gender X X
BMI, Kg/m2 X X
Smoking status X X

Kidney function
Albumin, g/dL X X
Albumin Creatinine Ratio (ACR),
mg/mmol ** X X

Calcium, mg/dL X X
eGFR, (ml/min/173 m2) X X
regressGFR * X X
Hemoglobin, g/dL X X
Phosphate, mg/dL X X
Urine protein, g/24 h X X
Parathyroid hormone, ng/L X X
Sodium, mmol/L X X
Ferritin, microg/L X X

Etiology of kidney disease
Diabetes X X
Hypertension X
Glomerulonephritis X X
Polycystic X X
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Table 1. Cont.

PROGRES-CKD-6 PROGRES-CKD-24

Group Variable n = 28 n = 34

Comorbidities
Cerebrovascular disease X X
Chronic Pulmonary Disease X X
Congestive heart failure X X
Connective tissue disorder X
Coronary artery disease X
Dementia X X
Diabetes with organ damage X X
Diabetes without complications X
Hemiplegia X
Hypertension X
Mild liver disease X X
Moderate or severe liver disease X X
Peripheral vascular disease X X

Other
Number of hospitalizations X X
Systolic blood pressure X X

* Slope of linear regression of eGFR values over the last 12 months. ** Urine Protein-Creatinine Ratio was
converted to ACR by ACR = Urin protein*PCR (Urine protein = 0.6) (please, see the Supplementary Material for
the conversion table).

We assessed demographic, anthropometric, and lifestyle variables at index visit; blood
biomarkers were collected and averaged over 12 months before index date (i.e., during
the ascertainment period); their slope (i.e., change rate) was likewise calculated. Lifetime
occurrence of comorbidities was evaluated by abstracting ICD10 codes [28] from outpatient
medical records (Supplementary Material). Finally, etiologies of kidney disease were
also noted.

2.3.3. Definition of CKD Stages

GFR was estimated in adults using the 2009 CKD-EPI creatinine equation [29]. Patients
are classified into one of the following GFR categories: (1) G1 normal or high, GFR:
≥90 mL/min/1.73 m2; (2) G2 mildly decreased, GFR: 60–89 mL/min/1.73 m2; (3) G3a
mildly to moderately decreased, GFR: 45–59; (4) G3b moderately to severely decreased,
GFR: 30–44; (5) G4 severely decreased, GFR: 15–29; (6) G5 kidney failure, GFR: <15.3.

2.4. Design and Setting of PROGRES-CKD Validation Studies

For the validation study we randomly selected one visit from patients’ histories (index
date) before occurrence of study endpoint. All information collected before the index data
was used as an input variable for the model. Patients dying before reaching the endpoint
or before the end-of-follow-up (i.e., 6 or 24 months, depending on endpoint of interest)
were excluded.

Based on this general design setting, we validated PROGRES-CKD models in two
independent cohorts.

2.4.1. Study A

The first validation study was performed in the testing cohort derived from 30%
partitioning of the clinical data abstracted from the FMC NephroCare cohort.

2.4.2. Study B

A second analysis evaluated PROGRES-CKD performance using data from the Ger-
man CKD study [21]. Briefly, the GCKD study is an ongoing prospective observational
national study that recruited 5217 patients with CKD of various etiologies. The enrolment
period started in July 2011 and ended in 2012. Patient recruitment and follow-up is orga-
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nized through a network of academic nephrology centers collaborating with practicing
nephrologists throughout Germany. The main study endpoints were mortality, decline
in kidney function, and cardiovascular events. At the time of recruitment, patients were
under nephrological care and showed either eGFR of 30–60 mL/min/1.73 m2 or overt
urin protein in the presence of an eGFR > 60 mL/min/1.73 m2. In our validation analysis,
only patients subjected to serum creatinine evaluation at baseline and followed for at least
2 years were considered.

