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Abstract

Lung cancer remains the leading cause of cancer morbidity and mortality worldwide among both 

men and women. While surgical resection remains the standard of care for early stage NSCLC, 

chemoradiation has been a mainstay of treatment for locally advanced non-small-cell lung cancer 

(LA-NSCLC) patients for decades. Consolidation immunotherapy has improved survival in this 

subset of patients after conventional chemoradiation, and has emerged as the new standard. The 

synergy between immunotherapy and radiation, as well as ongoing research on the effects of 

radiation on the immune system, allows for the exploration of new avenues in the treatment of LA-

NSCLC. In addition to the use of durvalumab as consolidative systemic therapy after concurrent 

chemoradiotherapy for Stage III NSCLC, other combination regimens have been shown to be 

effective in various disease stages in preclinical and clinical studies. These regimens include 

CTLA-4 and PD/PDL-1 checkpoint inhibitors combined with radiation treatment. While these 

combined regimens have demonstrated efficacy, they are not without toxicity, and require 

additional evaluation when combined with radiation. In this review, we have summarized the 
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immunostimulatory and immunosuppressive effects of radiation therapy. We also evaluate the 

current evidence and ongoing research supporting the combination of radiotherapy and 

immunotherapy across early to LA-NSCLC.
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Background

Lung cancer is the most common cancer and a leading cause of cancer related death in the 

world. In 2018, there were approximately 2.1 million new cases of lung cancer diagnosed 

worldwide, and a 1.8 million lung cancer related deaths (1). Surgical resection remains the 

standard of care for treatment of stage I non-small cell lung cancer (NSCLC), with reported 

long-term disease-free survival (DFS) rates of 80–90% (2–4). In patients with early stage 

NSCLC who are deemed not to be candidates for surgery or those who refuse surgical 

intervention, stereotactic body radiation therapy (SBRT) has been demonstrated to be 

potentially comparable, with local control rates approaching 90% in some series (5,6). By 

contrast, definitive chemoradiotherapy followed by consolidative therapy with durvalumab, 

an anti–programmed death ligand 1 (PD-L1) antibody, has become the new standard of care 

for locally advanced unresectable NSCLC (7,8). SBRT has allowed for high doses of highly 

conformal radiation delivered in a limited number of fractions to a tumor, facilitating the 

precision of therapy while minimizing radiation dose to adjacent organs at risk.

Radiation therapy (RT) has been shown to have a number of immunostimulatory effects, 

including priming the immune system, recruiting immune cells, and altering the 

immunosuppressive effects of the tumor microenvironment (9). In this review, we will 

summarize evidence and ongoing research on combining immunotherapy with conventional 

radiation or SBRT across early stage and locally advanced non-small cell lung cancer.

Methods

We performed a literature search using PubMed on radiation therapy and immunotherapy 

and also searched ClinicalTrials.Gov for ongoing and completed trials on the subject. 

Additionally, we evaluated research from major oncology conferences including ASTRO, 

ASCO, and ESMO to further compile a comprehensive list of studies. Relevant articles and 

studies were reviewed by the authors and their results were summarized.

We present the following article in accordance with the Narrative Review reporting checklist 

(available at http://dx.doi.org/10.21037/shc-20–66).

Effects of radiation on cancer immunity

Radiation therapy is known to induce cellular demise by inflicting double strand DNA 

damage mediated through a variety of mechanisms, including apoptosis, mitotic catastrophe, 

and radiation-induced senescence (10). Cell death triggers a tightly knitted series of immune 
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events, both immunostimulatory and immunosuppressive. There are key major pathways 

mediating an RT induced immune response such as dendritic cell activation via tumor 

antigen presentation, increase in tumor-infiltrating lymphocytes, and modulation of 

extracellular signaling (7,8). New treatment regimens are being developed on the basis of 

these mechanisms.

