

HHS Public Access

Author manuscript *Nature*. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:

Nature. 2015 January 1; 517(7532): 33-38. doi:10.1038/nature14010.

RNA regulons in Hox 5[′]UTRs confer ribosome specificity to gene regulation

Shifeng Xue^{1,2}, Siqi Tian³, Kotaro Fujii^{1,2}, Wipapat Kladwang³, Rhiju Das^{3,4}, and Maria Barna^{1,2,#}

¹Department of Developmental Biology, Stanford University, Stanford, California 94305, USA

²Department of Genetics, Stanford University, Stanford, California 94305, USA

³Department of Biochemistry, Stanford University, Stanford, California 94305, USA

⁴Department of Physics, Stanford University, Stanford, California 94305, USA

Abstract

Emerging evidence suggests a regulatory function of the ribosome in directing how the genome is translated in time and space. However, how this regulation is encoded in mRNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in Homeobox (Hox) 5'UTRs that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral Internal Ribosome Entry Sites (IRESes), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require Ribosomal Protein L38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by a regulatory element, the <u>T</u>ranslational <u>Inhibitory Element</u> (TIE), which blocks cap-dependent translation of these transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.

In addition to transcription, an important layer of gene expression control may be conferred through a regulatory function of the ribosome¹⁻⁶. For example, RPL38, one of 80 Ribosomal Proteins of the eukaryotic ribosome, helps establish the mammalian body plan by selectively facilitating the translation of subsets of Hox mRNAs¹, genes critically required for formation of the body plan⁷. How ribosome-mediated regulation of gene expression is encoded within mRNA sequence remains an unanswered question.

The authors declare no competing interests.

Reprints and permissions information is available at www.nature.com/reprints

[#]Corresponding author: mbarna@stanford.edu.

Author Contributions

M.B. conceived and supervised the project; S.X. and M.B. designed experiments; S.X. performed all experiments with help from K.F. on 5'RACE and sucrose gradient fractionation; S.T. and R.D. designed the RNA structure experiments; S.T. and K.W. performed the RNA structure experiments and analyzed results; S.X. and M.B. wrote the manuscript with contributions from all authors.

Hoxa4 5'UTR sequence has been deposited in GenBank under accession number KM596709. All chemical mapping datasets have been deposited at the RNA Mapping Database (http://rmdb.stanford.edu) under the following accession codes: (1) Full length: HOXA5_STD_0000, HOXA9_STD_0000; (2) *Hoxa9* TIE: HOXA9A_STD_0001; (3) *Hoxa9* IRES: HOXA9D_STD_0001, HOXA9D_STD_0002, HOXA9D_1M7_0001, and HOXA9D_RSQ_0001.

Eukaryotic cellular mRNAs are capped, and their translation is largely cap-dependent^{8,9}. In many viral mRNAs that are not capped, IRESes provide an alternative mechanism for ribosome recruitment to promote translation initiation^{8,10}. Interestingly, IRES elements have also been discovered in certain cellular mRNAs, including *c-myc*, *XIAP*, *Apaf-1* and $p53^{11-16}$. As these cellular mRNAs are capped, the IRES elements act as a "fail-safe" mechanism to promote translation under stress conditions, such as apoptosis or hypoxia, when cap-dependent translation is downregulated^{17,18}. Cellular IRES elements¹⁹ have little sequence or structural homology, and their relevance for translational control and gene expression in normal cell physiology, tissue development, or patterning is unclear.

We report below the unexpected identification of IRES elements within Hox mRNAs, particularly those regulated by RPL38. These IRESes are unusual in that they are critically required for accurate gene expression during normal development. We also identify the TIE, an additional regulatory element in these transcripts, which inhibits general cap-dependent translation and thereby facilitates ribosome-directed, spatiotemporally-restricted protein expression to guide organismal development.

RPL38-regulated Hox mRNAs possess IRES elements

To address the nature of specific *cis*-regulatory elements within transcripts that confer greater regulation by the ribosome, we studied RPL38-mediated control of Hox mRNA translation. We previously showed that while RPL38 is dispensable for general cap-dependent translation, it is required for the translation of a subset of the eleven HoxA mRNAs (*Hoxa4*, *Hoxa5*, *Hoxa9*, *Hoxa11*) (Fig. 1a)¹. We employed a bicistronic reporter assay in the mesenchymal stem cell line C3H10T1/2, which expresses Hox transcripts²⁰, to delineate whether Hox 5'UTRs direct cap-independent translation (Fig. 1a, b). In this reporter system, the first cistron (Renilla luciferase, RLuc) is translated by a cap-dependent mechanism, and the second cistron (Firefly luciferase, FLuc) is translated only if the preceding 5'UTR element can recruit ribosomes by a cap-independent mechanism (Fig. 1a); the latter is considered to reflect IRES-dependent translation initiation²¹.

These experiments revealed that many Hox 5'UTRs possess IRES activity that is as strong as, or even stronger than, the Hepatitis C Virus (HCV) IRES element (Fig. 1b, Supp. Table 2). To ensure that Hox 5'UTRs do not contain putative promoters or splice sites that may produce a monocistronic capped FLuc transcript, we performed additional controls. As expected for a single transcript containing both Rluc and Fluc: (i) the RNA levels of the two reporters are expressed in the same ratio among all bicistronic constructs; (ii) an shRNA against RLuc downregulated both Rluc and Fluc expression; (iii) these transcripts do not contain cryptic splice sites; and (iv) no ribosome read-through of the first reporter is evident (Extended Data Fig. 1). There is good correlation between RPL38 regulation and the presence of IRES elements; all RPL38-regulated mRNAs in the HoxA locus possess IRES elements. These include *Hoxa4*, which we show by 5' RACE possesses a longer 5'UTR of 1.1 kb that contains an IRES element.

To see if cap-independent translation from the Hox 5'UTRs is controlled by RPL38 in C3H10T1/2 cells, a copy of *Rpl38* was disrupted by TALEN nucleases, yielding a 40%

reduction in RPL38 protein expression (Fig. 1c, Extended Data Fig. 2a). In these cells, while there is no change in cap-dependent translation, there is a specific decrease in IRES-dependent translation of Hox target mRNAs that are regulated by RPL38 *in vivo* (Fig. 1c, Extended Data Fig. 2b). Consistent with the fact that RPL38 control of IRES-dependent translation is transcript-specific, *Hoxa3* IRES-dependent translation, which is not regulated by RPL38 within the embryo¹, or an HCV IRES are similarly unaffected by RPL38 knockdown (Fig. 1c). These results reveal the unexpected presence of IRES elements within Hox 5'UTRs and a critical function of RPL38 in regulating their IRES-dependent translation.

The Hoxa9 minimal IRES is evolutionarily conserved

To further understand IRES-dependent regulation of Hox mRNAs, we made a series of deletions within the 1.2-kb *Hoxa9* 5'UTR. We localized the minimum fragment for RPL38-dependent IRES activity to nt 944–1266 (which we term the *Hoxa9* IRES element) (Fig. 1d). Although this fragment does not fully recapitulate the IRES activity observed with full-length *Hoxa9* 5'UTR, it has strong IRES activity on its own and its removal abolishes all IRES activity (Fig. 1d, e). This region of the *Hoxa9* 5'UTR shows remarkable evolutionary conservation in all vertebrates (from fish to mammals) that is significantly greater than either the remaining 5'UTR or the 3'UTR (Fig. 1f, Extended Data Fig. 3). IRES function is also evolutionarily conserved, as the zebrafish *Hoxa9b* 5'UTR shows strong IRES activity in murine C3H10T1/2 cells (Fig. 1g). These findings suggest that the *Hoxa9* IRES element may have arisen early during vertebrate evolution for post-transcriptional regulation of Hox expression.

The Hoxa9 IRES forms an RNA structure in vitro that recruits the ribosome

Many viral IRESes possess structures such as conserved helices, asymmetric bulges, and pseudoknots that interact with initiation factors or the ribosome to promote translation initiation^{22–24}. We therefore examined whether the *Hoxa9* IRES element has structural properties that are functionally important.

