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ABSTRACT Streptococcus pneumoniae remains a source of morbidity and mortality
in both developed and underdeveloped nations of the world. Disease can manifest
as pneumonia, bacteremia, and meningitis, depending on the localization of infec-
tion. Interestingly, there is a correlation in experimental murine infections between
the development of bacteremia and influx of neutrophils into the pulmonary lumen.
Reduction of this neutrophil influx has been shown to improve survivability during
infection. In this study, we use in vitro biotinylation and neutrophil transmigration
and in vivo murine infection to identify a system in which two epithelium-localized
ATP-binding cassette transporters, MRP1 and MRP2, have inverse activities dictating
neutrophil transmigration into the lumen of infected mouse lungs. MRP1 effluxes an
anti-inflammatory molecule that maintains homeostasis in uninfected contexts, thus
reducing neutrophil infiltration. During inflammatory events, however, MRP1 de-
creases and MRP2 both increases and effluxes the proinflammatory eicosanoid hep-
oxilin A3. If we then decrease MRP2 activity during experimental murine infection
with S. pneumoniae, we reduce both neutrophil infiltration and bacteremia, showing
that MRP2 coordinates this activity in the lung. We conclude that MRP1 assists in de-
pression of polymorphonuclear cell (PMN) migration by effluxing a molecule that in-
hibits the proinflammatory effects of MRP2 activity.

IMPORTANCE Streptococcus pneumoniae is a Gram-positive bacterium that normally
inhabits the human nasopharynx asymptomatically. However, it is also a major cause
of pneumonia, bacteremia, and meningitis. The transition from pneumonia to bacte-
remia is critical, as patients that develop septicemia have ~20% mortality rates. Pre-
vious studies have shown that while neutrophils, a major bacterium-induced leuko-
cyte, aid in S. pneumoniae elimination, they also contribute to pathology and may
mediate the lung-to-blood passage of the bacteria. Herein, we show that epithelium-
derived MRP1 and MRP2 efflux immunomodulatory agents that assist in controlling
passage of neutrophils during infection and that limiting neutrophil infiltration pro-
duced less bacteremia and better survival during murine infection. The importance
of our work is twofold: ours is the first to identify an MRP1/MRP2 axis of neutrophil
control in the lung. The second is to provide possible therapeutic targets to reduce
excess inflammation, thus reducing the chances of developing bacteremia during
pneumococcal pneumonia.
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Despite the availability of vaccines, antibiotics, and improved hygienic advance-
ments, bacterial pneumonia remains a demanding worldwide medical challenge.

The Centers for Disease Control and Prevention (CDC) estimate that Streptococcus
pneumoniae (pneumococcus), the most common bacteria associated with community-
acquired pneumonia, causes ~400,000 pneumonia cases in the United States and leads
to ~35,000 deaths annually. Of those presenting with pneumococcal pneumonia, 30%
develop bacteremia, a condition with mortality rates close to 20% (1, 2).

A hallmark of pneumonia pathophysiology is the recruitment of polymorphonuclear
cells (PMNs) (or neutrophils) to the pulmonary lumen via extravasation and transepi-
thelial transcytosis. Although PMN recruitment serves initially to clear invading bacteria,
it also contributes directly to lung injury and pulmonary dysfunction (3–5). Studies have
indicated that transepithelial PMN migration can actually mediate bacterial blood
infiltration (6–10).

To better understand mechanisms regulating PMN influx during pneumococcal
infection, we previously examined host mediators of S. pneumoniae-induced PMN
migration. Transepithelial leukocyte migration during pneumococcal infection required
the lipid chemoattractant hepoxilin A3 (HxA3), an eicosanoid synthesized from arachi-
donic acid via 12-lipoxygenase (12-LOX) and secreted by lung epithelial cells (9).
Pharmacological inhibition or genetic ablation of 12-LOX profoundly decreased PMN
influx into the lungs of S. pneumoniae-infected mice and resulted in both uniform
survival and reduced bacteremia during an otherwise lethal pulmonary challenge (9).
Thus, 12-LOX-dependent production of HxA3 and subsequent PMN transepithelial
migration appear to be required for high-level bacteremia.

Most information regarding HxA3-induced PMN emigration is derived from studies
involving intestinal Gram-negative bacterial infection (11–14). At the intestinal surface,
HxA3 apical epithelial secretion requires the ATP-binding cassette (ABC) transporter
multidrug-resistance-associated protein 2 (MRP2; also known as ABCC2 or c-MOAT) to
establish a chemotactic gradient targeting PMNs to sites of inflammation (12, 15).
Although ABC transporters were originally identified as contributors to multidrug
resistance due to their capacity to extrude cytotoxic drugs, emerging reports suggest
that they play roles in host defense and immune regulation (16–22). To date, few
studies have identified ABC transporters that mediate proinflammatory activity in the
lung during bacterial infection.

Herein, we demonstrate that ABC transporters MRP1 and MRP2 are diametrically
expressed at the apical epithelial surface and actively efflux substrates that control PMN
migration. Characterizing this relationship, MRP1 effluxes substrates that suppress PMN
transmigration; MRP1 apical expression greatly diminishes upon S. pneumoniae infec-
tion. In contrast, MRP2 becomes highly enriched on the epithelial apical surface during
pneumococcal infection and promotes PMN migration. Overall, these findings reveal a
paradigm that epithelial cells at the lung mucosal surface act as critical sensors that can
determine when to initiate PMN transmigration in response to a proinflammatory
stimulus such as S. pneumoniae and when to maintain a noninflammatory state.