Activation of dendritic cells—At the molecular level, ionizing radiation induces 

irreparable DNA damage within tumor cells, which in a dose responsive manner results in 

expansion of the intracellular peptide pool, expression of calreticulin, upregulation of the 

surface MHC class 1 molecules, leading to phagocytosis by dendritic cells (DC), DC 

activation, enhanced tumor antigen cross-presentation and promotion of inflammatory 

cytokines secretion (11,12). It has been shown that the process of uptake and cross-

presentation of tumor-derived antigens by DC to T-cells, the RT-mediated tumor regression 

and adaptive immune response to RT is mediated by type I interferon (IFN-I) (13). The 

endoplasmic reticulum-associated stimulator of interferon genes (STING) protein has been 

demonstrated to be a mediator for induction of IFN-I by intracellular exogenous DNA 

(14,15). Burnette et al. demonstrated the ability of radiation to increase the expression of 

IFN-I (16). In mice without an IFN-B receptor, the ability of RT to reduce tumor growth was 

diminished. Therefore, DCs are central to the downstream effects of RT via IFN-1 and IFN-

B.

Upregulation of CD8+ T cells—After recruitment and activation by RT-induced tissue 

damage, DCs migrate to the tumor-draining lymph nodes and present tumor-associated 

antigens (TAA) to CD8+ T cells. This presentation results in enhanced expansion and 

activation of the cytotoxic T cell pool comprised of tumor-specific effector CD8+ T cells 

(11). Radiation induces production of chemokines CXCL10 and CXCL16 by tumor cells 

and vascular cell adhesion molecules, VCAM-1 and ICAM, by endothelial cells, thereby 

facilitating trafficking, homing and adherence of the tumor-specific effector T cells to the 

irradiated tissue (16,17–22), as well as cancer lesions outside of the RT field, also 

contributing to the abscopal effect (23).

Induction of apoptosis—Another important mechanism of interaction between radiation 

and the immune system is the modulation of extracellular signaling at the time of cell death 

through the First Apoptosis Signal (FAS) pathway activation. FAS is a cell-surface molecule 

that induces programmed cell death through combining with FAS-Ligand (FAS-L). 

Subsequent activation of caspases 3, 6, and 7 leads to apoptotic cell death. Chakraborty et al. 
demonstrated upregulation of the FAS pathway in tumor cells by sublethal irradiation, 

resulting in improved lytic susceptibility to CD8+ cells and promotion of more effective 

antitumor responses in vivo (24,25). By contrast, several studies have shown that RT 

upregulates FAS-L on endothelial cells to preferential apoptosis in T effector cells while 

sparing T regulator cells, thereby creating a pro-tumoral and immunosuppressive 

environment (26,27). Thus, the depletion of FAS-L expression on tumor endothelial cells 

can potentially lead to an increase in CD8+ T cells entering the tumor microenvironment 

(26). Other radiation-induced death receptors have also been identified, including tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL), as well as CD-80 and the natural 
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killer group 2D (NKG2D) ligands, activation of which may lead to clearance of cancer cells 

by NK cells (28–30).

Immunosuppressive effects—Ionizing radiation also may have immunosuppressive 

properties. Local immune response to RT may be dampened as lymphocytes are sensitive to 

radiation doses and are cleared rapidly from the radiation field (31). Treatment-related 

lymphopenia is commonly seen in patients receiving RT (32). Preclinical studies have shown 

that cytotoxic T-cells are more radiosensitive than regulatory T-cells which can lead to a 

disproportionally higher number of regulatory T-cells and suppresses immune response. 

Novel strategies targeting regulatory T cells (Treg), tumor-associated macrophages, and 

cancer-associated fibroblasts in combination with radiation treatment and immunotherapy 

are being investigated (17,21,22,33).

Radiation doses and timing—Dose per fraction and fractionation schemes can also 

affect the immune response induced by radiation. Shaue et al. showed a dose dependent 

tumor control and increase in number of tumor-reactive T cells in a spleen of a murine 

melanoma model. However, at high RT doses beyond 7.5 Gy per fraction, researchers 

observed an increased representation of Tregs, which abrogated further immune response 

(34). High RT doses of greater than 18–20 Gy per fraction induce DNA exonuclease Trex1, 

which degrades cytosolic DNA and prevents activation of STING pathway, therefore 

suppressing radiotherapy-induced tumor immunogenicity (35). Preclinical data has shown 

that SBRT doses in the range of 12–18 Gy can lead to an upregulation of exonuclease in 

Trex1, but fail to do so at lower doses (35). Lugade et al. showed that 15 Gy single dose 

irradiation resulted in greater numbers of host immune cell infiltrate on Day 14 than a 5 Gy 

×3 fractionation in a B16 melanoma model (17). Despite these preclinical models, the 

optimal fractionation schemes in combination with immunotherapy require further clinical 

evaluation.