Within the full-length *Hoxa9 5'* UTR, protections of sub-regions of the 944–1266 domain from selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)²⁵ were consistent with the minimal IRES domain forming a specific RNA structure *in vitro* (Extended Data Fig. 4). Automated modeling indicated that this domain formed a four-way junction with two long hairpin arms (P3 and P4; Fig. 2a, Extended Data Fig. 6) and a 'right-angle' asymmetric bulge (between P3b and P3c), but with little interaction with other domains of the 5'UTR (Extended Data Fig. 4). Analogous chemical mapping and functional studies on the 5'UTR from a different Hox mRNA, *Hoxa5*, also revealed a structured subdomain (nt 77–132) necessary for its full IRES activity (Extended Data Fig. 5b). Structure conservation between different cellular IRES elements has so far been poorly defined¹⁹. Interestingly, the 'right angle' asymmetric bulges observed in *Hoxa5* and *Hoxa9* (Extended Data Fig. 5c) bear qualitative similarity to asymmetric bulges in, for example, the

HCV IRES RNA²⁶, suggesting at least certain common structural features are present amongst cellular Hox IRES RNAs and viral IRESes.

To gain further insight into structural and functional properties of a Hox IRES, we applied multidimensional chemical mapping to the Hoxa9 minimal IRES subdomain (Fig. 2a, Extended Data Fig. 6). Comprehensive mutate-and-map analysis²⁷ gave strong independent evidence for the same structural topology seen in the context of the full-length 5' UTR, revealing exposure of RNA segments upon mutation of their predicted pairing partners (Extended Data Fig. 6a-d). Importantly, compensatory mutation analysis²⁸ unambiguously confirmed specific base pairs in the P3 and P4 segments (green circles, Fig. 2a, and Extended Data Fig. 7). After this structural characterization, we tested the functional significance of these hairpins towards IRES-dependent translation through bicistronic assays. Deletion of P3, P4, or both hairpins in the context of the full-length Hoxa9 5'UTR gave a significant reduction in IRES activity. Most strikingly, the mutation of nucleotides in the base of P3a reduced IRES activity, while compensatory mutations gave quantitative rescue of IRES activity (Fig. 2b). These results demonstrate the importance of the P3 and P4 hairpins in IRES function and connect the detailed in vitro Hoxa9 IRES structural model to functional activity. Many viral IRES elements contain pseudoknots that may position the ribosome at the initiation codon²⁹. A potential pseudoknot was suggested by mutate-andmap analysis (Fig. 2a), but this awaits further analysis. Together, these data confirm a structure defined at base-pair resolution for a Hox IRES element and indicate that a specific RNA structure is important for cellular Hox IRES activity.

To date, only a small class of viral IRES elements have been shown to interact with both the large and small ribosome subunits to form a translationally competent 80S ribosome^{30,31}. However, a biotinylated full-length *Hoxa9* 5'UTR, as well as the minimal IRES element contained within nt 944–1266, are able to pull down RPs from both the large and small subunits, including RPL38 (Fig. 2c, d). The full-length 5'UTR also pulls down both 28S and 18S rRNAs (Fig. 2e), suggesting that the 80S ribosome is able to form on the uncapped *Hoxa9* 5'UTR. Importantly, the full-length *Hoxa9* 5'UTR lacking the nt 944–1266 IRES element (A9 IRES) or an antisense *Hoxa9* 5'UTR (A9 AS) is no longer able to efficiently recruit RPs or rRNA (Fig. 2d, e), consistent with the fact that these fragments do not possess IRES activity (Fig. 1d). These data support the idea that a structured element from a Hox IRES facilitates 80S ribosome recruitment to the mRNA, either directly or through intermediary RNA-binding proteins.

TIE inhibits cap-dependent translation of IRES-containing mRNAs

Because all eukaryotic mRNAs are capped and translated by a cap-dependent mechanism⁸, the function of an IRES-element in normal translational control remains largely unknown. Surprisingly, removing the IRES element from a *Hoxa9* 5'UTR monocistronic reporter construct dramatically decreases translational efficiency by 70-fold, despite the fact that the mRNA remains capped (Fig. 4a). We therefore hypothesized that the *Hoxa9* 5'UTR may contain additional element(s) that intrinsically inhibit cap-dependent translation. The *Hoxa9* 5'UTR contains 14 putative upstream open reading frames (uORFs), which are generally thought to inhibit the translation of the main open reading frame³². However, mutating all

14 ATGs to TTGs in the *HoxA9* 5'UTR (A9 IRES uORF) (Extended Data Fig. 8a) does not affect cap-dependent translation of *Hoxa9*. We therefore placed various regions of the *Hoxa9* 5'UTR upstream of a monocistronic reporter to assay for effects on cap-dependent translation. Strikingly, nt 1–342 of the *Hoxa9* 5'UTR strongly inhibit cap-dependent translation (Fig. 4b) despite this region not being particularly GC-rich (55%). Other similarly sized pieces of the 5'UTR (nt 343–643), or the very long remaining portion of the 5'UTR (nt 242–126C) does to be be a strong be to the particular being particularly for the strong being particular being particular being particular being part of the strong being part of the str

similarly sized pieces of the 5'UTR (nt 343–643), or the very long remaining portion of the 5'UTR (nt 343–1266), do not inhibit cap-dependent translation and are likely translated by a combination of cap and IRES-mediated translation. To our knowledge, the 1–342 fragment of the *Hoxa9* 5'UTR is a unique example of a 5'UTR regulon that is sufficient to strongly inhibit cap-dependent translation under physiological conditions. We therefore termed this 5'UTR mRNA element the <u>T</u>ranslation <u>Inhibitor Element</u> (TIE). Interestingly, SHAPE analysis of the full-length *Hoxa9* 5'UTR lacks evidence for structural interactions between the TIE and the minimal IRES (Extended Data Fig. 4a), suggesting they function as independent modules. These findings reveal that the TIE enables a more specialized mode of translation initiation directed by the IRES.

A unique 5'UTR topology allows for specialized translation

We next asked whether the unique 5'UTR topology of both a TIE close to the 5' end of the mRNA and an IRES element is a more generalizable mechanism of translation regulation. Our findings reveal that all the minimal IRES domains of HoxA 5'UTRs lie within the 100-300 nt closest to the AUG, with the exception of Hoxa5 (Fig. 3). Importantly, deletions of these minimal IRES domains in monocistronic reporter constructs reveal that they are critically required for normal translation (Fig. 4c-e). In addition, within these HoxA 5'UTRs, a TIE is also present near the mRNA cap (Fig. 4c-e). Moreover, although the Hoxa9, Hoxa3, *Hoxa11*, and *Hoxa4* TIEs do not share obvious sequence similarity, they all dramatically block translation from the β -globin (*Hbb*) 5'UTR (Fig. 4f), which initiates translation exclusively by a cap-dependent mechanism³³. Hoxa5 is the only 5'UTR that does not appear to possess a TIE and a putative uORF also does not decrease cap-dependent translation (Extended Data Fig. 8b). However, Hoxa5 has the shortest 5'UTR (237 nt) and almost the entire UTR is required for IRES activity, leaving little space for an additional TIE (Fig. 3c). Importantly, the Hoxa5 transcript can be produced as a bicistronic mRNA with the neighboring Hoxa6 gene³⁴ and therefore may not need a TIE to inhibit cap-dependent translation in this context. These findings reveal a unique topology to Hox 5'UTRs that suppresses a more generic mode of cap-dependent translational control and facilitates specialized, ribosome-mediated control of protein expression.

The Hoxa9 IRES is essential for protein expression in vivo

To determine whether IRES-dependent translation is critically required for the conversion of the *Hoxa9* transcript into protein *in vivo*, we generated the first targeted mouse knockout of a cellular IRES by removing nt 944–1194 of the *Hoxa9* 5'UTR, leaving the Kozak sequence and the rest of the 5'UTR intact (Fig. 5a, Extended Data Fig. 8c-d). A caveat to the previously generated HOXA9 targeted knockout is the retention of a Neomycin (Neo) cassette^{35,36}, which can have indirect effects on the expression of neighboring Hox genes³⁷. Indeed, our current genetic studies reveal that the presence of the Neo cassette within the

Hoxa9 targeting locus is sufficient to produce phenotypes previously attributed to *Hoxa9* loss of function (Extended Data Fig. 9). Therefore, in our *Hoxa9 IRES/ IRES* mouse, we were careful to remove the Neo cassette from the targeted locus by Cre-mediated excision.