RESULTS
Survey of MRP expression patterns during Streptococcus pneumoniae infection.

To study inflammatory responses during infection with S. pneumoniae, we have estab-
lished an in vitro model of PMN migration using polarized monolayers of NCI-H292
(H292) cells (23–25). We used this model to examine the profiles of multidrug resistance
proteins (MRPs) that differ in mRNA or protein expression during S. pneumoniae
infection. Whether analyzing whole-cell protein (see Fig. S1A and B in the supplemental
material) or mRNA (Fig. S1C), little change was observed. Of note, MRP1 decreased
slightly during infection at both the mRNA and protein level. No other values reached
10% difference among MRP2, MRP4, or MRP5. MRP3 and P-glycoprotein were not
detected at the basal state and during infection at the protein or mRNA level (data not
shown).
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MRP1 and MRP2 show inverse patterns of expression during S. pneumoniae
infection. Though there were few changes observed in mRNA and protein levels, it is
documented that MRPs undergo critical posttranslational modifications that affect their
subcellular localization (26, 27). HxA3 efflux draws PMNs to the site of infection, in this
case to the epithelial cell apical surface. To that end, we sought to specifically examine
changes in apical localization of our chosen proteins. We, therefore, selectively labeled
the apical surface of infected epithelial surfaces with biotin and compared labeled
proteins in infected and uninfected surfaces.

Biotinylated apical MRP1 drastically decreased after infection with S. pneumoniae,
while apical MRP2 increased (Fig. 1A and B). In comparison, surface-expressed MRP4
and MRP5 did not change (Fig. 1A and B). Using immunofluorescence microscopy, we
confirmed that pneumococcal infection induced localized decreases in MRP1 and
reciprocal increases in MRP2 (Fig. 1C and D). Importantly, we observed no change in
MRP4 or MRP5 surface localization via immunofluorescence following pneumococcal
infection. On the basis of these data, we focused our studies on potential modulation
of MRP1 and MRP2.

FIG 1 MRP1 protein on the apical surface reduces during infection with Streptococcus pneumoniae, while MRP2 increases. The
apical surface examination of mock-infected or S. pneumoniae serotype 4 (TIGR4)-infected polarized H292 cells. The cells were
treated with HBSS (Buffer) or infected (S. pneumoniae), washed, and allowed to rest at 37°C for 1 h postinfection. (A) Apical
surfaces were then labeled with biotin and lysed. Samples were normalized to protein content against a BSA standard, exposed
to streptavidin beads, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The blots were
probed with primary antibodies for the selected proteins. A representative Western blot of apical biotinylation probing MRP
expression is shown. (B) Densitometry of pooled Western blot samples from multiple experiments. Statistics calculated using
two-tailed Student’s t test compared with MRP4 or MRP5 (n � 3). (C) Buffer-treated or infected cells were fixed and stained
for MRP2 and F-actin. Immunofluorescence cross-section Z-stack images of F-actin were utilized to identify cellular borders and
apical surface (green). The corresponding region of MRP2-stained Z-stack (red) was marked for the particular region of interest
(white boxes) and calculated for the total apical coverage using ImageJ. (D) The calculated percentage of the area taken up
by the indicated MRPs in panel C via calculations completed with ImageJ (see Materials and Methods). P values were calculated
using two-tailed Student’s t test comparing the percentages for the given protein in uninfected and infected cells (n � 8).
Values that are not significantly different (NS) are indicated. Quantification samples for biotinylation and immunofluorescence
were taken from at least two separate infections with similar results.
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To examine whether in vitro observations correlated with changes in in vivo MRP
localization, C57BL/6J mice were infected with 2.5 � 105 CFU of S. pneumoniae or mock
infected with phosphate-buffered saline (PBS) alone. Two days postinfection, mice were
sacrificed. The lungs were excised, sectioned, and probed to detect MRP1, MRP2, MRP4,
and MRP5 via immunofluorescence (Fig. 2). Similar to our in vitro data, we saw
decreases in the MRP1 signal and increases in MRP2 during pneumococcal infection. No
such changes were observed with MRP4 or MRP5, pointing to a consistency in MRP
modulation in both cell lines and the mouse (Fig. 2A and B).

MRP2 controls PMN transmigration. Given that MRP2 controls aspects of PMN
transcytosis in intestinal epithelium (15), we sought to examine the ability of MRP2 to
drive proinflammatory events in the context of S. pneumoniae infection. We previously
showed that PMN transmigration into lung airways during pneumococcal infection
required HxA3 (9). We also demonstrated that MRP2 upregulates during intestinal
inflammation and that inhibition of MRP2 function suppresses PMN migration (15). It
has not been shown, however, that MRP2 location or activity is affected by infection by
Gram-positive bacteria, such as S. pneumoniae. On the basis of these previous findings,
we examined whether pharmacological inhibition of MRP2 suppresses PMN transepi-
thelial migration across pulmonary epithelium during pneumococcal infection.