2.4.3. Study C

We conducted an impact study assessing concordance of nephrologists’ and PROGRES-
CKD-24 ratings of risk. Four experts were asked to forecast KRT initiation risk for 78 CKD
patients based on their demographic, anthropometric, and clinical data. These patients
were randomly selected from the FMC NephroCare cohort and had complete clinical history
up to 24 months after the index date. Information related to all input variables used by the
model were extracted from existing clinical records. Information extracts for each patient
were collected in real-world clinical practice by physicians during outpatient visits. Doctors
were asked to rate KRT risk on a 10-point rating scale anchored at 1 (risk is negligible,
almost no patient with these characteristics would require RRT within 2 years), 5 (about
50% of patients with these characteristics would require RRT within 2 years) and 10 (almost
100% patients with these characteristics would require RRT within 2 years). Risk ratings
provided by the physicians were then compared to scores obtained from PROGRES-CKD-24
for the same patients. Comparative analysis included accuracy, sensitivity, and specificity
based on score cut-off that maximized Youden’s Index. Thereafter, we investigated the
potential impact of using risk scores provided by either experts or PROGRES-CKD-24
in referring patterns to intensified healthcare prevention programs aimed at delaying
CKD progression. We simulated the use of risk estimates on a large, hypothetical CKD
population of stage 3–5 CKD patients (n = 10,000), assuming an ESRD incidence within
24 months of 4.6% (i.e., n = 460 expected ESKD cases) and an intervention effect size of
1.5 (i.e., patients in the standard of care arm would face 50% higher risk of ESKD compared
to those allocated in the intensified healthcare program). The intervention effect size was
estimated based on expert opinion and several intensified intervention programs reported
in diabetic and non-diabetic CKD [30–32].

2.5. Statistical Analysis

We computed the cumulative incidence and the incidence density of KRT initiation events
in the study population and their 95% confidence intervals based on the Poisson distribution.

Since PROGRES-CKD models are NBCs, no data manipulation was required to explic-
itly handle missing variables.

Model performance was evaluated by concordance statistic and calibration charts in
the FMC NephroCare and the GCKD cohorts. Discrimination was quantified by calculating
the area under the receiver operating characteristic curve (ROC AUC) [33]. An AUC
>0.70 was considered acceptable. Calibration was visually inspected by plotting observed
outcome incidence by quintiles of the risk score [34].

A further analysis investigated non-inferiority (defined as ∆AUC < 0.05) of both
PROGRES-CKD-6 and PROGRES-CKD-24 relative to the KFREs [15] calibrated for the
European population [16]. Briefly, Tangri’s models were developed using Cox proportional
hazards regression methods in stage 3–5 CKD patients. In the present study, the following
Tangri’s equations were used: (1) 4 Variables (4VAR), includes Age, Gender, eGFR, and
Albumin-Creatinine Ratio (ACR); (2) 6 Variables (6VAR), includes Age, Gender, eGFR,
ACR, Diabetes, and Hypertension. We could not apply the 8 Variables (8VAR) equation
given the lack of serum bicarbonate assessments in both study cohorts. Non-inferiority
was assessed by checking whether a one-sided confidence interval of the AUC remained
entirely above the non-inferiority threshold (0.05). In case non-inferiority was achieved,
we evaluated superiority of PROGRES-CKD compared to benchmark models; superiority
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was set at ∆AUC ≥ 0.05. Given the sequential nature of testing in a fixed order method
approach, type I error is not inflated by multiple testing. Superiority was tested with the
DeLong non-parametric approach [35]. Statistical significance was claimed at α < 0.05.

For study C, the following accuracy parameters were considered: Sensitivity, Speci-
ficity, Positive Predictive Value (PPV), and False Omission Rate (FOR). We also calculated
the number needed to treat (NNT) in order to avoid 1 KRT event as the reciprocal of the
absolute risk difference between the hypothetical prevention program and standard of care
for all patients:

NNT= (#patients int tr/[(#patients int tr∗PPV)−((#patients int tr∗PPV)/(effect−size))]

Model training was performed using Hugin Explorer. All analyses for the validation
study were performed with SAS 9.4®.