Evidence for immunoradiotherapy in NSCLC

One important hallmark of cancer is the ability of neoplastic cells to evade immunological 

destruction by lymphocytes, macrophages, and natural killer cells (36). Over the past decade 

various approaches to increase cancer immunogenicity have been explored. Radiotherapy 

can increase tumor immunogenicity by the upregulation of antigen expression and 

recognition by immune cells, overcoming an immunosuppressive tumor microenvironment 

via enhanced production of immunostimulatory cytokines, and engaging antigen-presenting 

and immune effector cells within the tumor microenvironment (36). Antitumor immunity 

induced by local RT as a single modality is most often insufficient to achieve complete and 

long-lasting tumor clearance. Synergy between radiation therapy and immunotherapy has 

been therefore explored in clinical trials with various malignancies, including lung cancer. 

Immune checkpoint blockade (ICB) has recently changed the paradigm of our therapeutic 

approach to the management of multiple neoplastic diseases. Increased recognition of 

favorable effects of RT immunogenicity stimulated interest and development in a spectrum 

of clinical trials studying synergism between the two therapeutic strategies.
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CTLA-4 inhibitors in combination with radiation therapy—Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4, CD152), is a protein lymphocyte surface 

receptor that is a CD28 homolog with high affinity for B7–1 and B7–2. In contrast to the 

interaction of CD28 with B7–1/2, which transmits a stimulatory signal for T cell 

proliferation and activation, the binding of CTLA-4 to B7–1/2 results in inhibition of the 

early T cell activation. CTLA-4 is a key negative regulator of T cell activation, acting as an 

immune checkpoint. Following engagement with T cell receptor, CTLA-4 can translocate to 

the cell surface, where it outcompetes CD28 for binding to critical costimulatory molecules 

(CD80, CD86) and mediates inhibitory signaling into the T cell, resulting in arrest of both 

proliferation and activation (37). CTLA-4 blockade potentiates T cell proliferation and 

activation and leads to production of immuno-stimulatory molecules including IFN-gamma, 

IL-2, and TNF-alpha (38,39). Ji et al. showed an increase in tumor-infiltrating lymphocytes 

and INF-gamma levels with anti-CTLA-4 blockade (40).

CTLA-4 blocking antibody has been combined with radiation therapy to study a potential 

synergistic response in pre-clinical setting (41–43). Dewan et al. tested various dose 

fractionation regimens to determine the synergistic antitumor effect between radiation and 

9H10 monoclonal antibody against CTLA-4 (42). Specifically, breast and colon carcinoma 

mouse models were treated with three distinct regimens of RT (20 Gy ×1, 8 Gy ×3, or 6 Gy 

×5) in combination with a 9H10 CTLA-4 antibody versus 9H10 CTLA-4 antibody alone. 

While the CTLA-4 antibody alone had no detectable effect on tumor size, the combination 

of the CTLA-4 antibody with all of the three fractionated radiotherapy regimens led to 

significant growth inhibition of the tumor (P<0.001). Additionally, a significant decrease in 

size of the tumor outside the radiation field, or the abscopal effect, was observed in mice 

treated with the combination of CTLA-4 antibody and fractionated radiotherapy. The 

frequency of CD8+ T cells showing tumor-specific IFN-gamma production was found to be 

proportional to the inhibition of the distant secondary tumor (42).

The aforementioned preclinical work led to multiple clinical trials assessing the feasibility of 

combining CTLA-4 blockade and RT. A phase I study completed by Tang et al. combined 

ipilimumab with SBRT in different fractionation schemes (41). In the study, 31 patients with 

metastatic solid tumors to the lung and liver received 3 mg/kg of ipilimumab every 3 weeks 

for 4 doses with 50 Gy in 4 fractions or 60 Gy in 10 fractions concurrently or sequentially. 

Combination therapy was found to be safe and effective, demonstrating 10% out-of-field 

immune-related partial response and 23% clinical benefit. Additionally, increased peripheral 

T-cell activation was observed in patients deriving clinical benefit.