To inhibit MRP2, cells were treated with probenecid, an MRP2 inhibitor (15, 28–30).
In vivo probenecid is relatively well tolerated with death occurring in mice that received
1,600 mg/kg of body weight (31). It is possible for probenecid to affect other trans-
porters, but more often these transporters need higher concentrations than that which

FIG 2 S. pneumoniae infection reduces MRP1 and increases MRP2 upon pulmonary infection in mice.
Mice were infected via an intratracheal route with S. pneumoniae and sacrificed 2 days postinfection. The
lungs were excised, reinflated, sectioned, and stained for MRP1, MRP2, MRP4, or MRP5. (A) Representative
images from three different experiments. Arrows indicate points of interest. In particular, areas of similar
density in MRP1-stained lungs appear to have reduced expression in infected lungs compared to
uninfected lungs (arrow). MRP2 staining appears to increase drastically on the cell periphery during
infection compared to mock-infected lungs (arrow). No such increases or decreases are observed for
MRP4 and MRP5. (B) Quantification of staining. Antibody staining was quantified and normalized to
surface area (measured by F-actin [not shown]). Fold differences of signal to surface area for each given
antibody comparing infected (S. pneumoniae) to uninfected (Buffer) animals are shown. Values are
expressed as fold increase or decrease compared to the values for uninfected samples.
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is efficient to inhibit MRP2 (16, 32–34). In addition, probenecid has been shown to have
some effects in inhibiting MRP1 (35); however, biotinylation data in Fig. 1 and 2 would
indicate that MRP1 is already reduced during infection. Any effects inhibiting MRP1
would likely exacerbate, rather than curtail, PMN recruitment during infection. This idea
will also be explored in more detail later in the manuscript.

Cells were treated 1 h preinfection with probenecid and then subjected to infection
and a PMN migration assay. Probenecid treatment had no effect on the basal PMN
migration across uninfected cells but suppressed PMN transmigration across infected
H292 monolayers by approximately threefold (P � 0.05) compared to mock-infected
controls (Fig. 3A). However, when we used a different PMN chemoattractant that acts
independently of the HxA3 pathway, formyl-methionyl-leucyl-phenylalanine (fMLP) (36,
37), we failed to observe any probenecid-related reduction in PMN migration (Fig. 3B).
To ensure that the PMN transmigration was not due to pneumococcus-mediated
epithelial cell apoptosis, we performed annexin V staining (Fig. S2) and found no
significant increase in apoptosis during infection, consistent with previous reports (38).
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FIG 3 MRP2 inhibition via probenecid reduces PMN migration across polarized pulmonary epithelial
cells. (A and B) Polarized NCI-H292 cells on filter membranes were incubated with 100 �M MRP2 inhibitor
probenecid or mock treated for 1 h with PBS before apical infection with S. pneumoniae at an MOI of 10
(A) or the HxA3-independent bacterial product formyl-methionyl-leucyl-phenylalanine (fMLP) (B). For
both panels A and B, mock-infected or mock-treated cells were exposed to HBSS for the treatment time
period, and basolateral-to-apical migration of PMNs was quantified with a myeloperoxidase assay against
a standard number of PMNs (see Materials and Methods). The results of one representative experiment
from at least three experiments performed are shown. Statistical significance was calculated using
two-tailed Student’s t test.
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MRP2 inhibition mitigates pulmonary PMN infiltration and bacteremia follow-
ing lung challenge with S. pneumoniae. S. pneumoniae intratracheal infection of
C57BL/6J mice initially causes pneumonia and leads to bacteremia and, ultimately, to
septicemia that causes death (39). As shown previously, reduced PMN migration can
diminish bacteremia and improve survivability of pneumococcus-infected mice (6, 9,
10). With the knowledge that MRP2 inhibition diminishes PMN migration in vitro, we
sought to test whether MRP2 function had subsequent impact on disease in our murine
infection model, especially in the context of PMN transmigration.

Four sets of experiments were conducted: all involved mice that were pretreated
with either PBS or probenecid at 1 mg/kg delivered via the trachea to inhibit MRP2
function. Previous studies of this specific model have indicated that maximal PMN
recruitment occurs between 18 and 24 hours postinfection (10); therefore, two sets of
mice were sacrificed at either 24 or 48 h postinfection to examine the leukocytes
entering the lung via bronchial-alveolar lavage fluid (BALF) sample collection (see
Materials and Methods). The third set was sacrificed 2 days postinfection to test for
bacteremia and total lung burden. The fourth set was monitored for morbidity that
would require sacrifice as dictated by our standard operating procedure (SOP) (see
Materials and Methods).

Upon examining the contents of BAL fluid samples, we noted that probenecid
treatment consistently reduced the number of PMNs on the first day postinfection by
~35% (Fig. 4A). This trend continued through 48 h postinfection, and the combined
values of 24- and 48-h PMN infiltration showed significant differences as calculated
using two-way analysis of variance (ANOVA). When measuring expression of pro- and
anti-inflammatory cytokines from the BAL fluid samples, we noted that there appeared
to be no substantial differences between probenecid-treated and mock-treated animals
in any of the measured inflammatory cytokines at the times mentioned, with exception
to a reduction in interleukin 10 (IL-10) in probenecid-treated mice at 24 h postinfection
(Fig. S3A to D). We do not believe that this is a substantial physiological difference, as
reductions or eliminations of IL-10 in S. pneumoniae-infected mice generally lead to
greater infiltration of PMNs, not decreased infiltration (40). No other significant differ-
ences in T cells, macrophages, or dendritic cells were observed (Fig. S4A to C). Despite
the reduction in PMNs, no differences were observed in pulmonary bacterial burden 48
h postinfection (sacrificed whether exhibiting morbidity or active and healthy [Fig. 4B])
or upon death during survival experiments (Fig. S4D).

