IlpJ Parkinson’s Disease

BRIEF COMMUNICATION

www.nature.com/npjparkd

Synergistic effects of influenza and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) can be eliminated by the use of
influenza therapeutics: experimental evidence for the multi-

hit hypothesis

Shankar Sadasivan’, Bridgett Sharp?, Stacey Schultz-Cherry? and Richard Jay Smeyne'?

Central Nervous System inflammation has been implicated in neurodegenerative disorders including Parkinson'’s disease (Ransohoff,
Science 353: 777-783, 2016; Kannarkat et al. J. Parkinsons Dis. 3: 493-514, 2013). Here, we examined if the HIN1 influenza virus
(Studahl et al. Drugs 73: 131-158, 2013) could synergize with the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(Jackson-Lewis et al. in Mark LeDoux (ed) Movement Disorders: Genetics and Models: 287-306, Elsevier, 2015) to induce a greater
microglial activation and loss of substantia nigra pars compacta dopaminergic neurons than either insult alone. H1N1-infected
animals administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exhibit a 20% greater loss of substantia nigra pars compacta
dopaminergic neurons than occurs from the additive effects of HIN1 or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine alone

(p < 0.001). No synergistic effects were found in microglial activation. The synergistic dopaminergic neuron loss is eliminated by
influenza vaccination or treatment with oseltamivir carboxylate. This work shows that multiple insults can induce synergistic effects;
and even these small changes can be significant as it might allow one to cross a phenotypic disease threshold that would not occur
from individual non-interacting exposures. Our observations also have important implications for public health, providing impetus
for influenza vaccination or prompt treatment with anti-viral medications upon influenza diagnosis.
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Influenza A viruses infect a number of different species, ranging
from birds to mammals including humans." In addition to the well-
defined respiratory effects, acute influenza infection in humans
can lead to the development of a number of encephalitic
syndromes, each having neurological consequences.” We demon-
strated that acute infection in mice with two different influenza
viruses, A/Vietnam/1203/2004 (highly pathogenic avian H5N1
virus)® and A/California/04/2009 HIN1 virus,* induces an inflam-
matory response in the brain, consisting of activation of microglia
and secretion of cytokines/chemokines. This neuroinflammatory
response was independent of viral neurotropism as the H1N1 virus
is not neurotropic in mice.* * This suggested that the peripheral
immune response activated following influenza infection® © was
likely responsible for the observed secondary Central Nervous
System (CNS) inflammation.

Of concern, inflammation within the CNS can increase the
sensitivity to secondary insults, such as agents that induce
proteasome inhibition or induce oxidative stress, that otherwise
would not induce significant neurological damage.””"" To test if
influenza virus could act as one of the insults in the “multi-hit”
hypothesis,'® we used the optical disector method (Stereoinves-
tigator, MBF Biosciences, Williston, VT) to estimate the number of
activated microglia® (as a marker of neuroinflammation) in the
substantia nigra pars compacta (SNpc) and model-based

stereology'® to estimate the number of dopaminergic (DA)
neurons (TH-positive + TH-negative, Nissl-positive DA neurons)'*
in four groups of animals: (1) mice intranasally administered saline;
(2) mice intranasally administered 102 TCIDsy influenza HIN1
virus*; (3) mice administered 4 x 20 mg/kg 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)*; and (4) mice intranasally
administered 10% TCIDs, influenza HIN1 virus followed 30 days
later by 4 x 20 mg/kg MPTP. All conditions were blinded prior to
counting. All of the experiments were approved by the SJCRH
(protocol 513) and TJU (protocol 1892) IACUCs and performed in
accordance with the NIH Guide for the Care and Use of Laboratory
Animals. The number of activated microglia and SNpc DA in each
condition were subsequently compared using one-way ANOVA
followed by post hoc Bonferroni comparisons (Prism 7 for Mac,
GraphPad Software).

We found increased numbers of activated microglia in the SNpc
(Fig. 1a) 7 days after MPTP (345% increase vs. control, p < 0.0002)
or 30 days after HIN1 (231% increase vs. control, p<0.01),
supporting our previous observations.* ' When mice were
exposed to HIN1, and then 30 days later to MPTP, we observed
no additional increase in the number of activated microglia
compared with the MPTP group (decrease of 7%, NS), suggesting
either: (1) that there was no combinatorial (either additive (x +y =
z) or synergistic (x + y < z)) inflammatory effect of HIN1 + MPTP on
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Fig. 1 Effects of HIN1 and MPTP on microglia and DA neurons in the SNpc. a Stereological estimate of the number of activated microglia in
the SNpc 30 days after saline (control, n =15), 30 days after HIN1 (n=7), 7 days after MPTP (n=7), or 7 days after HIN1 + MPTP (n=10). b
Stereological estimate of the number of DA neurons in the SNpc 30 days after HIN1, MPTP, or HIN1 + MPTP. ¢ Stereological estimate of the
number of activated microglia in the SNpc 30 days after HIN1, HIN1 + oseltamivir (n = 10), or HIN1 + vaccine (n =7). d Stereological estimate
of the number of DA neurons in the SNpc 30 days after MPTP, HIN1 o MPTP, HIN1 + MPTP + oseltalelr or HIN1 + MPTP + vaccine. 'p < 0.05

compared with control, *p < 0.05 compared with HIN1 or control,
©p < 0.05 compared with MPTP or HIN1 alone