Formenti et al. studied biology of abscopal response in thirty-nine patients with refractory 

metastatic NSCLC treated with RT to a single metastatic lesion concurrently with 

ipilimumab (44). Objective systemic responses were observed in 18% of patients and an 

additional 31% of patients had disease control. Increased serum interferon-β after RT, rapid 

in vivo expansion and persistence of a large number of tumor-specific T cell clones in 

peripheral blood were shown to be the strongest predictors of response, further supporting 

hypothesis of RT-induced immunogenicity and the abscopal phenomenon (44).
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PD-1 or PDL-1 inhibitors in combination with RT—Programmed death receptor-1 

protein (PD-1) is a cell surface receptor, a member of the CD28 superfamily, that delivers 

inhibitory signal to T cell activation through binding to soluble ligands PD-L1 and PD-L2. 

In contrast to CTLA-4, which is only expressed on T cells thereby regulating early immune 

response primarily in lymph nodes, PD-1 is expressed by T cells, B cells, macrophages, and 

some tumor cells. PD-1 regulates T cell effector responses in the peripheral tissues, whereby 

CTLA-4 controls T cells activation. Similarly to CTLA-4, PD-1 signaling promotes 

apoptosis in antigen-specific T-cells, interferes with T cell proliferation and cytokine 

signaling, and reduces apoptosis of T regulatory cells (45). One of the signs of loss of 

effector function and T cell exhaustion is increased expression of PD-1 (46). In addition to 

CTLA-4 inhibitors, PD-1 and PDL-1 inhibitors have also been shown to have a synergistic 

effect with radiation in NSCLC (47,48). A preclinical study by Deng et al. showed that PD-

L1 expression was upregulated on tumor cells after radiation therapy (47). Studying synergy 

of RT and PD-1 blockade in the Kras-driven genetically engineered mouse models of 

NSCLC, Herter-Sprie and Koyama et al. demonstrated that RT leads to an adaptive 

upregulation of tumor cell PD-L1 expression and that concomitant administration of PD-1 

antibody generates effective antitumor immunity and long-term tumor control (49). 

Furthermore, they demonstrated lack of antineoplastic efficacy of PD-1 blockade in tumors 

that relapsed after RT, along with significant induction of T cell inhibitory markers in post-

RT relapse setting in the murine model, suggesting that most synergy between RT and PD-1 

inhibition can be achieved in RT-naïve tumors (50,51).

Role of immunotherapy in combination with RT in treatment of locally advanced NSCLC

Approximately one quarter of patients with lung cancer are diagnosed with locally advanced 

NSCLC (LA-NSCLC) (52). Despite definitive multimodality treatment of the primary 

tumor, the majority of the patients experience disease recurrence (53), with distant failures 

being the most common patterns of recurrence in adenocarcinoma (54,55). Therefore, 

innovative strategies have been under investigation aiming to improve long-term disease 

control in LA-NSCLC patients. One of such novel approaches is harnessing RT’s 

immunomodulatory properties to enhance efficacy of the immune checkpoint inhibitors.

Sequential use of checkpoint inhibitors and RT in locally advanced NSCLC—
Expanding on preclinical work, several clinical trials have reported encouraging results in 

employing combinations of radiation therapy with inhibition of PD-1 signaling pathway as a 

novel strategy for treatment of LA-NSCLC. Shaverdian et al. (56) conducted a secondary 

analysis of the expansion NSCLC cohort from the KEYNOTE-001 trial (57,58) aiming to 

assess efficacy and safety of therapy with the PD-1 inhibitor Pembrolizumab in patients with 

advanced NSCLC who previously received radiotherapy for treatment of lung cancer. The 

investigators evaluated ninety-eight patients treated at a single institution who were enrolled 

on the seminal KEYNOTE-001 trial which was a large international, multicenter, phase 1 

trial of single agent pembrolizumab in patients with advanced solid tumors (59). The median 

PFS was substantially longer in patients who received any type of previous radiation therapy 

before pembrolizumab (4.4 versus 2.1 months, HR 0.56, P=0.019). Overall survival was also 

significantly longer in patients with a history of radiation therapy (10.6 versus 5.3 months, 

HR 0·58, P=0.026). The safety profile was acceptable, with three patients who had received 
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previous thoracic radiation therapy vs. one patient with no previous radiation to the chest 

developing ≥ Grade 3 treatment related pulmonary toxicities (56).