In line with previously mentioned data supporting that reduction in infiltrating
PMNs reduces bacteremia, probenecid-treated animals showed fewer numbers of mice
exhibiting bacteremia and ~10-fold-lower CFU in blood during the first 24 h compared
to PBS-treated mice (Fig. 4C). This trend continued at the 48-h time point, although it
did not reach statistical significance. The resulting survival curves showed probenecid
treatment improved survival by 30 to 40% consistently (Fig. 4D). Therefore, MRP2
inhibition via probenecid treatments was found to be effective at limiting PMN infil-
tration to the lung 24 h postinfection, corresponding to a reduction in bacteremia and
increased survival. While it is tempting to speculate on the therapeutic potential of
probenecid, in this experiment, this inhibitor is being used as an agent to block the
functional effect of a biological target.

MRP2 and MRP1 promote the secretion of proinflammatory and anti-
inflammatory lipids, respectively. To better understand how MRP1 or MRP2 function
could impact pneumococcus-induced PMNs, we generated H292 cell lines constitu-
tively expressing small hairpin RNAs (shRNAs) targeting MRP1 or MRP2 expression
(Fig. S5). Because it is known that MRP2 is able to efflux the proinflammatory molecule
HxA3 in the intestines (15), we hypothesized that limiting MRP2 expression would
reduce the amount of HxA3 effluxed during pneumococcal infection. As HxA3 is an
eicosanoid, we began by assessing the properties of hydrophobic material(s) enriched
from apical secretions of S. pneumoniae-infected polarized H292 cell monolayers. We
used a previously described method (15) utilizing methanol elution of a C18 column to
enrich bioactive lipid(s) following application of a pathogen to the apical surface of an
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epithelial monolayer (Fig. 5A). To reconstitute the lipid chemoattractant, the methanol-
lipid solution was evaporated over a steady stream of compressed nitrogen and
resuspended with Hanks balanced salt solution (HBSS). The isolated lipid-HBSS was
then applied to the apical surface of naive H292 cells during a PMN transmigration
assay. As expected, resuspended lipid isolated from uninfected cells yielded no PMN
migration, indicating there is no chemoattractant produced by the cells without
infection (Fig. 5B). When we applied resuspended lipid chemoattractant isolated from
infected cells to the apical surface of H292 cells during a PMN transmigration assay, we
induced PMN migration (Fig. 5B). Extracts isolated from H292 monolayers with reduced
MRP2 expression were less effective at inducing PMN transmigration than H292 cells
transfected with a scrambled shRNA sequence, in a manner similar to data reported in
Fig. 3 for probenecid, indicating a direct correlation between MRP2 expression and
PMN migration (Fig. 5B). To ensure that the process of lipid isolation enriches for HxA3,
we performed a functional assay in which HxA3-containing lipids are treated with
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FIG 4 MRP2 inhibition mitigates pulmonary burden and bacteremia following lung challenge with S. pneumoniae. Using an
in vivo model of PMN migration, we examined the results of MRP2 inhibition. C57BL/6 mice were treated with either PBS or
probenecid 3 h before and 3 h after intratracheal application of 2.5 � 105 S. pneumoniae. Four sets of mice were infected in
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mice had detected levels of bacteria in blood 48 h postinfection; �, no bacteria were detected in blood during tail vein bleeds.
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mice. There were 16 mice in a group for each condition. Statistical significance was calculated using Mantel-Cox test and
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soluble epoxide hydrolase (sEh) after being resuspended in HBSS, as has been de-
scribed (41). sEh treatment of HxA3 reduces the epoxide ring and results in the
biologically inactive trioxilin form of the eicosanoid. As HxA3 is the only known lipid
PMN chemoattractant that contains an epoxide ring, any resulting reduction in PMN
transepithelial migration would largely be attributed to the reduction in HxA3. Consis-
tent with this notion, sEh treatment resulted in a marked decrease in transepithelial
PMN migration compared to the migration in mock-treated samples (Fig. S6).

On the basis of reduced MRP1 surface expression during pneumococcal infection,
we further hypothesized that MRP1 is involved in an anti-inflammatory cascade that
suppresses PMN transepithelial migration. To test this theory, we once again resus-
pended the isolated lipid chemoattractant from Fig. 5A to conduct a PMN migration
assay. Instead of resuspending the chemoattractant with conventional HBSS, we con-
ditioned HBSS with apical supernatants from either scrambled-control or MRP1-
deficient knockdown (KD) cells. We expected MRP1 to secrete a molecule or molecules
during basal, uninflamed states (when MRP1 was highest) that would directly inhibit
PMN transmigration. Media conditioned with MRP1 competent cells, then, would
reduce PMN migration. Media conditioned with apical supernatants from MRP1 KD cells
would show no such inhibition.