Hoxa9 IRES/ IRES embryos do not show any major change in Hoxa9 transcript boundaries or expression levels (Fig. 5b-c). Strikingly, however, these mice show a fully penetrant homeotic transformation of the thirteenth thoracic vertebra (T13) to the first lumbar vertebra (L1), where a full set of ribs normally present on T13 is missing (Fig. 5d). Although we cannot at present ascertain whether the Hoxa9 IRES deletion completely phenocopies a Hoxa9 knock-out mouse, this dramatic homeotic transformation is precisely at the anterior boundary of *Hoxa9* expression at the thoracic to lumbar transition³⁵. This transformation is also evident in ~50% of Hoxa9 IRES/+ mice, although small rudimentary ribs can still form on T13. Consistently, there is a dramatic decrease in HOXA9 protein levels in the neural tube and somites of Hoxa9 IRES/ IRES embryos from the thoracic to sacral level (Fig. 6a) revealing a block in HOXA9 protein production. Furthermore, in Hoxa9 IRES/ IRES embryos there is a dramatic decrease in ribosome association of the Hoxa9 transcript. In fact, the majority of the Hoxa9 transcript in Hoxa9 IRES/ IRES embryos, but not control transcripts such as β -actin, accumulates in pre-polysomal fractions, reflecting an accumulation of mRNA not bound by translationally active ribosomal subunits (Fig. 6b, Extended Data Fig. 10). These findings reveal that the Hoxa9 IRES element is crucial in recruiting the ribosome to this transcript to pattern the mammalian body plan in vivo.

Discussion

Our studies reveal how expression information encoded within the mRNA template is sufficient to direct ribosome-mediated control of protein production. In particular, our findings suggest that IRES elements facilitate important, ribosome-mediated control of gene expression in development and are therefore key regulatory elements within the mammalian genome (Fig. 6c). Cellular IRES elements have been controversial because of their weak IRES activity as compared to viral IRES elements under non-stress conditions. Their relevance to normal gene regulation is also poorly understood as all eukaryotic mRNAs are capped and undergo cap-dependent translation^{21,38}. Importantly, in our studies, the requirement for Hox IRES elements is explained by our identification of the TIE within these transcripts, which strongly inhibits general, cap-dependent translation (Fig. 6c). We speculate that such IRES elements may be more widespread in the genome and suggest a two-state mechanism for gene regulation, controlled by transcription and an additional layer of *cis*-acting RNA regulons within 5'UTRs that direct protein production. Both IRES and TIE elements may be differentially regulated, providing a versatile toolbox for controlling the ultimate expression of transcripts. Interestingly, while Hox IRES elements are highly conserved, and may already be present in *Drosophila* orthologs³⁹, the TIE lacks conservation and is absent even in vertebrate species such as fish and amphibians (Fig. 1f). These species often lay their eggs in harsh environments⁴⁰ and may have originally employed IRES elements as a fail-safe mechanism to ensure proper expression of key transcripts under stress conditions. Therefore, the acquisition of a TIE later in evolution may have enabled an additional, independent level of regulatory control to IRES-dependent translation and gene expression during normal development. A mechanism that regulates

whether a pre-existing transcript is converted into a protein offers a fast and dynamic means to provide greater variation to gene expression.

It will be interesting to determine if additional RPs may promote specialized translation through control of unique subsets of IRES-containing mRNAs, either directly or through RNA-binding proteins. For example, RPS25 is required for IRES-dependent translation of certain viral IRES mRNAs⁴¹. Moreover, rRNA modifications both at the level of pseudouridylation, and RPL13a-dependent methylation also appear to regulate the translation of certain cellular IRES containing mRNAs^{14,16,42,43}. We therefore speculate that similar to the complex and highly regulated system of transcriptional control, where specific DNA sequences and histone marks regulate gene expression, *cis*-acting RNA regulons in conjunction with more specialized ribosome activity provide newfound regulatory control to gene expression critical for mammalian development.

Methods

Plasmids

Hox 5'UTRs were amplified from mouse E10.5–12.5 cDNA and cloned into the bicistronic pRF vector¹⁴ using *Eco*RI and *Nco*I sites. For monocistronic assays, Hox 5'UTRs are cloned into pGL3 control vector (Promega) using *Hind*III and *Nco*I sites. 5'UTRs of Hoxa3 and Hoxa10 were made by gene synthesis (IDT). pRF-HCV was a kind gift from D. Ruggero (UCSF). Zebrafish Hoxa9b 5'UTR was amplified from zebrafish 24 hpf cDNA. Sequences were based off the Ensembl database⁴⁴. See Supp. Table 1 for a list of PCR primers used.

To ensure no ribosome readthrough of the first cistron in bicistronic assays, a hairpin with a linker (GAATTCAGATCTGGTACCGAGCTCCCGGGGCTGCAGGATATCCTGCAGCC CGGGGACCTCCGGTACCAGATCTAGGATCCGGATCCGGCGACACTCCACCA TGAATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGAAAGCGTCTAGC CATGG) was synthesized and ligated into the pRF vector at the *Eco*RI and *Nco*I sites. Hox 5'UTRs and HCV IRES were cloned into this new vector pRF-hpC in the *Nco*I site. Clones were sequenced to ensure directionality.

5' RACE

RNA was purified from dissected E11.5 neural tubes and somites using TRIzol (Invitrogen). The reverse transcription template was produced using ExactSTART Eukaryotic mRNA 5'- & 3'-RACE Kit (Epicentre) and reverse transcribed using Superscript III (Invitrogen) with a primer in the coding region of *Hoxa4*. The 5' UTR fragment was amplified using Phusion High-Fidelity DNA polymerase (Thermo Scientific) with a gene specific reverse primer and a forward primer at the 5' linker. PCR products were gel-extracted and sub-cloned into TOPO TA cloning vector (Invitrogen) for sequencing.

TALEN

2 sets of TALEN pairs were designed against the second and third exons of Rpl38. TALENs were generated towards the following sequences: F1 5'-GCGGACGCCAGAGCCGA, R1 5'-CCCTCGTCCCGCACTCA, F2 5'-CATCTTCTGTCCCTC, R2 5'-

TGATCTCCTCAATTTTC. Intermediate arrays were produced for each TALEN-pair and assembled into pC-GoldyTALEN⁴⁵. The 2 sets of TALEN pairs were transfected together into C3H10T1/2 cells. Cells were trypsinized into single cell suspension and plated for clonal expansion 2 days after transfection. Positive clones were identified by PCR followed by restriction digest. Rpl38 disruption was confirmed by Sanger sequencing and Western blotting.

Luciferase assay

C3H10T1/2 cells were transfected in 24-well plates with various pRF constructs using Lipofectamine 2000 (Invitrogen) as per manufacturer instructions. Cells were harvested 24h post transfection and assayed using Dual luciferase kit (Promega). IRES activity is expressed as a ratio between Fluc and Rluc. To verify the integrity of the bicistronic construct, an shRNA plasmid against Rluc or scrambled plasmid¹⁶ was cotransfected with the pRF constructs. Cells were harvested 72h post transfection for luciferase assays. For monocistronic luciferase assays, various pGL3 constructs were transfected as above into 12 well plates. Cells were harvested 24 h later. 50% of the cells were used for qPCR analysis with Fluc primers to quantify total transcript abundance, the rest for luciferase assays. Fluc activity was normalized to total luciferase mRNA expression levels.

RNA pull down

Template DNA was made by PCR from pRF-HoxA9 using a 5' primer containing the T7 promoter and a 3' primer containing a linker sequence T2 (Supp. Table 1). Biotinylated RNA were *in vitro* transcribed with Megascript T7 kit (Ambion) using a final concentration of 6.8 mM each of ATP, CTP and GTP, 6.5 mM UTP and 0.3 mM Biotin-16-UTP (Roche). Synthesized RNAs were treated with TURBO DNase (Ambion) and purified by phenol/ chloroform extraction. Unincorporated nucleotides were removed by running the RNA through a G50 column (GE Healthcare). The RNA was analyzed by electrophoresis for quality and Nanodrop for quantity.