3. Results
3.1. Cohort Characteristics

Table 2 reports baseline demographic and clinical data of the whole FMC NephroCare
cohort. Among 22,535 non-dialysis-dependent stage 3–5 CKD patients, 18,504 and 9407 pa-
tients had 6 and 24 months of follow-up, respectively. KRT events were 801 within 6 months
(8.66 events/100 person-year) and 1817 within 24 months (9.66 events/100 person-year).
On the other hand, KRT events in the validation sample (derived from 30% partitioning
of the whole FMC cohort) were 248 (2.24 events/100 person-year) and 537 (9.36 events/
100 person-year) within 6 and 24 months, respectively.

Table 2. Baseline characteristics of patients from the FMC NephroCare and GCKD cohorts.

FMC Cohort GCKD Cohort

Variable n Mean ± SD or Median
(IQR) or n (%) n Mean ± SD or Median

(IQR) or n (%)

Stage 3 11,965 11,965 (53.1%) 3593 3593 (88.54%)
Stage 4 8026 8026 (35.62%) 460 460 (11.34%)
Stage 5 2544 2544 (11.29%) 5 5 (0.12%)
Age (year) 22,535 72.15 ± 11.7 4058 62.12 ± 10.50
BMI (kg/cm2) 21,655 30.63 ± 10.92 4015 30.03 ± 5.91
eGFR ((mL/min/1.73 m2) 22,535 31.93 ± 13.4 4058 41.92 ± 9.76
Albumin (g/dL) 19,004 4.19 ± 0.4 4055 3.85 ± 0.42
Ferritin (µg/L) 7303 222.18 ± 260.98 1044 200.48 ± 196.11
Hemoglobin (g/dL) 21,916 12.65 ± 1.83 3978 13.49 ± 1.69
Phosphate (mg/dL) 20,362 3.65 ± 0.74 4058 3.45 ± 0.64
Calcium (mg/dL) 20,686 9.36 ± 0.73 4058 9.07 ± 0.63
Sodium (mmol/L) 20,612 140.17 ± 3.16 4057 139.70 ± 3.14
PTH (ng/L) 9466 131.84 ± 150.12 0 -
ACR (mg/mmol) 90 138.67 ± 568.28 3999 393.63 ± 888.48
Proteinuria (g/24 h) 8780 3.58 ± 150.29 0 -
Systolic (mmHg) 17,963 137.33 ± 18.41 4030 140.27 ± 20.53
CRP (mg/L) 13,468 4.23 (7.63) 4056 2.41 (4.27)
Glucose (mg/dL) 19,499 126.45 ± 48.59 0 -
HDL Cholesterol (mg/dL) 7074 48.3 ± 16.74 4051 50.72 ± 17.35
LDL Cholesterol (mg/dL) 7084 107.59 ± 219.29 4051 116.33 ± 42.93
Triglyceride (mg/dL) 15,191 142.77 (95.72) 4050 173.38 (126.45)
hsTNT (ng/L) 0 - 3976 13 (11)
Uric Acid (mg/dL) 20,273 6.68 ± 1.61 4058 7.40 ± 1.92
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Table 2. Cont.

FMC Cohort GCKD Cohort

Variable n Mean ± SD or Median
(IQR) or n (%) n Mean ± SD or Median

(IQR) or n (%)