When examining the results of conditioning the media with uninfected apical
secretions, the resulting PMN migration with normal HBSS without isolated lipids
induced no PMN migration, as expected (Fig. 5C). Lipids resuspended with media
conditioned with wild-type, MRP1-competent cells inhibited PMN migration compared
to lipids resuspended with unconditioned HBSS (Fig. 5C). When conducting a PMN
migration with lipids conditioned with MRP1-deficient cells, we lost the inhibition
observed with cells that had intact MRP1 expression (Fig. 5C). When we again used
fMLP to examine the HxA3 dependence, we again failed to observe a reduction in PMN
migration (Fig. 5D). In addition, we saw no changes in tumor necrosis factor (TNF-�),
IL-8, CXC chemokine ligand 2 (CXCL2), or IL-10 signaling in MRP1 knockdown cells
either before or after infection as measured by an enzyme-linked immunosorbent assay
(ELISA) (Fig. S7). Thus, it appears that MRP1 inhibits HxA3-specific PMN migration in vitro
and by reducing MRP1 expression, we diminished the inhibition on the PMN migration
that we observed with wild-type cells.

DISCUSSION

Lower respiratory tract infections are among the leading causes of death worldwide,
and S. pneumoniae remains the deadliest bacterial agent causing this affliction. Infec-
tion of the lung with S. pneumoniae induces a variety of inflammatory responses, the
pathological hallmark of which is massive influx of PMNs. In this role, PMNs are signaled
to navigate to the site of infection and have the task of pathogen eradication. Outright
neutropenia or elimination of PMN activity at this step is detrimental to the host, as a
full adaptive immune reaction has not had time to activate, and the bacteria are
unabated. However, unchecked, PMN recruitment lacking resolution culminates in
massive tissue destruction and, ultimately, lung failure. Thus, one of the key challenges
in treating lung inflammation lies in attenuating the inappropriate influx of PMNs
without compromising the ability of the patient to fight normal infections. We envisage
that a better understanding of the mechanisms underlying the regulation of PMN influx

FIG 5 Legend (Continued)
Lipids from MRP2-competent (Scrambled control) cells and MRP2-deficient (MRP2 knockdown [MRP2 KD]) cells were enriched
and eluted with methanol. This methanol/lipid solution was evaporated under a constant stream of nitrogen and resuspended
in HBSS to be used as PMN chemoattractant during a PMN migration assay through a monolayer of naive wild-type H292 cells.
(C) Proinflammatory lipids isolated from wild-type cells infected with Streptococcus pneumoniae from panel A were resus-
pended with either unconditioned media, conditioned media from MRP1-competent scrambled-control cells (Wild-type
conditioned media), or conditioned media from MRP1 knockdown cells (MRP1 KD conditioned media) and applied to the
apical chamber of naive cells to act as a chemoattractant during a PMN migration assay. HBSS without any lipid acted as a
negative control (Buffer Negative control). (D) MRP1-conditioned media failed to inhibit HxA3-independent PMN-migration
produced using formyl-methionyl-leucyl-phenylalanine (fMLP). The values were not significantly different (NS) by two-tailed
Student’s t test.
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during pneumococcal infection is essential to designing improved therapies that
dampen detrimental lung inflammation. This is a logical approach for S. pneumoniae, as
this bacterium is encapsulated, countering PMNs as a critical host defense mechanism.
Thus, the cost of host tissue damage as a result of PMN infiltration of the airway
epithelium during pneumococcal infection significantly outweighs any benefit PMNs
may have in defense of this particular infection.

Although several studies have probed aspects of PMN recruitment to the airspace
using a range of in vitro and in vivo models, many molecules mediating innate immune
responses during pneumococcal pneumonia infection are redundant and/or dispens-
able for PMN recruitment (42–49). As shown herein, we have uncovered a system of
checks and balances in which eukaryotic ABC efflux transporters facilitate the coordi-
nation of PMN transepithelial migration across lung epithelia in response to pneumo-
coccal infection. We have found that expression of the efflux transporter MRP1 on the
apical surface of the lung epithelium is high in a normal basal state. The action of MRP1
at this site is to maintain homeostasis through efflux of immunosuppressive bioactive
molecules that we have termed L-AMEND (lung activity-modulating epithelial-
neutrophil discourse). Under the same homeostatic state, expression of another efflux
pump, MRP2, is quite low, reinforcing the anti-inflammatory arm of this pathway.
However, upon introduction of a foreign invader, such as S. pneumoniae, expression of
MRP1 is decreased, reducing the effective concentration of anti-inflammatory mole-
cules at the site of infection. MRP1 reduction is accompanied by an increase in the
apical expression of MRP2, which facilitates the efflux of the proinflammatory eico-
sanoid hepoxilin A3, a potent PMN chemoattractant that in turn, attracts PMNs to the
site of infection/injury (Fig. 6).