A total of four 15-cm dishes of subconfluent C3H10T1/2 cells were harvested by trypsinization. Cell pellets were washed and lysed on ice with 1.5 ml lysis buffer (10 mM Tris pH7.5, 10 mM MgCl₂, 150 mM NaCl, 0.1% TritonX, 0.25% NP40, 10 mM DTT, RNaseOUT, Halt Protease inhibitor) for 30 min. Lysate was centrifuged at 14000 rpm for 10 min, 4°C. Supernatant was transferred to new tube and cleared with 400 µl avidin-agarose beads (Thermo) for 50 min, 4°C. Cleared lysate was transferred to new tube and quantified by spectrometry.

Folding buffer was added to 100 pmol of biotinylated RNA of each species to a final concentration of 100 mM Tris pH8, 100 mM NaCl, 10mM MgCl₂. RNA was heated to 95 $^{\circ}$ C for 1.5 min, ice for 2 min and 37 $^{\circ}$ C for 20 min. 100 pmol of folded RNA and 1 mg cleared lysate were incubated together with 100 µg/ml heparin and 100 µg/ml yeast tRNA in 2 ml lysis buffer for 1 h at RT.

Streptavidin M280 Dynabeads (Invitrogen) were washed according to manufacturer's instructions. 100 µl beads were incubated with each RNA/ lysate sample for 1.5 h at 4 °C.

Beads were then washed with lysis buffer with increasing concentrations of salt up to 600 mM NaCl. One-tenth of beads was kept for RNA and the rest was used for protein analysis. RNA was eluted with 50 µl RNA denaturing buffer (95% formamide, 10 mM EDTA) at 65 °C for 5 min. Eluted RNA was purified by phenol/ chloroform extraction. RNA was converted to cDNA and analyzed by qPCR using primers HoxA9 5UTR F and HoxA9 342 R (Supp. Table 1). Proteins were eluted with 40 µl protein elution buffer (5 mM biotin, 3x SDS sample buffer) at 95 °C for 5 min. Proteins were analyzed by Western blotting.

Western blotting

Western blots were performed with antibodies against RPS6 (Cell Signaling #2217) and RPL10a (Santa Cruz sc-100827). Polyclonal RPL38 antibodies were generated against C-EKAEKLKQSLPPGLAVKDLK.

RNA structural probing and data analysis

Double-stranded DNA templates were prepared by PCR assembly of DNA oligomers with maximum length of 60 nt ordered from IDT (Integrated DNA Technologies). DNA templates for mutate-and-map (M²) and mutation/rescue were designed as previously described using NA_Thermo (https://github.com/DasLab/NA_thermo) and HiTRACE^{27,28}. DNA template and RNA transcript preparation and quality check were carried out as previously described^{27,28}.

All chemical mapping were carried out in 96-well format as described previously^{27,28,46}. Briefly, prior to chemical modification, RNA was heated up and cooled to remove secondary structure heterogeneity, and folded for 20 min at 37 °C in 10 mM MgCl₂, 50 mM Na-HEPES, pH 8.0. RNA was modified by adding freshly made 5 mg/mL 1-methyl-7- nitroisatoic anhydride (1M7)⁴⁷ or anhydrous DMSO as control. Modification reactions were incubated at room temperature and then quenched with 0.5 M Na-MES, pH 6.0. Quenches also included poly(dT) magnetic beads (Ambion) and FAM-labeled Tail2-A20 primer for reverse transcription. Samples were separated and purified using magnetic stands, washed with 70% ethanol twice, and air-dried. Beads were resuspended in ddH₂O and reverse transcription mix, then incubated at 55 °C for 30 min. RNAs were degraded by base and heat, then cooled and neutralized with acid quench. Fluorescent labeled cDNA was recovered by magnetic bead separation, rinsed twice with 70% ethanol and air-dried. The beads were resuspended in Hi-Di formamide containing ROX-350 ladder (Applied Biosystems), then loaded on capillary electrophoresis sequencer (ABI3100).

MiSeq-based ligSHAPE (ligation-based SHAPE) on long RNAs was carried out, using a protocol analogous to Mod-seq⁴⁸. RNA was folded similarly and probed by SHAPE as above, then recovered by ethanol precipitation. Modified RNA was folded again and fragmented by 5 mM TbCl₃ for 5 min (or no Tb³⁺ as control)⁴⁹, quenched by 0.5 M NaEDTA pH, 8.0, then purified by RNA cleanup and concentration columns (Zymo Research). Fragmented RNA was prepared through 3' end repair, T4 RNA-ligase-based universal linker ligation to the RNA 3' end, reverse transcription to cDNA using sequencing primers, and circLigase-based Illumina adapter ligation to the cDNA 3' end as described⁵⁰.

The HiTRACE 2.0 package was used to analyze CE data (available as MATLAB toolbox at https://github.com/hitrace⁵¹ and web server at http://hitrace.org⁵²). Electrophoretic traces were aligned and baseline subtracted using linear and non-linear alignment routines as previously described⁵³. Band intensities were fitted to Gaussian peaks, then background subtracted, signal attenuation corrected and normalized. MiSeq results were analyzed using MAPseeker package^{50,54}. The SHAPE reactivity profile was generated by projection of pairended reads. Briefly, a correction factor of 0.25 was used for full-length read ligation bias correction, accounting for the empirically observed low circLigase ligation efficiency for full-length cDNAs ending in CC⁵⁵. Reads shorter than 8 nt were discarded due to ambiguity in their positional alignment in the full-length RNA. Modification fractions were determined by the number of cDNAs in which reverse transcription stopped at a given nucleotide divided by the number of cDNAs in which reverse transcription stopped or proceeded beyond that nucleotide⁵⁵. Traces were background subtracted (SHAPE minus nomod, and SHAPE-Tb minus Tb) and normalized by boxplot⁵⁶ for Hoxa5, or using a scanning window of 350 nt for Hoxa9. Errors were calculated between SHAPE/nomod and SHAPE-Tb/Tb measurements.

Data-driven secondary structure models were obtained using the *Fold* executable of the RNAstructure package⁵⁷. Pseudo-energy parameters of RNAstructure version 5.4 were used by default. To obtain 2D-data-guided secondary structure models, Z score matrices for mutate-and-map datasets were calculated and used as base-pair-wise pseudo-energies with a slope and intercept of 1.0 kcal/mol and 0 kcal/mol as previously described²⁷. The *ShapeKnots* executable of RNAstructure version 5.6⁵⁸ enables modeling of pseudoknots but with different parameters for utilizing SHAPE data in the modeling; this newer method was used for pseudoknot prediction of *Hoxa9* 957–1132 when using 1D and 2D SHAPE data combined. Extension of *ShapeKnots* to accept 2D data is being incorporated into the next version of RNAstructure. Helix-wise confidence values were calculated via bootstrapping as described previously^{27,28}. All predictions were modeled in context with full-length sequences. Secondary structures were visualized by VARNA⁵⁹.

Mice

A 2.8-kb 5'arm and a 4.9-kb 3'arm of *Hoxa9* were cloned into PGKneolox2DTA.2 (P. Soriano, Addgene plasmid 13449). This results in a replacement of nt 945–1194 of *Hoxa9* 5'UTR with a LoxP-flanked Neo cassette in the same transcriptional direction as *Hoxa9* (Extended Data Fig. 8c). The plasmid was linearized with *Xho*I and electroporated into JM8NA3.N1 ESCs for homologous recombination. The correctly targeted ESC clones were identified by long range PCR and confirmed by Southern blotting. The clones were injected into C57BL/6 blastocysts. Resulting chimeras were crossed with C57BL/6 mice to generate F1 (*Hoxa9^{Neo/+}*). *Hoxa9^{Neo/+}* were crossed with CMV-Cre mice (Jackson Laboratory) to precisely remove the LoxP-flanked Neo cassette within the 5'UTR to generate *HoxA9 IRES/+* mice. All mice used for experiments were between 2 and 6 months old. All animal studies were performed in accordance to with Stanford University Animal Care and Use guidelines.