Pembrolizumab was also evaluated as a consolidative therapy in the phase II study 

conducted by the Hoosier Cancer Research Network LUN 14–179 (60,61). The primary 

endpoint was time to metastatic disease or death (TMDD).In this trial 93 patients with 

unresectable stage III A-B NSCLC were treated with pembrolizumab for up to a year 

following definitive chemoradiation. With a median follow up of 32.2 months, consolidation 

pembrolizumab improved the TMDD and PFS in comparison to historical controls. The 

median TMDD was 30.7 months. The median PFS was 18.7 months and the median OS was 

35.8 months. The toxicity profile was comparable to that observed in previous 

pembrolizumab studies. Five patients (5.4%) experienced Grade 3–4 pneumonitis, and there 

was one pneumonitis-related death.

The most robust and practice-changing results of investigating immunotherapy for treatment 

of locally advanced NSCLC in the consolidative setting was reported with PD-L1 inhibition 

by durvalumab (7,8). The PACIFIC trial made a significant impact on the treatment 

paradigm for locally advanced NSCLC by becoming the first phase III prospective 

randomized controlled trial to show an increase in PFS and OS using consolidation 

durvalumab following concurrent chemoradiation. In this trial, over 700 patients with stage 

III unresectable NSCLC without disease progression were randomized in a 2:1 ratio to 

receive up to 12 months of either durvalumab or placebo following concurrent 

chemoradiation. The initial analysis demonstrated a significantly improved PFS compared to 

the placebo (16.8 months compared to 5.6 months, P<0.001) leading to the FDA and EMA 

approval of durvalumab for use in the consolidative space of LA-NSCLC patients. Updated 

analysis showed a significantly improved two-year overall survival rates in the durvalumab 

arm (66.3% vs. 55.6%, P=0.005). The median time to death or distant metastasis was 

markedly prolonged in durvalumab arm (28.3 vs. 16.2 months, HR 0.53 (95% Cl: 0.41–

0.68). In the 3-year update, median duration of follow up was 33 months. The overall 

median survival has yet to be reached with durvalumab versus 29.1 months with placebo. 

The 3-year OS continued to demonstrate benefit of maintenance durvalumab (57% vs. 
43.5%). Patient-reported outcomes showed no clinically important differences between the 

groups suggesting the tolerability of durvalumab (7,8,62,63).

Concurrent use of checkpoint inhibitors and RT in locally advanced NSCLC—
Building upon the success of chemoradiation followed by immunotherapy in treating LA-

NSCLC, many trials are evaluating the role of immunotherapy in earlier in the course of 

therapy. In a completed trial by Jabbour et al., twenty-one patients received pembrolizumab 

concurrently with chemoradiation therapy (chemoRT) in locally advanced NSCLC (64). 

Specifically, patients were divided into five cohorts: (I) full dose (FD) pembrolizumab (200 

mg intravenously Q3Wk) starting 2–6 weeks after chemoRT; (II) reduced dose (RD) 

pembrolizumab (100 mg intravenously Q3Wk) starting Day 29 of chemoRT, (III) FD 

pembrolizumab starting Day 29 of chemoRT, (IV) RD pembrolizumab starting on Day 1 of 

chemoRT, (V) FD pembrolizumab starting on Day 1 of chemoRT. All cohorts received 

Q3Wk of pembrolizumab up to 18 cycles. Dose limiting toxicity (DLT) was defined as grade 

4 or higher of pneumonitis within 21 days of the first cycle of pembrolizumab. No DLTs 
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were reported in any cohorts. Grade 3 or higher irAEs were reported in 4 patients. For 

patients who received greater than two doses, the median PFS was 21 months (95% CI: 15.3 

to infinity). Overall, combined PD-1 treatment and chemoRT was well tolerated with 

encouraging PFS of 69.7% at 12 months, however, with potentially an increased risk of 

pneumonitis using concurrent PD-1 checkpoint blockade (64).

The phase II DETERRED study aimed to assess the safety and feasibility of concurrent use 

of atezolizumab with chemoradiotherapy followed by consolidation with atezolizumab in 

LA-NSCLC (65,66). In this study, immunotherapy was given sequentially in part one 

(N=10) or concurrently in part two (N=30) with chemoradiation, followed by full dose 

doublet chemotherapy and consolidation atezolizumab. In Part 1, the median PFS was 18.6 

months, and the OS was 22.8 months. In Part 2, the median PFS was 13.2 months, and OS 

was not reached. The PD-L1 status in baseline tumor biopsy was evaluable for 34 patients. 