Gender (M) 22,535 11,349 (50.36%) 4058 2510 (61.85%)
Etiology Diabetes 22,535 3614 (16.04%) 4058 666 (16.41%)
Etiology Polycystic 22,535 477 (2.12%) 4058 157 (3.87%)
Etiology Hypertension 22,535 5281 (23.43%) 4058 1011 (24.91%)
Etiology Glomerulonephrite 22,535 987 (4.38%) 4058 623 (15.35%)
Smoking status: ex-smoker 3502 3502 (15.54%) 1819 1819 (44.96%)
Smoking status: no smoker 10,066 10,066 (44.67%) 1649 1649 (40.76%)
Smoking status: smoker 2274 2274 (10.09%) 578 578 (14.29%)
Alcohol: abuse 8636 8636 (38.32%) 771 771 (19.10%)
Alcohol: moderate 0 0 (0%) 3265 3265 (80.90%)
Alcohol: abstinence 6984 6984 (30.99%) 0 0 (%)
Peripheral Vascular Disease 22,535 1875 (8.32%) 4058 424 (10.45%)
Coronary Artery Disease 22,535 4336 (19.24%) 4058 908 (22.38%)
Congestive Heart Failure 22,535 1887 (8.37%) 4058 776 (19.12%)
Cerebrovascular Disease 22,535 1876 (8.32%) 4058 472 (10.52%)
Connective Tissue Disorder 22,535 399 (1.77%) 0 -
Cancer 22,535 2469 (10.96%) 4058 532 (13.11%)
Diabetes 22,535 9021 (40.03%) 4058 1545 (38.07%)
Anemia 22,535 9800 (43.49%) 4058 1057 (26.05%)
Hypertension 22,535 17,871 (79.3%) 4058 3951 (97.36%)
Atrial Fibrillation 22,535 2337 (10.37%) 4058 876 (21.59%)
Diabetes Without Complications (CCI) 22,535 3013 (13.37%) 4058 1545 (38.07%)
Chronic Pulmonary Disease (CCI) 22,535 1618 (7.18%) 4058 285 (7.02%)
Psychiatric Disease 22,535 177 (0.79%) 0 -
Liver Disease 22,535 987 (4.38%) 0 -
RRT in 24 months 9407 1817 (19.32%) 3684 80 (2.17%)
RRT in 6 months 18,504 801 (4.33%) 3888 11 (0.28%)

A second validation study was performed using data from the GCKD study. As
shown in Table 2, a total of 4058 stage 3–5 CKD patients were included, of whom 3888 and
3687 subjects had 6 and 24 months of follow-up, respectively. RRT events were 11 within
6 months (0.5 events/100 person-year) and 80 (1.1 events/100 person-year) within 24 months.

Early CKD stages were predominantly represented in the GCKD study, whereas
patients in stage 5 CKD were mostly enrolled in the FMC NephroCare cohort. Loss
to follow-up within 6 months was 4031 (17.9%) and 170 (4.2%) participants, while loss
to follow-up in 24 months was 13,128 (58.3%) and 371 (9.1%) participants in the FMC
NephroCare and GCKD cohorts, respectively.

3.2. Model Discrimination in the Training and Validation Dataset from the FMC
NephroCare Cohort

In the development dataset, AUC of PROGRES-CKD-6 was 0.88 (95%CI 0.86–0.89) in
stage 4–5 patients, while AUC of PROGRES-CKD-24 was 0.86 (95%CI 0.85–0.87) in stage
3–5 patients.

External validation was performed in an independent sample of patients treated
in the FMC NephroCare cohort. Analysis indicated a good discriminative ability for
both PROGRES-CKD-6 and PROGRES-CKD-24 models, with a concordance statistic of
0.90 (95%CI 0.88–0.91, stage 4–5) and 0.85 (95%CI 0.83–0.88, stage 3–5), respectively.

Calibration of predicted versus observed risk is represented in Figure 2.
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for PROGRES-CKD-24.

3.3. Model Discrimination in the GCKD Cohort

PROGRES-CKD models showed a good discrimination accuracy in the GCKD dataset
(PROGRES-CKD-6, CKD stages 4–5, AUC = 0.91 (95%CI 0.86–0.97); PROGRES-CKD-24,
CKD stage 3–5, AUC = 0.85 (95%CI 0.83–0.88)).

