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Abstract: The twisted bundled-tube locomotive device is an elongated soft robot that moves inside
a pipe in a helical bending motion. This motion mimics the behavior of microorganisms called
spirochetes. This device is inexpensive and easy to miniaturize because of its simple structure, which
consists of three inflatable tubes twisted together. It can move in pipes of various diameters without
a change in design. Therefore, it has a high capacity for water pipe inspection. However, it has not
yet been shown to pass through step parts wherein the diameter of the pipes decreases. In this study,
we developed a device that was deformed into a tapered shape by changing the pitch of the spirals at
each location. The prototype device was able to move from a pipe with an inside diameter of 52.9 mm
to a pipe with an inside diameter of 21.6 mm for horizontally fixed pipes, and from a pipe with an
inside diameter of 41.6 mm to a pipe with an inside diameter of 21.6 mm for vertically fixed pipes.

Keywords: soft robotics; in-pipe; pneumatic; snake-like; helical

1. Introduction

Although snakes have a simple structure with a cord-like body, they can move on
uneven ground. They also sometimes use their bodies dexterously to perform various
actions such as climbing trees. Therefore, despite their simple structure, many robots
that mimic snake behavior have been studied due to the fact that various movements are
possible [1–7]. Robots that mimic the motion of snakes do not require an infinite rotating
axis such as a wheel because they can generate thrust with only a bending motion. This
makes it easier for them to seal and protect the interior of the robots from water and gas.
In addition, their elongated structure allows them to move within narrow spaces. These
advantages allow them to be used in a variety of environments, including dirty areas, inside
pipes, and underwater environments. For example, several studies have been conducted on
swimming snake-like robots that mimic the bending motion of sea snakes [8–10]. Several
studies have also been conducted on snake-like robots for movement inside pipes [1]. Most
snake-like robots utilize a planar bending motion. Snakes produce this type of movement
owing to the effects of gravity. However, some microorganisms drifting in water perform
three-dimensional bending motions. One of these is a spiral-shaped microorganism called a
spirochete. It generates a propulsive force by rotating around its central axis, and it moves
in the direction of the central axis. The three-dimensional bending motion keeps the trunk
in a spiral shape and generates a propulsive force through an infinite rotational motion
similar to that of a screw such that all parts of the trunk can contribute to the generation
of the propulsive force in water. We thus developed an underwater swimming robot that
mimics this motion [11]. This three-dimensional bending motion has also been applied to
robots that move by wrapping themselves around pipes [12,13] and robots that move inside
pipes. Snake-like robots can move with high efficiency by performing three-dimensional
bending motions if they can move with all joints in equal contact to an environment, such
as inside or outside the pipes.
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In-pipe robots that are usually proposed can be categorized into wheel, screw, worm-
like, and snake-like robots, depending on their movement method. Their characteristics are
summarized in Figure 1.

Material
Properties

Cost
performance

Diameter
adaptability Reliability Sealability

wheel
Inelastic Good Bad Good Bad

Screw
Inelastic Normal Bad Good Bad

Worm-like
Inelastic Normal Bad

Normal Good
Elastic Good Normal

Snake-like
Inelastic Bad

Good
Bad

Good
Elastic Good Good

Figure 1. Characteristics of in-pipe robots.

Wheel-type robots have the advantages of high traveling accuracy and speed [14].
However, it is difficult to accommodate a wide range of pipe diameters without changing
the design because the wheels must adhere to various directions for stable travel in the
pipe [15]. In addition, its complex structure makes miniaturization difficult. Robots that
move by screw rotation can be driven using a single actuator. Therefore, they are more
energy-efficient than wheel-type robots. However, they are also not compact, and for the
same reason as that for wheel-type robots, accommodating a wide range of pipe diameters
in a single body is difficult [16,17]. Robots that use a peristaltic motion, similar to worms,
have high sealability. However, if the device is composed of mechanical links and is ac-
tuated by electric motors, its size will increase and it requires complex controls [18]. It is
difficult to miniaturize any device that uses a motor to move inside a pipe, and the complex
structures of these devices make them expensive. Therefore, several soft robots have been
studied as inexpensive and easily miniaturized robots [19,20]. Worm-like robots can be
made inexpensively with elastic materials. By inflating their body, they can adapt to differ-
ent pipe diameters. We thus propose a snake-like soft robot. Snake-like robots composed
of mechanical links require many motors, which make it expensive and unreliable. Our
proposed robot can overcome these problems. On the other hand, the elastic material makes
it less durable. Our proposed robot can be mass-produced because of its construction.

To overcome these problems, we propose a twisted bundled-tube locomotive device.
As shown in Figure 2a, this device consists of three twisted and inflatable silicone tubes.
Pressurizing a single tube deforms the entire device into a helical shape, with the pres-
surized tube moving outward, as shown in Figure 2b. By repeatedly pressurizing and
depressurizing the three tubes, the device twists and moves inside the pipes by means of
friction with the pipe while maintaining its deformed helical shape.

Because a non-stretchable axis exists in the center of the device, it can be equipped
with electric cables. Thus, a camera can be attached to function as an endoscope. Moreover,
this device has the same cross-section as the axis. Therefore, mass production by extrusion
is possible [21]. It has been demonstrated that this device can move inside pipes of various
diameters without changing its structure [22]. A problem that persists for this device is
that it can’t pass through step parts where the diameter of pipes decreases [23]. Robots
targeted at passing through the step parts have been studied, but their complex structures
make miniaturization difficult [24]. Therefore, the purpose of this study is to produce a
twisted bundled-tube locomotive device that can pass through step parts without the need
for complex control.
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Figure 2. Overview of a twisted bundled-tube locomotive device. (a,b) are the initial shape and
deformed shape when air pressure is applied to a single silicon tube, respectively.