Critically, while it is known that HxA3 is necessary in pneumococcus-induced PMN
translocation (9) and lung infection (50), no studies have ever shown the link between
MRP2-dependent HxA3 efflux and Gram-positive bacteria, highlighting the conservative
nature of the HxA3/MRP2 axis. Additionally, we found that blockade of MRP2 by
probenecid during S. pneumoniae infection profoundly decreased PMN influx into the

FIG 6 Epithelial MRPs assist in controlling pro- and anti-inflammatory states. As shown by this work, lung
epithelium expresses large amounts of MRP1 and small amounts of MRP2 at basal (uninfected) states. MRP1
effluxes molecules with anti-inflammatory activity, here termed L-AMEND, which acts to suppress PMN
migration. During infection with Streptococcus pneumoniae, MRP1 is reduced and MRP2 increases on the
apical surface of the epithelium. MRP2 mediates release of the proinflammatory molecule hepoxilin A3
(HXA3), which creates a chemokine gradient to draw PMNs to the site of infection. By both reducing MRP1
and increasing MRP2, the epithelium works to maximize the transepithelial PMN migration; however, this
PMN migration also disrupts epithelial tight junctions and can lead to infiltration of the intruding
S. pneumoniae.
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lungs of infected mice and, in turn, reduced the extent of systemic bacteremia. Our
discovery that MRP1 effluxes L-AMEND, which suppresses PMN migration, provides two
potential and independent treatment strategies to reduce PMN migration and thus
limit development of bacteremia: apical presentation of exogenous L-AMEND or local
inhibition of MRP2. It remains to be seen as to what exactly makes up the components
of the L-AMEND. When examining efflux supernatants from MRP1 knockdown cells or
probenecid-treated cells, we saw no discernible differences in the conditioned milieu as
examined by ELISA (see Fig. S7 in the supplemental material).

We chose an intratracheal administration of bacteria in our studies to highlight the
transition from lung to blood infection. One of the major focuses of this study was to
examine whether MRP2 inhibition would augment PMN infiltration to the lungs during
infection. Secondary to this, we sought to confirm that the PMN infiltration correlated
with the development of bacteremia over the course of infection. Intratracheal infec-
tion seemed the most direct route to test this, bypassing any bottleneck in intranasal
application, and guaranteeing that bacteria enter the lung. Histology revealed that lung
pathology does not appear different between probenecid-treated and PBS-treated
animals (Fig. S8), inferring that all of the mice had equal opportunity to develop
bacteremia. Because the infection is delivered almost directly to the lung in a bolus, it
is reasonable that both cohorts would exhibit similar lung pathology, since the major
difference between the two is induction of bacteremia and PMN infiltration, not the
lung infection itself (9, 10). One explanation for these observations is that HxA3 efflux
specifically controls initial PMN migration but is not necessarily critical for prolonged
PMN migration, which appears to be dictated by leukotriene B4 release from PMNs
themselves (41). In probenecid-treated mice, therefore, MRP2 blockade would lead to
fewer paracellular openings and only slightly fewer PMNs but a significant reduction in
the number of breakages by which bacteria pass through.

While our studies are the first to identify a push/pull interaction between MRP1 and
MRP2 in PMN migration, there is another study examining MRP1 that presents an
interesting paradox. Schultz et al. previously reported that global Mrp1 knockout mice
were protected during intranasal pneumococcal (serotype 3) infection in a leukotriene
B4 (LTB4)-dependent manner, whereas wild-type littermates succumb to infection (51).
At 48 h postinfection, extracellular leukotriene C4 (LTC4) was lower in BALF specimens
from Mrp1�/� mice than in BALF specimens from wild-type mice. Intracellular LTC4,
understandably, was found to be higher, leading to the conclusion that release of LTC4

was inhibited by the elimination of murine MRP1 (51). In a separate study, intracellular
LTC4 retention was suggested to be cytotoxic (19). Because PMNs express MRP1, a
global knockout would yield MRP1-deficient PMNs. This could lead to PMN apoptosis
and reduced numbers, exactly the observation in the Schultz study 48 h postinfection.
With this explanation, it would appear that the previously reported Mrp1 knockout data
do not refute our stated results. Additionally, this is yet another communication
reinforcing that fewer PMNs responding to bacterial infection actually can improve
survival in S. pneumoniae infection.

There remains the possibility that epithelium-derived LTB4 could influence PMN
migration; however, it has been shown that LTB4 released by cells during in vitro PMN
transmigration is almost exclusively derived from PMNs (41), eliminating the possibility
that the epithelium is coordinating PMN migration with LTB4 in our MRP1 knockdown
studies. To ensure that our infected epithelia do not undergo LTC4-induced apoptosis,
we tested annexin V staining postinfection in MRP1-deficient epithelium compared to
control cells (Fig. S9) and found no differences, indicating that any increases in PMN
migration associated with MRP1 deficiency are not caused by epithelial cytotoxicity.

Our hypothesis that MRP1/L-AMEND dictates an anti-inflammatory state while
MRP2/HxA3 assists in proinflammatory activity incorporates the concept that epithelial
cells (through regulation of ABC efflux transporters) act as sensors that integrate signals
to determine when and to what level to incite PMN transmigration (Fig. 6). Thus, a
steady-state, noninflamed condition is established that limits inappropriate inflamma-
tory responses but is poised to respond to pathogens, such as S. pneumoniae. Although
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this PMN response is critical in controlling the infection at hand, prolonged PMN
activation also has deleterious effects on health, highlighting a cost-benefit relationship
for the host. These findings regarding the nature of this anti-/proinflammatory balance
could provide clinical targets for therapeutic control of dysregulated respiratory innate
inflammatory responses that ultimately allow for containment of the infection but
simultaneously dampen detrimental lung inflammation.