Sucrose gradient fractionation

E11.5 neural tubes and somites were dissected and trypsinized as previously described¹. The neural tube and somites of each embryo were lysed on ice in 200µl of lysis buffer (20 mM Tris pH 7.5, 200 mM NaCl, 15 mM MgCl₂, 1 mM DTT, 8% Glycerol, 1% Triton X-100, 100 µg/ml cycloheximide, 100 µg/ml heparin, 200U/ml SUPERase In (Ambion)). After lysis, nuclei and membrane debris was removed by centrifugation (1,300 g, 5 min at 4 °C, and then 14,000 rpm, 5 min, at 4°C). The supernatant was layered onto a linear sucrose gradient (10–40% sucrose[w/v], 20 mM Tris, pH 7.5, 100 mM NaCl, 15 mM MgCl₂, 100 µg/ml cycloheximide) and centrifuge in a SW41Ti rotor (Beckman) for 2.5 h at 40,000 rpm at 4°C. Fractions were collected by Density Gradient Fraction System (Brandel).

qPCR analysis

For cells, RNA was isolated using NucleoSpin RNA kit (Clontech) and DNase-treated on column. For embryos, E11.5 neural tubes and somites were dissected and trypsinized as previously described¹. RNA was isolated using Trizol (Invitrogen) and treated with TURBO DNA-free kit (Ambion). For sucrose gradient fractions, RNA was purified by acid phenol/ chloroform followed by isopropanol precipitation. 0.5 µg of RNA was converted to cDNA using iScript supermix (BioRad). cDNA was diluted 2-fold and 1 µl used to run a SYBR green detection qPCR assay (SsoAdvanced SYBR Green supermix and CFX384, BioRad). Data was analyzed and converted to relative RNA quantity using CFX manager (BioRad). For sucrose gradient fractions, amount of RNA from individual fractions was expressed as a fraction of the total RNA collected from all fractions. Primers were used at 250 nM per reaction. *B-actin* and *Hoxa9* qPCR primers were previously described¹. Fluc F 5'- CATCACGTACGCGGAATACTT, Fluc R 5'-AAGAGATACGCCCTGGTTC. 18S F 5' ACATCCAAAGGAAGGCAGCAG, 18S R 5' CATTCCAATTACAGGGCCTC. 28S F 5' GGGGAGAGGGTGTAAATCTC, 28S R 5' TCCTTATCCCGAAGTTACGG.

Whole mount in situ hybridization

Whole mount *in situ* hybridization was carried out using digoxygenin-labeled antisense RNA probes as previously described¹. *Hoxa9* probe was amplified from mouse embryo cDNA. Primers sequences are described in Supp. Table 1.

Skeletal staining

Alcian blue and alizarin red staining of cartilage and bone were performed on neonates as previously described¹.

Immunofluorescence

E11.5 embryos were dissected, fixed and cryosectioned as previously described¹. WT and *Hoxa9 IRES/ IRES littermates* sections were placed onto the same slide for direct comparison and identical processing. Sections were equilibrated to RT and rehydrated in blocking buffer (1% heat-inactivated goat serum, 0.1% Triton X-100 in PBS) for 1 h at RT. Sections were incubated with anti-HOXA9 antibody (Abcam ab140631) at 1:1000 in blocking buffer overnight at 4 °C, washed three times, 30 min each and incubated with Alexa 488 anti-rabbit secondary antibodies (Invitrogen) for 1 h at RT. Slides were washed with blocking buffer

three times, 30 min each and incubated with 1 ug/ml DAPI (Cell Signaling) for 15 min at RT. They were washed again in blocking buffer for 20 min and mounted with VectaShield Mounting Media (Vector Laboratories).

Statistical analysis

No normalization, blinding or exclusion was used in any experiments. In all cases, multiple independent experiments were performed on different days to verify the reproducibility of experimental findings. For mice experiments, embryos from multiple litters were used to avoid litter-specific bias. Each variable was analyzed using the two-tailed unpaired Student's *t* test. For all analyses, a *p* value of less than 0.05 was considered significant. Results are given as means \pm SD.

Extended Data

Extended Data Figure 1. HoxA IRES controls confirming that Fluc activity from bicistronic vector is due to IRES activity

a, qPCR of both Rluc and Fluc from transfected cells shows that Rluc and Fluc are produced at the same ratio. All Rluc and Fluc values are normalized to that of HCV (set to 1). n = 3; individual experiments performed in duplicates. **b–c**, shRNA against Rluc decreased reporter activity of both Rluc (**a**) and Fluc (**b**), confirming that Rluc and Fluc were transcribed on the same mRNA. n=3 individual experiments performed in triplicates. **d**, RT-PCR using primers in Rluc and Fluc show that there is no cryptic splice site in the cloned

Hox 5'UTR. Primer locations are shown as arrows in the diagram. **e**, Inserting a strong hairpin (-67 kcal/mol) after the Rluc reporter did not affect Fluc activity, suggesting Fluc activity was not due to ribosome readthrough.

Extended Data Figure 2. Disruption of RPL38 in C3H10T1/2 by TALEN nucleases a, Location of TALEN pairs. 2 pairs of TALENs were designed to bind at the end of Exon 2 and the beginning of Exon 3 to make a genomic break close to the ATG. Sequencing of a positive clone shows a deletion of the ATG and most of the intron after it. Coding sequence

is highlighted in green.

b RPL38 knock down does not change cap-dependent translation (Rluc) but decreases IRES-dependent translation (Fluc) from specific Hox 5'UTRs. Luciferase activity was normalized to amount of Fluc RNA in the cells as quantified by qPCR. *p< 0.05 (t-test compared to Ctrl). n = 2 individual experiments performed in duplicates.

Extended Data Figure 3. Alignment of *Hoxa9* **IRES element between vertebrate species** Nucleotides 944 to 1266 of the mouse *Hoxa9* 5'UTR were aligned with sequences from other vertebrates and show high sequence homology. Nucleotides are colored based on their homology.

Extended Data Figure 4. Chemical mapping and secondary structure prediction of full-length $Hoxa9\ 5' {\rm UTR}$

a, Secondary structure prediction of full-length *Hoxa9* using ligSHAPE data. The *Hoxa9* IRES element (nt 957–1132, shaded in green) is predicted as the same secondary structure shown in Fig. 2a. **b**, Normalized SHAPE reactivity of *Hoxa9* IRES (nt 957–1132 and 944–1266 from CE-based 1-dimensional SHAPE, full-length 1–1266 from MiSeq-based ligSHAPE). **c**, Normalized SHAPE reactivity of *Hoxa9* TIE (nt 1–342 from CE-based 1-dimensional SHAPE, full-length 1–1266 from MiSeq-based 1-dimensional SHAPE, full-length 1–1266 from MiSeq-based 1-dimensional SHAPE.

Extended Data Figure 5. Chemical mapping and secondary structure prediction of full length $Hoxa5~5^{\prime}\mathrm{UTR}$

a, Secondary structure prediction of *Hoxa5* using 1-dimensional SHAPE data. Nucleotides are colored with SHAPE reactivities. Percentage labels give bootstrap support values for each helix. The feature highlighted in blue resembles P3 in *Hoxa9* and the tip highlighted in pink is deleted in **b**. **b**, The deletion of the tip identified in *Hoxa5* IRES structure shown in **a** decreases IRES activity in bicistronic reporter assays. IRES activity was normalized to full length *Hoxa5* 5'UTR (A5, set to 1). **p< 0.01 (t-test as compared to A5). n= 2 experiments; performed in triplicates. **c**, Both Hoxa9 and Hoxa5 contain an asymmetric bulge in a region important for IRES activity. **d-e**, Normalized SHAPE (**d**) and DMS (**e**) reactivity of *Hoxa5* (CE-based and MiSeq-based).

Extended Data Figure 6. Secondary structure prediction and mutate-and-map $({\rm M}^2)$ dataset of Hoxa9 IRES element

a–b, Entire M^2 dataset and Z-score contact-map of *Hoxa9* nt 957–1132 across 177 single mutants probed by 1M7. **c**, Secondary structure prediction of *Hoxa9* nucleotides 957–1132 using M^2 data alone. The model contains the same helices as the model from combined SHAPE/ M^2 analysis in Fig. 2a, up to register shifts and edge base pairs; the small rearrangements are labeled P3b', P3c', P3d, P4b' and P4c'. **d**, Secondary structure of *Hoxa9* nt 957–1132 using 1-dimensional SHAPE data alone. Nucleotides are colored with SHAPE reactivity. The model contains the same helices as the model from combined SHAPE/ M^2 analysis in Fig. 2a, up to register shifts and edge base pairs; the small rearrangements are labeled P3b', P3c', P3d, P4b' and P4c'. **d**, Secondary structure of *Hoxa9* nt 957–1132 using 1-dimensional SHAPE data alone. Nucleotides are colored with SHAPE reactivity. The model contains the same helices as the model from combined SHAPE/ M^2 analysis in Fig. 2a, up to register shifts and edge base pairs; the small rearrangements are labeled P3b', P3c', and P4c. **e**, Secondary structure prediction and bootstrap support matrix of *Hoxa9* nt 944–1266 using 1-dimensional SHAPE data. The model agrees with the model derived from SHAPE analysis of the 957–1132 subdomain in Fig. 2a.