(2) microglial activation or that MPTP induced a maximal
microglial activation (Fig. 1a). Unlike the activation of microglia,
we found that the SNpc DA neuron loss was 20% greater (47% loss
compared with saline, p < 0.0001) than the additive neuronal loss
induced by HIN1 (8% loss compared with saline, NS) or MPTP
(26% loss compared with saline, p <0.001) alone, suggesting a
significant synergistic effect in DA neuron loss, where SNpc DA
neuron loss was increased by 25% in the influenza infected +
MPTP animals as compared with MPTP (p < 0.05) or HIN1 (p<
0.0001) alone (Fig. 1b). This demonstrated that prior influenza
infection, even if resolved, could increase the sensitivity of DA
neurons to a second insult.

Having shown that H1N1 influenza infection can act as the first
“hit” in a “multi-hit” model,'® we examined whether two different
influenza therapeutics could eliminate this synergy. Here, we
either intramuscularly vaccinated mice with an inactivated strain-
matched HIN1 influenza virus vaccine 30 days prior to H1N1
infection or orally administered oseltamivir carboxylate, a
neuraminidase inhibitor that has been shown to be 99.2%
effective against HIN1pdm09 viruses,'” twice a day for 6 days
beginning 1 day before influenza virus infection. In both
paradigms, we allowed 30 days to elapse and then quantitated
the number of SNpc DA neurons and activated microglia. We
found that administration of either treatment completely alle-
viated the increase in HIN1 virus-induced microglial activation
(Fig. 1c), but did not reduce the microglial activation induced by
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&p < 0.05 compared with HINT,

p < 0.05 compared with HIN1 + MPTP,

MPTP alone (data not shown). We then asked if influenza
therapeutics could alter the synergy seen by HIN1 + MPTP, as it
is related to SNpc DA neuron loss. Here we either vaccinated mice
prior to HIN1 infection or treated with oseltamivir carboxylate
concomitant to HIN1 infection as described above. After 30 days,
these mice were administered 4 x 20 mg/kg MPTP and 7 days later
we estimated the number of SNpc DA neurons. In both the
vaccine-treated (6590 + 220) and oseltamivir-treated mice (7221 +
266), HIN1 + MPTP induced SNpc DA loss that was statistically
identical to animals administered MPTP-only (Fig. 1d). This
suggested that alleviating the inflammatory program induced by
H1N1 infection by either vaccination or oseltamivir carboxylate
could abrogate the increased SNpc DA neuron death induced by a
second “hit” seen without influenza intervention.

The majority of Parkinson’s disease cases have an unknown
etiology, although it is generally thought that it results from an
interaction of environmental insult(s) with an underlying suscept-
ibility to these agents.'® ' Since Parkinson’s disease generally
manifests starting in the sixth decade of life,® it is likely that any
person will encounter any number of environmental insults, which
alone may be innocuous but together may synergize to produce a
measureable pathology. Our results suggest that influenza-induced
activation of the intrinsic immune system of the brain can
exacerbate the effects of a known parkinsonian agent, MPTP. From
2009 to 2013, approximately 24% of the worldwide population had
been exposed to the HIN1 virus®' and its re-emergence in
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subsequent years likely increased these numbers. If these
preclinical studies translate to humans, the results from this study
suggest that influenza infection could be a common risk factor for
sensitizing the SNpc DA neurons to oxidative stress and subsequent
development of parkinsonism. Here, we show that the synergistic
effects of the “influenza (hit 1) x oxidative-stress induction (hit 2)”
interaction can be eliminated by vaccination or prompt treatment
with the neuraminidase inhibitor oseltamivir carboxylate, suggest-
ing that prevention of the HINT-induced microglial activation can
mitigate this potential parkinsonian risk factor.

In the 6-year period prior to 2015 it has been estimated that
60% of the US population (based on a US Census estimated at 324
million persons) has been vaccinated against influenza.?? In the
last full year (2014-2015) in which statistics had been released,
approximately 692,000 tests were performed for flu during
physician visits for influenza-like symptoms, of which 18% were
positive.> Additionally, other studies suggest that about 13% of
physician visits for influenza-like symptoms result in prescription
of an anti-viral medication.?* Using these figures, there is a large
number of persons (approximately 190 million) who are poten-
tially exposed to flu but go untreated, each, based on these
preclinical studies, of whom would have the potential to be at
increased risk for developing Parkinson’s disease. Despite the lack
of a defined mechanism and studies examining the maximal
interval in which these “hits” can interact—both of which warrant
further study—our observations have potentially important
implications in public health and provide additional impetus for
influenza vaccination or prompt treatment with anti-viral medica-
tions upon influenza diagnosis.
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