Evaluation of ratios of observed risk across quintiles of predicted risk indicated that
the model best discriminated low and high-risk patients compared to those classified in
the central quintile or risk score distribution (Figure 3).
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3.4. Comparison with KFRE Performance

Table 3 shows the comparison in discrimination accuracy between PROGRES-CKD
and KFREs equations. Since KFREs equations are computable only for complete infor-
mation cases, patients with missing data were listwise deleted from this analysis. Given
the large amount of missing information for ACR, we converted timed proteinuria assays
(proteinuria g/24 h) into ACR when available. The conversion was based on a published
correspondence table (Supplementary Material).
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Table 3. Comparison between discrimination ability of (A) PROGRES-CKD-6 and (B) PROGRES-CKD-24 and that of Tangri’s
Kidney Failure Risk Equations (KFREs) in the FMC and the GCKD cohort. The two scores were computed considering
only complete cases (column “Effective sample size”), while patients with missing data were not included in the analysis.
Endpoint horizons: 6 months for PROGRES-CKD-6; 24 months for PROGRES-CKD-24. Imputation method: Listwise.
Non-inferiority was defined as AUC < 0.05, while superiority was set at ∆AUC ≥ 0.05. * Delta AUC: AUC of Tangri’s
KFRE–AUC of PROGRES-CKD model.

Model Validation Cohort Comparator Model AUC PROGRES-CKD Delta AUC * p-Value Effective Sample Size

PROGRES-CKD-6
FMC NephroCare

4VAR 0.90 −0.012 0.3255 927
6VAR 0.90 −0.016 0.2220 927

GCKD
4VAR 0.91 −0.146 0.0016 459
6VAR 0.91 −0.149 0.0013 459

PROGRES-CKD-24
FMC NephroCare

4VAR 0.87 0.020 0.0483 1081
6VAR 0.87 0.018 0.0888 1081

GCKD
4VAR 0.85 0.030 0.0105 3999
6VAR 0.85 0.027 0.0246 3999

Based on the superiority test criteria, the discrimination accuracy of PROGRES-CKD-6
was greater than KFRE equations for short term RRT risk among stage 4–5 CKD patients
(Table 3). PROGRES-CKD-24 discrimination was not inferior to that of the gold standard
algorithms (Table 3).

3.5. Potential Impact Simulation

A potential impact study compared the risk of KRT estimated by nephrologists with
those calculated by PROGRES-CKD-24 and investigated the potential incremental efficiency
of using PROGRES-CKD compared to physicians’ assessments to inform referral to an
intensified multidisciplinary prevention program to delay progression to ESKD.

Table 4 reports ratings of CKD progression risks provided by either physicians or
the prediction model. In the evaluation sample, 25 patients required KRT within 2 years,
while 53 patients did not reach the study endpoint. PROGRES-CKD-24 had excellent
discrimination within this dataset (AUC = 0.96), while experts’ ratings demonstrated good
discrimination (average AUC = 0.79), with average sensitivity = 0.64 and average specificity
= 0.85 at the optimal cut-off point (score > 6). Therefore, experts were less discriminative
of endpoint occurrence compared to PROGRES-CKD-24 (∆M-E = 0.17, p = 0.005). The
correlation of physicians’ ratings with PROGRES-CKD-24 ratings was moderate (r = 0.50,
p < 0.01); furthermore, experts showed different abilities to discriminate patients’ risk.
(Table 4).

Table 4. PROGRES-CKD-24 and Experts’ ratings of CKD progression risk.

Experts

PROGRES-CKD-24 Expert 1 Expert 2 Expert 3 Expert 4

AUC 0.96 0.84 0.72 0.86 0.76
Sensitivity 0.76 0.80 0.50 0.75 0.60
Specificity 0.96 0.84 0.89 1.00 0.82

Figure 4 shows the results of our impact simulation. Based on the experts’ ratings
(PPV = 17%; FOR = 2%), n = 1725 (17.3%) patients would be assigned to the high-risk
category, while n = 8275 (82.8%) would be recommended to the standard care program
(Figure 4, panel A). Based on the assumptions set for the simulation exercise (i.e., ESKD
overall incidence without intervention: 2.3 events/100 patient-years; ESKD risk is reduced
by 50% in the intensified intervention group) there would be 362 ESKD events overall.
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Therefore, in this scenario, physicians’ referral to the intensified program would delay
98 ESKD cases (i.e., an Overall Program Effect Size of 1.27). The number of patients needed
to treat would be NNT = 18 (Figure 4, panel D). Conversely, risk stratification by PROGRES-
CKD-24 (PPV = 48%; FOR = 1.2%) leads to referral of n = 732 (0.73%) patients to intensified
intervention (Figure 4, panel B). In this case, 117 ESRD events would be prevented, i.e.,
an Overall Program Effect Size of 1.36. The number needed to treat would be NNT = 6
(Figure 4, panel D). Finally, under a hypothetical risk averse policy that would refer all
stage 3 CKD patients to the intensified program, 153 ESRD events would be prevented
with NNT = 65 (Figure 4, panel C).