		990	980 1000	1020 104	1060 1	080 1100	1120			960	980 1000	1020 1040	1060 108	1100	120
а	WT U1030A, G1031C, C1032G G1049C, C1050G, A1051U J1030A, G1031C, C1032G, G1049C, C1050G, A1051U							s	WT C1090G,G1091C,U1092A A1118U,C1119G,G1091C C1090G,G1091C,U1092A,A1118U,C1119G,G1120C						ť.
b	WT U1029A, U1030A, G1031C C1050G, A1051U, A1052U U1029A, U1030A, G1031C, C1050G, A1051U, A1052U							t	WT G1089C, C1090G, G1091C, C1119G, G1120C, C1121G G1089C, C1090G, G1091C, C1119G, G1120C, C1121G						
c	WT G 1024C, G 1025C, C 1026G G 1081C, C 1082G, C 1063G 1024C, G 1025C, C 1028G, G 1081C, C 1062G, C 1063G			-				u	WT C1088G,G1089C,C1090G G1120C,C1121G,G1122C C1088G,G1089C,C1090G,G1120C,C1121G,G1122C	-					T T B
d	WT U1023A, G1024C, G1025C C1062G, C1063G, A1064U J1023A, G1024C, G1025C, C1062G, C1063G, A1064U							v	WT G1059C, G1080C C1103G, C1104G G1059C, G1060C, C1103G, C1104G						C.
e	WT A1022U, U1023A, G1024C C1083G, A1084U, U1085A A1022U, U1023A, G1024C, C1083G, A1064U, U1085A							N	WT C10586,G1050C C1104G,G1105C C1058G,G1059C,C1104G,G1105C						111
f	WT C1011G,A1012U,U1013G G1073C,U1074A,G1075C C1011G,A1012U,U1013G,G1073C,U1074A,G1075C			-	-	-11-1		x	WT C1057G,C1058G G105C,G1106C C1057G,C1058G,G1105C,G1106C						
g	WT G1010C,C1011G,A1012U U1074A,G1075C,C1076G G1010C,C1011G,A1012U,U1074A,G1075C,C1076G	-						У	WT G1059U, G1060U C1103A, C1104A G1059U, G1060U, C1103A, C1104A			-			
h	WT U1009G,G1010C,C1011G G1075C,C1076G,G1077C 11009G,G1010C,C1011G,G1075C,C1076G,G1077C							z	WT C1058A, G105BU C1104A, G1105U C1058A, G1059U, C1104A, G1105U	; <u> </u>					
i	WT U1008G, U1009G, G1070C C1078G, G1077C, G1078C 11008G, U1009G, G1010C, C1076G, G1077C, G1078C							a	a C1057A, C1058A, G1105U, G1106U C1057A, C1058A, G1105U, G1106U) <u> </u>					
j	WT U1007A, U1008G, U1009 G1077C, G1078C, A1079U U1007A, U1008G, U1009G, G1077C, G1078C, A1079U							a	b G1080C C1103G G1080C,C1103G						e e e e e e e e e e e e e e e e e e e
k	WT C1006G,U1007A,U1008G G1078C,A1079U,G1080C C1006G,U1007A,U1008G,G1078C,A1079U,G1080C	-						a	C G1059C C1059C G1059C,C1104G						r dr
I	WT U1098A, U1099G, C1100G G1109C, G1110C, A1111U U1098A, U1099G, C1100G, G1109C, G1110C, A1111U	-				C.		a	d wr c10586 G1105C C10586,G1105C					-	
m	WT G1097C,U1098A,U1099G G110C,A1111U,C1112G G1097C,U1098A,U1099G,G1110C,A1111U,C1112G							a	e wt c10576 G1106 C10576,G1106C						
n	WT U1096A, G1097C, U1098 A1111U, C1112G, A113U U1096A, G1097C, U1098A, A1111U, C1112G, A1113U	-		1 - 20				a	f wr G10800 G10804,C11034 G10804,C11034						
0	WT U1095G, U1096A, G1097C C1112G, A1113U, G1115C U1095G, U1096A, G1097C, C1112G, A1113U, G1115C							a	g G1059U C1104A G1059U,C1104A						i i i i
р	WT A 1094U, U1095G, U1096A A 1113U, G1115C, U1116A A 1094U, U1095G, U1098A, A1113U, G1115C, U1116A							a	h WT C1058A G1105U C1058A,G1105U) <u> </u>					
q	WT U1092A, U1093G, A1094U U1116A, G1117C, A1118U U1092A, U1093G, A1094U, U1116A, G1117C, A1118U							a	i WT C10574 G10674 C1057A,G1106U)	- 1				-
r	WT G1091C,U1092A,U1093G G1117C,A1118U,C1119G G1091C,U1092A,U1093G,G1117C,A1118U,C1119G														

Extended Data Figure 7. Mutation/rescue results of *Hoxa9* IRES structure (nt 944–1266) probed by 1M7

Electropherograms of mutation/rescue to test base-pairings in P3c (**a**–**b**), P3b (**c**–**e**), P3a (**f**–**k**), P4b (**l**–**o**), P4a (**p**–**u**) and pk3-4 (**v**–**ai**). Perturbation of the chemical mapping reactivities by mutations of one strand and restoration by mutations in the other strand provide strong evidence for the tested pairings in P3c (**a**–**b**), P3b (**c**–**e**), P3a (**f**–**k**), P4b (**m**–**o**) and P4a (**p**–**q**). Lack of rescue in other tested pairings is consistent with either absence of those pairings or higher-order structure (*e.g.*, base triples) interacting with those pairings.

Extended Data Figure 8. Putative uORFs within the 5'UTRs of *Hoxa9* and *Hoxa5* do not inhibit cap-dependent translation and *Hoxa9 IRES* targeting strategy

uORFs are marked by black circles on the diagram of monocistronic reporter for the (**a**) *Hoxa9* and (**b**) *Hoxa5* 5'UTR. All the ATGs in the 5'UTR were mutated to TTG in A9 uORF construct and GTG in A5 uORF. The IRES element (944-1266) was removed in A9 IRES construct. The IRES element was removed from the A9 uORF construct in A9 IRES uORF. n=3 individual experiments in duplicates. Data represent mean \pm s.d. **c**, Diagrams of the *Hoxa9* locus and the targeting vector. Boxes represent exons, grey boxes represent UTRs and black boxes represent the coding sequence. Nucleotides 944-1145 were replaced by a floxed Neo cassette in the targeting vector. Locations of Southern blot probes, restriction enzymes used for Southern analysis and expected sizes are marked on the diagrams. **d**, Southern blot analysis of targeted cells using both the 5' and 3' probes showing that both arms integrated correctly into the *Hoxa9* locus.

Extended Data Figure 9. The presence of Neo cassette in the *Hoxa9* locus is linked to the presence of an L1 \rightarrow T13 homeotic transformation

a, Diagram of the *Hoxa9* locus (top) and axial skeleton phenotype (bottom) in different *Hoxa9* mouse mutants. The original $Hoxa9^{-/-}$ was made by replacing the homeodomain with a Neo cassette. Vertebra with homeotic transformation is colored red. **b**, Representative skeletons of $Hoxa9^{+/+}$, $Hoxa9^{Neo/+}$ and $Hoxa9^{Neo/Neo}$. Arrows point to the additional rib(s) on L1, revealing a homeotic transformation to T13. These results show that it is the presence of Neo in the targeting locus, which may affect the expression of neighboring Hox gene, that is sufficient to cause the L1 \rightarrow T13 phenotype. When the Neo cassette is removed from the targeting locus by crossing the $Hoxa9^{Neo/+}$ mouse with a CMV Cre line, the L1 \rightarrow T13 phenotype is no longer present. n = 3 embryos of each genotype.