MATERIALS AND METHODS
Cell culture. The human mucoepidermoid pulmonary cell line, NCI-H292 (H292), was cultured with

RPMI 1640 (catalog no. 11875-093; Gibco) supplemented with 10% fetal calf serum (FCS) and subcultured
using 0.05% trypsin-EDTA (catalog no. 25300-054; Gibco). Transmigration cells were prepared on 24-well
inverted semipermeable membranes (catalog no. 3421; Costar) and grown to confluence. Cells for
RNA/protein assays were grown to confluence on six-well membranes. MRP1, MRP2, and scrambled-
control knockdown cell lines were developed by chromosomal integration of pLOK.1 small hairpin RNA
(shRNA) constructs in wild-type H292 cells, selected with puromycin, and confirmed by Western blotting.

Bacteria. Streptococcus pneumoniae serotype 4 (TIGR4) was provided by John Leong and Andrew
Camilli (Tufts School of Medicine). Bacteria were streaked overnight on 5% sheep blood tryptic soy agar
(catalog no. p-1100; Northeast Laboratory Services) and grown at 37°C and 5% CO2 for 14 to 20 h. On
the day of infection, bacteria were resuspended with Todd-Hewitt-yeast medium and supplemented with
Oxyrase (catalog no. OB-0100; Oxyrase, Inc.) (5 �l/ml culture). Cultures grew to ~5 � 108 CFU/ml. In vitro
infections were diluted in Hanks balanced salt solution (HBSS) (catalog no. 14025-092; Gibco). Mouse
infection solutions were resuspended using filter-sterilized phosphate-buffered saline (PBS).

RT-PCR. Confluent H292 cells on six-well membranes were rinsed with HBSS and infected apically
with TIGR4 (multiplicity of infection [MOI] of ~10) for 1 h. The cells were washed with HBSS, and RNA was
collected using Qiagen RNeasy kits (catalog no. 74106; Qiagen) following the suggested protocol. cDNA
was obtained using Qiagen QuantiTect following the manufacturer’s instructions. Reverse transcription-
PCR (RT-PCR) data were obtained using Sybr green with custom primers for each transporter (in triplicate)
normalized to expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Transmigration. Transmigrations were conducted as previously described (52) using H292 cells.
Probenecid (catalog no. P8761-25G; Sigma) was diluted in HBSS before being solubilized with NaOH and
brought to pH 7.4 with HCl. Probenecid treatment at 100 �M was completed 1 h prior to infection. H292
cells were infected apically with wild-type TIGR4 (MOI of ~10) for 1 h and washed. Human PMNs were
isolated from healthy donors using methods previously published (15). Freshly isolated PMNs were
applied to the basolateral chamber of infected membranes and allowed to migrate. PMN migration was
quantified using a myeloperoxidase assay. N-Formyl-methionyl-leucyl-phenylalanine (fMLP) was pur-
chased from MP Bioscience (catalog no. 151170) and used at a final concentration of ~150 nM during
PMN migrations. Soluble epoxide hydrolase was purchased from Cayman Chemical (catalog no.
10011669) and mixed in solution with resuspended lipid extracts at 100 �g/ml for 1 h prior to being
exposed to naive cells during a PMN migration assay as previously described (41).

Biotinylation. H292 cells were grown on six-well transmembranes to confluence, rinsed with HBSS,
and infected with TIGR4 (MOI of ~10) apically. The cells were washed and biotinylated as previously
described (53, 54). The cells were lysed and passed through 26 1/2-gauge needles, spun, and applied to
streptavidin beads (catalog no. 20347; Thermo Fisher) or saved in Tricine sample buffer (recipe from
Bio-Rad [catalog no. 161-0739]). Biotinylated-bead samples were incubated at 4°C overnight, washed,
incubated at 40°C for 20 min in Tricine sample buffer, then run on 4 to 20% TGX protein gel. The proteins
were transferred onto nitrocellulose membranes, blocked, and incubated with antibodies against the
following: MRP1 (ab24102; Abcam), MRP2 (ab3373; Abcam), MRP3 (ab3375; Abcam), MRP4 (ab56675;
Abcam), MRP5 (ab77369; Abcam), P-glycoprotein (P-gp) (catalog no. 517310; EMD Millipore), and GAPDH
(MAB374; EMD Millipore). Horseradish peroxidase (HRP)-conjugated secondary antibodies were used to
visualize Western blots.

Mouse infections. C57BL/6J mice were purchased from Jackson Laboratories. For lung immunoflu-
orescence images, mice were anesthetized with isoflurane and mock infected with PBS or infected with
50 �l of TIGR4 intratracheally (~2.5 � 105 CFU/infection). Infections progressed for 48 h, and mice were
sacrificed. The lungs were reinflated with 1 ml of 1:1 PBS/OCT mixture, frozen in OCT, and processed. For
histological studies, mice were sacrificed, and the lungs were reinflated and fixed with PBS containing
10% formalin for a minimum of 24 h. The lungs were processed, sectioned, and hematoxylin and eosin
(H&E) stained. Jerrold Turner and associates scored pathology. CFU was calculated via lung homogeni-
zation and serial dilution plating.