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 13 of 20 
 

 

Table 4. PROGRES-CKD-24 and Experts’ ratings of CKD progression risk. 

  Experts 
  PROGRES-CKD-24 Expert 1 Expert 2 Expert 3 Expert 4 

AUC 0.96 0.84 0.72 0.86 0.76 
Sensitivity 0.76 0.80 0.50 0.75 0.60 
Specificity 0.96 0.84 0.89 1.00 0.82 

Figure 4 shows the results of our impact simulation. Based on the experts’ ratings 
(PPV = 17%; FOR = 2%), n = 1725 (17.3%) patients would be assigned to the high-risk 
category, while n = 8275 (82.8%) would be recommended to the standard care program 
(Figure 4, panel A). Based on the assumptions set for the simulation exercise (i.e., ESKD 
overall incidence without intervention: 2.3 events/100 patient-years; ESKD risk is reduced 
by 50% in the intensified intervention group) there would be 362 ESKD events overall. 
Therefore, in this scenario, physicians’ referral to the intensified program would delay 98 
ESKD cases (i.e., an Overall Program Effect Size of 1.27). The number of patients needed 
to treat would be NNT = 18 (Figure 4, panel D). Conversely, risk stratification by 
PROGRES-CKD-24 (PPV = 48%; FOR = 1.2%) leads to referral of n = 732 (0.73%) patients 
to intensified intervention (Figure 4, panel B). In this case, 117 ESRD events would be 
prevented, i.e., an Overall Program Effect Size of 1.36. The number needed to treat would 
be NNT = 6 (Figure 4, panel D). Finally, under a hypothetical risk averse policy that would 
refer all stage 3 CKD patients to the intensified program, 153 ESRD events would be 
prevented with NNT = 65 (Figure 4, panel C). 

 
Figure 4. Potential impact simulation of PROGRES-CKD-24 implementation in a hypothetical CKD cohort. Flowcharts 
showing patients’ referral to intensified intervention programs based on (A) experts’ ratings, and (B) PROGRES-CKD 
scores; (C) Number of ESKD events within 24 months: both observed and saved cases are shown; D) Number of patients 
needed to treat to save 1 patient; “all-in strategy” involves referral of all stage 3 patients to the intensified healthcare 
program. Abbreviations: ESKD, end-stage kidney disease; NNT, Number needed to treat. 

  

Figure 4. Potential impact simulation of PROGRES-CKD-24 implementation in a hypothetical CKD cohort. Flowcharts
showing patients’ referral to intensified intervention programs based on (A) experts’ ratings, and (B) PROGRES-CKD scores;
(C) Number of ESKD events within 24 months: both observed and saved cases are shown; D) Number of patients needed
to treat to save 1 patient; “all-in strategy” involves referral of all stage 3 patients to the intensified healthcare program.
Abbreviations: ESKD, end-stage kidney disease; NNT, Number needed to treat.

4. Discussion

The present study reports the derivation and validation of the PROGRES-CKD algo-
rithm in two independent cohorts of non-dialysis dependent CKD patients. Discrimination
accuracy of PROGRES-CKD was excellent for both the short-term prediction horizon
(6 months) and the long-term prediction horizon (24 months).