Extended Data Figure 10. Sucrose gradient fractionation shows no difference in β -*actin* **association with polysomes in** $Hoxa9^{+/+}$ and $Hoxa9^{-IRES/-IRES}$ embryos **a**, Overlay of A₂₆₀ trace during fractionation showing no difference in polysome profiles

between E11.5 *Hoxa9*^{+/+} and *Hoxa9 IRES/ IRES* embryos. **b**, qPCR from each fraction reveals no difference in *B-actin* mRNA accumulation between *Hoxa9*^{+/+} and *Hoxa9 IRES/ IRES* embryos. **c**, Quantification of *B-actin* mRNA in fractions. Fractions 1-8 are pre-polysomes and 9-16 are polysome fractions. n = 3 embryos of each genotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank members of the Barna laboratory and D. Ruggero for discussion and critical reading of the manuscript. We thank Y. Rim, A. Sapiro and A. Mateo for technical assistance. This work was supported by the Agency of Science, Technology and Research of Singapore (S.X.), Stanford Graduate Fellowship (S.T.), Human Frontier Science Program Fellowship (K.F.), NIH R01 GM102519 (R.D.), NIH Director's New Innovator Award, 7DP20D00850902 (M.B.), Alfred P. Sloan Research Fellowship (M.B.) and Pew Scholars Award (M.B.).

References

- 1. Kondrashov N, et al. Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning. Cell. 2011; 145:383–397. [PubMed: 21529712]
- Lee A, Burdeinick-Kerr R, Whelan S. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc Natl Acad Sci U S A. 2013; 110:324–329. [PubMed: 23169626]
- 3. Vesper O, et al. Selective Translation of Leaderless mRNAs by Specialized Ribosomes Generated by MazF in *Escherichia coli*. Cell. 2011; 147:147–157. [PubMed: 21944167]
- Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol. 2012; 13:355–369. [PubMed: 22617470]
- Dinman JD. The eukaryotic ribosome: current status and challenges. J Biol Chem. 2009; 284:11761–5. [PubMed: 19117941]
- Komili S, Farny NG, Roth FP, Silver PA. Functional specificity among ribosomal proteins regulates gene expression. Cell. 2007; 131:557–71. [PubMed: 17981122]
- Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol. 2009; 25:431–56. [PubMed: 19575673]
- Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009; 136:731–45. [PubMed: 19239892]
- Livingstone M, Atas E, Meller A, Sonenberg N. Mechanisms governing the control of mRNA translation. Phys Biol. 2010; 7:021001. [PubMed: 20463379]
- Plank TDM, Kieft JS. The structures of nonprotein-coding RNAs that drive internal ribosome entry site function. Wiley Interdiscip Rev RNA. 2012; 3:195–212. [PubMed: 22215521]
- Stoneley M, Paulin FE, Le Quesne JP, Chappell SA, Willis AE. C-Myc 5' untranslated region contains an internal ribosome entry segment. Oncogene. 1998; 16:423–8. [PubMed: 9467968]
- Riley A, Jordan LE, Holcik M. Distinct 5' UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res. 2010; 38:4665–4674. [PubMed: 20385593]
- Ungureanu NH, et al. Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem. 2006; 281:15155–63. [PubMed: 16595687]
- Yoon A, et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science. 2006; 312:902–6. [PubMed: 16690864]
- Ray PS, Grover R, Das S. Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep. 2006; 7:404–10. [PubMed: 16440000]
- Bellodi C, Kopmar N, Ruggero D. Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J. 2010; 29:1865–76. [PubMed: 20453831]
- Pyronnet S, Dostie J, Sonenberg N. Suppression of cap-dependent translation in mitosis. Genes Dev. 2001; 15:2083–2093. [PubMed: 11511540]
- Holcik M, Sonenberg N, Korneluk RG. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 2000; 16:469–73. [PubMed: 11050335]
- Xia X, Holcik M. Strong eukaryotic IRESs have weak secondary structure. PLoS One. 2009; 4:e4136. [PubMed: 19125192]
- Phinney DG, Gray AJ, Hill K, Pandey A. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun. 2005; 338:1759–65. [PubMed: 16288716]
- Thompson SR. So you want to know if your message has an IRES? Wiley Interdiscip Rev RNA. 2012; 3:697–705. [PubMed: 22733589]
- Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol. 2007; 5:29–38. [PubMed: 17128284]
- Kieft JS, Zhou K, Jubin R, Doudna JA. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA. 2001; 7:194–206. [PubMed: 11233977]

Author Manuscript

- 24. Spahn CMT, et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell. 2004; 118:465–75. [PubMed: 15315759]
- Wilkinson KA, Merino EJ, Weeks KM. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc. 2006; 1:1610–6. [PubMed: 17406453]
- Lukavsky PJ, Kim I, Otto GA, Puglisi JD. Structure of HCV IRES domain II determined by NMR. Nat Struct Biol. 2003; 10:1033–8. [PubMed: 14578934]
- Kladwang W, VanLang CC, Cordero P, Das R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem. 2011; 3:954–62. [PubMed: 22109276]
- 28. Tian, S.; Cordero, P.; Kladwang, W.; Das, R. Correcting a SHAPE-directed RNA structure by a mutate-map-rescue approach. 2014.
- 29. Berry KE, Waghray S, Doudna JA. The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit. RNA. 2010; 16:1559–69. [PubMed: 20584896]
- Jan E, Sarnow P. Factorless Ribosome Assembly on the Internal Ribosome Entry Site of Cricket Paralysis Virus. J Mol Biol. 2002; 324:889–902. [PubMed: 12470947]
- 31. Stupina VA, Yuan X, Meskauskas A, Dinman JD, Simon AE. Ribosome binding to a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-independent translation of turnip crinkle virus. J Virol. 2011; 85:4638–53. [PubMed: 21389125]
- Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A. 2009; 106:7507–12. [PubMed: 19372376]
- 33. Fletcher L, Corbin SD, Browning KS, Ravel JM. The absence of a m7G cap on β-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem. 1990; 265:19582–7. [PubMed: 2246243]
- 34. Coulombe Y, et al. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS One. 2010; 5:e10600. [PubMed: 20485555]
- Fromental-Ramain C, et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development. 1996; 122:461–72. [PubMed: 8625797]
- Chen F, Capecchi MR. Targeted mutations in Hoxa-9 and Hoxb-9 reveal synergistic interactions. Dev Biol. 1997; 181:186–196. [PubMed: 9013929]
- 37. Boulet AM, Capecchi MR. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev Biol. 1996; 177:232–49. [PubMed: 8660891]
- Komar AA, Hatzoglou M. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem. 2005; 280:23425–8. [PubMed: 15749702]
- 39. Oh S, Scott MP, Sarnow P. Homeotic gene Antennapedia mRNA confer translational initiation by internal ribosome binding. Genes Dev. 1992; 6:1643–1653. [PubMed: 1355457]
- Johnston IA. Environment and plasticity of myogenesis in teleost fish. J Exp Biol. 2006; 209:2249–64. [PubMed: 16731802]
- 41. Landry DM, Hertz MI, Thompson SR. RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev. 2009; 23:2753–2764. [PubMed: 19952110]
- Bellodi C, et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res. 2010; 70:6026–35. [PubMed: 20587522]
- Chaudhuri S, et al. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA. 2007; 13:2224–2237. [PubMed: 17921318]
- 44. Flicek P, et al. Ensembl 2014. Nucleic Acids Res. 2014; 42:D749–55. [PubMed: 24316576]
- 45. Carlson D, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA. 2012; 109:17382–17387. [PubMed: 23027955]
- 46. Kladwang W, Cordero P, Das R. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA. 2011; 17:522–34. [PubMed: 21239468]