There were no significant differences in cancer recurrence based on PD-L1 expression of 

<1% vs. ≥1% (56.3% vs. 38.9%, respectively), or for the PD-L1 cutoff of less or more than 

50% (53.8% vs. 25%). There was no additive toxicity as a result of concurrent use of 

Atezolizumab with RT, and frequency and grade of pneumonitis were similar to that seen in 

previous trials (four patients developed grade 2 and one patient grade 3 pneumonitis).

The NICOLAS-ETOP trial was conducted in Europe and was a phase II trial which 

evaluated safety of nivolumab with concurrent chemoRT in unresectable LA-NSCLC (67). 

In this trial, 82 patients received three cycles of platinum-based chemotherapy concurrently 

or sequentially with RT. In the concurrent chemoRT regimen, radiotherapy was delivered at 

66 Gy in 33 daily fractions, while for the sequential chemoRT regimen, radiotherapy was 

delivered in 24 daily fractions of 2.75 Gy. The mean lung dose was restricted to 20 Gy. 

Nivolumab started concurrently with RT. In the interim analysis, no unexpected adverse 

effects or safety concerns have been reported. For the first 21 patients, no grade ≥3 

pneumonitis was observed in 3 months following completion of RT, while one late event 

occurred 6 months after completion of RT. One -year PFS will be evaluated in an expanded 

patient cohort.

Use of immunotherapy with RT in Stage IV patients—Immunogenic properties of 

radiotherapy, its ability to convert immunologically “cold” tumors into “hot” tumors capable 

of inducing immune response has generated a new concept of multisite SBRT as an 

emerging paradigm for treatment of metastatic disease. Luke et al. evaluated the safety of 

pembrolizumab and multisite SBRT in 79 patients with solid tumors, seven of who had 

Stage IV NSCLC (68). The patients received SBRT to a dose 30–50 Gy in 3–5 fractions 

delivered to 2–4 metastatic lesions. Pembrolizumab was started within 7 days from 

completion of SBRT. With a median follow up of 5.5 months, 6 patients experienced DLT 

without radiation dose changes. The percent change in tumor diameter for irradiated patients 

was significantly improved (−21.7%) for irradiated patients compared to nonirradiated 

patients (1.7%). In the 68 patients with imaging follow-up, the overall objective response 

rate was 13.2%. Median PFS and OS were 3.1 and 9.6 months, respectively. Expression of 

interferon-γ-associated genes from post-SBRT tumor biopsy specimens significantly 

correlated with nonirradiated tumor response. Overall, the data shows synergy between 

SBRT and pembrolizumab in inducing out of field responses (68).
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Dual checkpoint blockade in combination with radiation—The Big Ten Cancer 

Research Consortium LUN 16–081 is a randomized, multi-center, phase II study, evaluating 

efficacy and safety of combining a CTLA-4 inhibitor with a PD-1 inhibitor as consolidation 

therapy following definitive chemoRT in patients with unresectable stage IIIA/IIIB NSCLC. 

An interim safety analysis has been reported (69). There were no unexpected safety signals 

in the first 20 patients treated on protocol. Four patients experienced ≥ Grade 2 pneumonitis. 

The incidence of ≥ Grade 3 irAEs was higher in the combination arm, however these were 

manageable with the use of established guidelines, and no therapy related deaths were 

observed. Pneumonitis rates for all aforementioned trials are summarized in Table 1.

SBRT with immunotherapy in Early Stage NSCLC—There are several ongoing 

prospective trials which are investigating the use of SBRT with immunotherapy for 

medically inoperable early-stage non-small cell lung cancer, included in Table 2. Some of 

the endpoints being evaluated are safety, progression-free survival, overall survival, 

pneumonitis rates, hematologic toxicities, and adverse events. While combined 

immunoradiotherapy has brought substantial benefit in locally advanced NSCLC patients, 

these ongoing trials will help elucidate whether this benefit is seen in early stage patients as 

well.

Conclusions

The combination of conventional RT or SBRT with immunotherapy is a promising treatment 

option for patients with locally advanced non-small lung cancer. Further research will be 

required on mitigating toxicities in these patients. Ongoing trials will delineate subsets of 

patients that can derive meaningful benefit by the addition of immunotherapy to radiation 

therapy, while helping to identify the patients at risk for heightened toxicity from the 

addition of RT to immunotherapy, thereby further improving the survival outcomes of 

patients with lung cancer.
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