Of note is the fact that PROGRES-CKD-6 and PROGRES-CKD-24 had reproducible
discrimination accuracy in both validation studies. The FMC NephroCare cohort included
real-world clinical data of stage 3–5 CKD patients from 15 countries (Europe, South-
America, Africa), while the GCKD study is a prospective CKD cohort study recruiting
a wider range of NDD-CKD patients with moderate GFR impairment in Germany [21].
Given the substantial differences between the two cohorts in geographical area of re-
cruitment (international vs. national), inclusion/exclusion criteria, and data collection
strategies (real-world vs. pre-specified protocol), the observed consistency in discrimina-
tion and calibration corroborates the generalizability of PROGRES-CKD across different
CKD subpopulations and clinical settings.
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To further characterize PROGRES-CKD accuracy, we compared its discrimination
performance against KFREs which were extensively validated in different CKD patient
populations [11,17,18] and are routinely used in clinical practice. PROGRES-CKD was as
accurate as KFREs for 24-month prediction in both validation cohorts and more accurate
for 6-month forecasting in the GCKD study. Even though the two algorithms showed com-
parable performance in long-term prediction, the KFRE risk score could not be computed
in a vast share of patients of the FMC NephroCare cohort because of missing informa-
tion of key input variables (Figure 5). Conversely, PROGRES-CKD was available for all
patients due to accurate handling of missing variables inherent to naïve Bayes classifiers
(Figure 5) [36]. In fact, PROGRES-CKD potentially incorporates input from as many as
32 clinical parameters, yet its prediction can be computed with any subset of information.
Therefore, PROGRES-CKD performance remained stable even for patients with many
missing parameters representative of a real-world clinical practice setting. Furthermore,
by assessment of VOI metrics, PROGRES-CKD allows the graphical representation of the
uncertainty around prediction due to missing data. Given that VOI metrics are calculated
for each missing clinical parameter within the patient’s health records, they can be used to
rank the potential prognostic benefit of additional diagnostic testing or biomarker assays
for patients with incomplete medical data. These peculiar features of PROGRES-CKD
significantly increase its clinical usability in that they enable to address the problem of
missing predictors in real-world data [17] by exploiting the full wealth of information
collected in routine clinical practice.
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Figure 5. Discrimination ability of PROGRES-CKD and KFREs and percentage of computed scores
by each prediction tool. Only cases with complete medical information were included in this analysis.
(A) RRT prediction within 6 months; (B) RRT prediction within 24 months. Bars denote AUC (left y-
axis), while dots denote the percentage of computed scores on the total number of recruited patients in
each cohort (right y-axis). Abbreviations: P-CKD6, PROGRES-CKD-6; P-CKD24, PROGRES-CKD-24;
4VAR, KFRE 4 variables; 6VAR, KFRE 6 variables.
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One additional advantage of NBCs such as PROGRES-CKD over traditional equation-
based prediction tools rest in their ability to generate personalized, patient-specific impact
metrics representing the relative contribution of each predictor to a patient’s risk. Impact
metrics can be used to estimate the potential impact of interventions addressing modi-
fiable risk factors. This has important implications for patient care, since there can be
considerable heterogeneity in underlying diseases, demographics, co-morbidities, and
risk for progression among CKD patients and, consequently, optimal intervention strate-
gies might deviate between patients with the same overall risk estimate depending on
their individual high impact risk parameters. Therefore, both VOI and impact metrics
could help physicians within their decision-making processes in tailoring interventions
according to each individual patient’s needs and characteristics [37]. Adoption of a more
personalized clinical approach would lead not only to improved CKD clinical manage-
ment (targeted diagnostic and treatment investigations with minimum adverse events
and maximum efficacy, and consequently increased adherence to treatment), but it could
also contribute towards optimizing the utilization of healthcare resources. In fact, ranking
clinical parameters by their impact on risk score computation helps physicians’ reasoning
on priority and enables strategic and rational formulation of therapeutic plans considering
both patient/disease-related factors and resource availability.

One specification of PROGRES-CKD allows the identification of patients whose kidney
function is more likely to deteriorate within 6 months, a feature enabling timely referral
to vascular access creation services and transition management [38,39]. The potential
advantages of accurate short-term progression are two-fold. Patients starting on chronic
dialysis with an arteriovenous fistula (AVF) rather than catheter have improved clinical
outcomes in terms of survival, hospitalization, and complications [40]. On the other hand,
inappropriate AVF creation in stage 4 and 5 patients who do not rapidly progress to KF is
associated with complications and premature loss of patency [38].