Author Manuscript

- 47. Mortimer SA, Weeks KM. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc. 2007; 129:4144–5. [PubMed: 17367143]
- 48. Talkish J, May G, Lin Y, WoolFord JL Jr, Mcmanus CJ. Mod-seq_: high-throughput sequencing for chemical probing of RNA structure. RNA. 2014; 20:1–8. [PubMed: 24255166]
- 49. Harris, DA.; Walter, NG. Curr Protoc Nucleic Acid Chem. John Wiley & Sons, Inc; 2001.
- 50. Cheng, C.; Chou, F.; Kladwang, W. MOHCA-seq_: RNA 3D models from single multiplexed proximity-mapping experiments. 2014.
- 51. Yoon S, et al. HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics. 2011; 27:1798–805. [PubMed: 21561922]
- 52. Kim H, Cordero P, Das R, Yoon S. HiTRACE-Web: an online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Res. 2013; 41:W492–8. [PubMed: 23761448]
- 53. Kim J, et al. A robust peak detection method for RNA structure inference by high-throughput contact mapping. Bioinformatics. 2009; 25:1137–44. [PubMed: 19246511]
- 54. Seetin, M.; Kladwang, W.; Bida, J.; Das, R. RNA Fold SE 6. Waldsich, C., editor. Vol. 1086. Humana Press; 2014. p. 95-117.
- Kladwang W, et al. Standardization of RNA chemical mapping experiments. Biochemistry. 2014; 53:3063–5. [PubMed: 24766159]
- 56. Deigan KE, Li TW, Mathews DH, Weeks KM. Accurate SHAPE-directed RNA structure determination a SHAPE experiment can be interpreted as a pseudo-free energy high accuracy. Free energy minimization, by using SHAPE pseudo. 2008; 2008
- Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010; 11:129. [PubMed: 20230624]
- Hajdin CE, et al. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci U S A. 2013; 110:5498–503. [PubMed: 23503844]
- Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009; 25:1974–1975. [PubMed: 19398448]

Figure 1. Select HoxA 5'UTRs contain IRES elements regulated by RPL38

a, HoxA genes are located in tandem along a chromosomal locus, and their location directs their anterior expression boundaries along the embryo. Striped boxes, Hox genes translationally regulated by RPL38. IRES activity is the ratio between Fluc and Rluc. b, IRES activity of HoxA 5'UTRs. IRES activity of UTRs was normalized to that of empty vector (pRF) and RPL38-regulated Hox genes are denoted in red. ** p< 0.01 (t-test as compared to pRF). n=5. c, RPL38 regulates translation of specific HoxA IRES elements. Bicistronic reporters were transfected into control cells (CTRL) or cells where one copy of Rpl38 was deleted (RPL38 KD). Top: Western blot of RPL38 and β-actin with quantification of RPL38 levels below blot. Bottom: IRES activity of specific Hox 5'UTRs in RPL38 KD cells normalized to that of control cells. ** p < 0.01 (t-test). n = 3. **d**, Deletion analysis of the Hoxa9 5'UTR. IRES activity was normalized to that of the full-length Hoxa9 5'UTR (A9). AS: anti-sense. **p<0.01 (t-test as compared to pRF). n= 3. e, IRES activity of the Hoxa9 IRES (nt 944–1266) in RPL38 KD cells. **p<0.01 (t-test). n=3. f, Alignment of the Hoxa9 5'UTR in vertebrates. g, The 5'UTR of one of two zebrafish Hoxa9 paralogs (Hoxa9b) has similar IRES activity as the mouse Hoxa9 IRES. IRES activity was normalized to pRF. **p< 0.01 (t-test as compared to pRF). n=3. All experiments were performed in triplicates. Data represent mean \pm s.d.

Xue et al.

Figure 2. The *Hoxa9* IRES forms a stable RNA structure that facilitates recruitment of the ribosome

a, Secondary structure of *Hoxa9* 5'UTR (nt 957–1132) by SHAPE and mutate-and-map analysis. Nucleotides are colored with SHAPE reactivities. Percentages give bootstrap support values for each helix, including a tentative pseudoknot (pk). Base-pairs verified by mutation and rescue are circled green. Inset: mutations made in helix P3a for functional testing in **b**. **b**, Deletions as well as mutation-and-rescue of specific hairpins identified in *Hoxa9* IRES structure shown in **a** affects IRES activity in bicistronic reporter assays. IRES activity was normalized to full-length *Hoxa9* 5'UTR (A9, set to 1). **p< 0.01 (t-test as compared to A9). n= 3 experiments performed in triplicates. **c**, Schematic of RNA pull-

down experiments. **d**, **e**, Representative western blot for RPs (**d**) and qPCR for rRNA (**e**) from elutes of two independent RNA pull-down experiments. The 18S and 28S rRNA amounts of all *Hoxa9* deletion mutants were normalized to amount of full-length *Hoxa9* 5'UTR (set to 1) eluted from beads. n= 2. Data represent mean \pm s.d.

Figure 3. Identification of minimal IRES domains in all IRES-containing HoxA 5'UTRs Deletion analysis of HoxA 5'UTRs performed in bicistronic constructs maps the IRES element in *Hoxa3* (a), *Hoxa4* (b), *Hoxa5* (c) and *Hoxa11* (d). IRES activity was normalized to full-length 5'UTRs (FL). ** p< 0.01 (t-test compared to pRF). n=3 experiments performed in triplicates. Data represent mean \pm s.d.

Figure 4. Identification of the TIE that blocks cap-dependent translation

a, Deletions within the *Hoxa9* 5'UTR in a monocistronic reporter assay. Fluc activity was normalized to amount of luciferase mRNA determined by qPCR. All values are normalized to Hoxa9 full-length 5'UTR (A9), set to 1. n= 4. **b**, A TIE that inhibits cap-dependent translation was identified in the *Hoxa9* 5'UTR (nt 1–342). n= 3. **c-e**, Deletion of the minimal IRES elements within monocistronic reporters of HoxA 5'UTRs and identification of TIEs close to the mRNA cap in *Hoxa3* (**c**), *Hoxa4* (**d**) and *Hoxa5* (**e**). All values are normalized to the full-length constructs (FL). n= 3. **f**, *HoxA* TIEs were placed upstream of the β -globin 5'UTR (Hbb) in a monocistronic reporter to assay inhibition of cap-dependent translation. n= 3. All experiments were performed in duplicates. Data represent mean ± s.d. **p< 0.01 (t-test).

Figure 5. The *Hoxa9* IRES is required for axial skeleton patterning but not for *Hoxa9* mRNA expression

a, Scheme of *Hoxa9* IRES targeted deletion in the mouse. LoxP sites are depicted by yellow triangles. The region deleted is highlighted in orange. **b**, Representative *in situ* hybridization of *Hoxa9* mRNA expression at E11.5. n = 3 embryos of each genotype. Arrows indicate the anterior boundaries of expression in the neural tube and somites. **c**, qPCR shows little change in *Hoxa9* transcript levels in neural tube and somites of *Hoxa9* ^{IRES/+} and *Hoxa9* ^{IRES/} IRES embryos. *Hoxa9* ^{IRES/+}, p = 0.06; *Hoxa9* ^{IRES/} IRES p = 0.03, t-test as compared to *Hoxa9* ^{IRES/+} and Hoxa9 ^{IRES/-} IRES embryos of each genotype. **d**, Representative skeletons of *Hoxa9* ^{+/+}, *Hoxa9* ^{IRES/+} and *Hoxa9* ^{IRES/} IRES mice. Arrows point to the missing rib(s) on T13, normally present in WT mice (arrowheads) revealing a posterior homeotic transformation to L1. n = 5 mice of each genotype.

Xue et al.

Figure 6. The *Hoxa9* **IRES** is critically required for HOXA9 translation *in vivo* **a**, Representative immunostaining of HOXA9 (green) in cross-section of E11.5 *Hoxa9*^{+/+}

(top) and *Hoxa9* ^{*IRES/*} *IRES* (bottom) embryos from the thoracic to sacral levels. DAPI staining is in blue. NT: neural tube, som: somite. n = 3 embryos of each genotype. **b**, Somites and neural tubes of E11.5 *Hoxa9*^{+/+} and *Hoxa9* ^{*IRES/*} *IRES* embryos were microdissected and fractionated on a sucrose gradient. *Middle:* qPCR of *Hoxa9* mRNA from each fraction. Early pre-polysome fractions are highlighted. *Right:* quantification of *Hoxa9* mRNA in fractions. Fractions 1–8 are pre-polysome and 9–16 polysome fractions. **p<

0.01 (t-test compared to $Hoxa9^{+/+}$). n = 3 embryos of each genotype. **c**, Model for how ribosome-mediated regulation of gene expression is encoded within mRNA sequence. Stress-responsive cellular IRES elements are only active when cap-dependent translation is down-regulated through a decrease in eIF4F activity. HoxA mRNAs possess a TIE, which normally inhibits cap-dependent translation. The TIE enables ribosome-mediated control of HoxA IRES expression during embryonic development.