For probenecid studies, mice were pretreated 3 h prior to infection with 1 mg of probenecid per kg
of body weight, diluted in PBS and applied intratracheally. Mice were mock infected with PBS or infected
with 2.5 � 105 CFU TIGR4, after which probenecid was administered 3 h postinfection. For bacteremia,
10 �l of blood was removed via tail vein lancet and diluted in anticoagulant for serial plating. ELISA
samples and leukocyte panels were generated using a modified BALF isolation protocol (55). One-
milliliter samples of PBS were applied to the mouse lung via the trachea three times and spun in a
centrifuge at 2,000 rpm. Supernatant was frozen for ELISA experiments, and cells were washed and went
to fluorescence-activated cell sorting (FACS) processing. Following red blood cell lysis, cells and Fc
receptors (catalog no. 101319; BioLegend) were blocked in PBS containing 0.5% fetal bovine serum (FBS).
Staining was achieved via incubation with Cd11b (catalog no. 101236; BioLegend), Ly6G (catalog no.
127618; BioLegend), Cd11c (catalog no. 117308; BioLegend), Cd3 (catalog no. 100204; BioLegend), or
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CD45 (catalog no. 103130; BioLegend) and run on a MACSquant analyzer. Populations were analyzed via
FlowJo. ELISA kits were obtained from R&D Systems (catalog no. DY453-05, DY452-05, DY217B-05, and
DY410-05), and assays were performed using the manufacturer’s instructions.

For survival curves, mice were sacrificed when exhibiting three of the following symptoms within 6 h,
according to our standard operating procedure (SOP): lethargy, shivering, loss of more than 10% body
weight, and fur ruffling. In all survival experiments, animals showed no signs of pathology after 96 h of
infection. Repeated experiments going to 168 h postinfection showed similar results. Survival curve
statistics were calculated using the Mantel-Cox test and Gehan-Breslow-Wilcoxon test. All experiments
were completed with approval of University of Massachusetts IACUC 1905.

Immunofluorescence. Immunofluorescent H292 samples were grown on inverted membranes and
either mock infected or infected with TIGR4 at an MOI of ~10 apically prior to fixation with 4%
paraformaldehyde. The cells were washed, blocked with 3% bovine serum albumin (BSA), and perme-
abilized with 0.01% Triton X-100. The samples were stained with primary antibodies to MRP1 (sc-7773;
Santa Cruz), MRP2 (sc-5770; Santa Cruz), MRP3 (ab3375; Abcam), MRP4 (ab56675; Abcam), or MRP5
(ab77369; Abcam). Secondary antibody incubations were with Alexa Fluor 488/phalloidin 569 (catalog
no. A12380; Life Technologies) or Alexa Fluor 568/phalloidin 488 (catalog no. A12379; Life Technologies).
Images were taken with a Leica SP-5 confocal microscope, and calculations were completed using
ImageJ. Images were converted to 8 bits, the threshold was set for a given protein, and the percent area
in a given region of interest was calculated. All corresponding uninfected and infected images were
infected, stained, and imaged on the same day to reduce confounding factors and standardize the apical
coverage calculations.

Mouse lung sections were fixed with 4% paraformaldehyde, blocked with 3% BSA, and permeabilized
with 0.01% Triton X-100. Slides were incubated with the indicated primary antibody, washed, and
incubated with 1:1,000 dilutions of the above secondary antibodies. Increases or decreases of signal were
calculated using ImageJ to assign an arbitrary signal with the parameters described with H292 immu-
nofluorescence. Fold differences in Fig. 2B were calculated by quantifying signal for specific antibodies
and normalizing to surface area according to phalloidin staining. These ratios were averaged, and the
buffer average was set at a ratio of 1. All samples were then standardized to the buffer average for each
given antibody, and fold increases or decreases were reported.

Lipid isolation. H292 and MRP2 knockdown (KD) cells were grown and infected as described above
under “Biotinylation.” HBSS applied after infection was collected, debris was removed via centrifugation,
and solution was applied to a C18 solid-phase extraction column (catalog no. 52604-U; Supelco). Lipids
were eluted using methanol and stored at �80°C for up to 1 month.

To analyze activity, lipid-methanol solutions were dried under constant nitrogen stream and resus-
pended in prewarmed HBSS. HBSS-lipid was applied to the apical surface of inverted naive H292 cells,
and PMN migrations were completed as described above.

MRP1 inhibition was tested using prewarmed HBSS applied to the apical surface of control or MRP1
KD cells for 5 h, producing conditioned media. Lipid-methanol solutions from above were dried and
resuspended with unconditioned HBSS, conditioned HBSS from MRP1-competent cells, or conditioned
MRP1 knockdown media. Migrations were then conducted as described above.

Human ELISA kits were obtained from R&D Systems (DY210-05, DY217B-05, DY276-05, and DY208-
05), and assays were completed using the manufacturer’s instructions. To collect samples, six-well filter
insert plates were seeded with H292 cells and grown to confluence. The cells were equilibrated in
prewarmed HBSS and either mock treated or infected with Streptococcus pneumoniae at an MOI of 10 on
the apical surface for 1 h. The cells were then washed, and 1 ml HBSS was placed on the apical surface
for 1 h for sample collection.

Apoptosis. For apoptosis, inverted H292 cell constructs were infected with TIGR4 at an MOI of 10 or
treated with staurosporine (sc-3510a; Santa Cruz) as a positive control for 1 h. The cells were washed and
allowed to rest at 37°C in HBSS for an additional 2 h. The cells were lifted using 0.05% trypsin-EDTA,
washed, and stained with annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (sc-4252 AK;
Santa Cruz). Staining was visualized, and the cells were enumerated using a MACSquant analyzer and
FlowJo. Three constructs per condition were pooled, and data shown are the summation of three
different infections.
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