Accurate risk prediction is a challenging task for physicians in real-world clinical
practice, due to a number of disease, clinician, and organization related factors, includ-
ing: inherent heterogeneity and variability in CKD progression rates [41,42], incomplete
information, unrecognized case ambiguity, overconfidence leading to reduced analyti-
cal scrutiny, wrong perception of average population risk, over-generalization, fatigue,
working overload, aging, altered affect impairing executive memory, switch of analytic
scrutiny, and inexperience [43–48]. Therefore, readily available risk scores which prove to
be accurate, generalizable to a wide array of CKD subpopulations and settings, and robust
to missing data patterns observed in real-life applications may considerably assist clinical
decision making, particularly when providing the opportunity to simulate the impact of
interventions to individual patient cases.

In order to estimate the potential impact of improved prognostication around CKD
progression on process outcomes, clinical outcomes, and costs [38,49], we conducted a
simplified simulation using PROGRES-CKD as a patient stratification system for referral to
intensified prevention programs for non-dialysis dependent (NDD)-CKD patients. In our
simulation, risk estimates provided by either PROGRES-CKD or nephrology experts were
used to stratify CKD patients. Subjects assigned to the “high-risk” category are referred
to an intensified healthcare program aimed at reducing the risk of CKD progression. Our
analysis suggested that PROGRES-CKD-driven referral to the intensified program would
be more effective and largely more efficient than referral patterns determined by both
healthcare expert risk assessment and an “all-in strategy” (i.e., all patients are referred to
the intensified healthcare program when they reach stage 3 CKD). Therefore, personalized,
risk-based referral may improve the efficiency of healthcare systems by enhancing the
appropriateness of resource allocation in terms of direct expenditures and staff utilization.
Personalized referral, however, is not just a matter of mere efficiency. In fact, inappropriate
referral to the intensified intervention would involve unnecessary medicalization with
greater risks of adverse events, impoverishment of quality of life even in people with a
very low risk of progression, increased rate of therapeutic fatigue, and reduced adherence.
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Conversely, accurate and reliable patient stratification helps physicians and healthcare
providers balance individual patient needs with overall resource utilization, ultimately
leading to more effective care for both the individual patient and the population [50].

5. Limitations

Validation of risk score should be considered a continuous process of generalization
tests rather than a single experiment. While the performance of PROGRES-CKD was stable
in both well-conducted longitudinal cohort studies (i.e., GCKD) and historical cohorts of
real-life practice (i.e., FMC NephroCare), evidence concerning PROGRES-CKD robustness
with real-world-representing clinical practices outside FMC NephroCare is still missing.
For this reason, PROGRES-CKD undergoes a periodical process of performance monitoring
while external cohorts for validation exercises are actively sought for.

6. Conclusions

The Prognostic Reasoning System for CKD patients (PROGRES-CKD) demonstrated
excellent discrimination accuracy in two independent cohorts of NDD-CKD patients.
The underlying models provide accurate prediction for both 24 and 6 months KRT risk.
Contrary to traditional equation-based algorithms which cannot be applied to a large
proportion of patients with incomplete data, PROGRES-CKD extends to all patients and
allows explicit assessment of prediction robustness in case of missing values for key risk
factors. Furthermore, PROGRES-CKD enhances prognostic reasoning by providing patient-
specific impact metrics representing the relative contribution of each predictor to a patient’s
risk and can be used to estimate the potential impact of tailored interventions in addressing
individual and modifiable risk factors. While PROGRES-CKD-24 may contribute to efficient
and effective referral to intensified prevention programs for NDD-CKD patients, prediction
of short-term outcomes (PROGRES-CKD-6) can be a key enabler of timely AVF creation and
transition management. Given these results, both PROGRES-CKD algorithms reported here
have the potential to advance current standards in routine CKD risk estimation, patient
stratification, and individualizing interventions.
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