2. Method
2.1. Analysis

Consider a device model with one helix cycle that focuses on the body axis and one
of the three silicone tubes that helically wrap around the body axis, as shown in Figure 3.
Figure 3a shows the model before deformation, and Figure 3b shows the deformed model
after air pressure is applied to the silicone tube to expand it, such that the axial expansion
ratio becomes α. For simplicity, the diameter of the body axis is assumed to be negligibly
small, and the silicone tube is assumed to expand only in the axial direction. The pitch of
the silicone tube wrapped around the body axis before deformation is P0 (hereafter called
the initial pitch), the pitch of the helix after deformation is P1, and the distance between the
central axis of the device and center of the silicone tube after deformation is R. The distance
between the body axis and the center of the silicone tube is r, and the angle of the spiral
of the silicone tube around the body axis is γ; because the body axis and silicone tube are
fixed, r and γ are both constant.

Based on this relationship, the device model is then developed into a plane in Figure 4.
Figure 4a,b show the device before and after deformation, respectively. The lengths of the
silicone tubes before and after deformation are L1 and L3, and that of the body axis after
deformation is L2.

𝑃𝑃0

𝑟𝑟 γ

𝑃𝑃1

𝑟𝑟 γ 𝑅𝑅

(a)
(b)

Figure 3. Device model with one helix cycle that focuses on the body axis and one of the three
silicone tubes that helically wrap around the body. (a,b) show the device before deformation and
after deformation, respectively.
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𝑃𝑃0

𝐿𝐿1

2π𝑟𝑟

γ

𝐿𝐿2

𝐿𝐿3

𝑃𝑃1

2π𝑅𝑅

2π𝑟𝑟

γ

(b)

(a)

Figure 4. Expanded model where (a,b) show the device before deformation and after deforma-
tion, respectively.

The deformation of the device can be analyzed based on geometric relationships.
Initially, d is the diameter of the silicone tube, and D is the diameter of the helix in the
center of the silicone tube located outside after deformation. From Figure 3a, d = 2r, and
from Figure 3b, D = 2R; because r and γ are constant, Equation (1) is valid. Hereafter,
L′1 denotes the product of L1 and α; when γ is expressed before and after deformation,
Equation (2) is valid.

P0 : L1 × α = L2 : L3 (1)

γ = arctan(
πd
P0

) = arctan(
πD
P1

)− arctan(
π(D− d)

P1
) (2)

L1, L2, and L3 from Figure 4 are expressed as in Equations (3)–(5). Substituting L2, and L3
into Equation (1) and solving for P1 results in Equation (6). Equation (2) can be solved for
P1 to obtain Equation (7).

L1 =
√

P2
0 + (πd)2 (3)

L2 =
√

P2
1 + π2(D− d)2 (4)

L3 =
√

P2
1 + (πD)2 (5)

P1 = π

√
−D2 + (

2dDL′21
L′21 − P2

0
)− (

d2L′21
L′21 − P2

0
) (6)

P4
1 + P2

1 (2π2D2 − 2π2Dd− P2
0 ) + π4D2(D− d)2 = 0 (7)

Finally, substituting Equation (6) into Equation (7) and solving for D yields
Equations (8) and (9).

D =
−C1 +

√
C2

1 − 4C2C0

2C2
(8)

C2 = π2d2(
L′21 +P2

0
L′21 −P2

0
)2 + P2

0

C1 = − 2π2d3L′21 (L′21 +P2
0 )+2dP2

0 L′21 (L′21 −P2
0 )

(L′21 −P2
0 )

2

C0 =
π2d4L′41 +d2P2

0 L′21 (L′21 −P2
0 )

(L′21 −P2
0 )

2

(9)

The radial expansion of the silicone tube is considered here. The radial expansion rate
is β, and A is the outer diameter of the device after deformation. A can be expressed as
shown in Equation (10).

A = D + βd (10)
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The relationship between α and β for the silicone tubes used in this study can be
approximated by using Equation (11) [25].

(β− 1) = 0.60(α− 1) (11)

From these equations, the outer diameter A of the device after deformation can be
obtained from the initial pitch P0 and the axial expansion rate of the silicone tube α. Similar
analyses can be found in references [26,27]. From our experience, the silicone tube used in
this study is easily punctured when the applied pressure and alpha exceed 0.14 MPa and
1.11, respectively. Therefore, we used α = 1.11 to design the device.

2.2. Proposal of the Tapered Shape

Figure 5 shows the relationship between the initial pitch and the outer diameter after
deformation, when α = 1.11 and using Equations (8)–(11). Figure 5 shows that a larger initial
pitch results in a larger outer diameter after deformation, whereas a smaller initial pitch
results in a smaller outer diameter after deformation. Figure 6a illustrates the deformation
at the initial pitch and the expansion rate shown in Figure 5a, and Figure 6b illustrates the
deformation shown in Figure 5b. If the outer diameter after deformation is small, as shown
in (a), it cannot generate a pushing force against the inner wall of the larger pipe to generate
a gripping force, and thus it cannot move. If the outer diameter after deformation is large,
as shown in (b), it can generate a pushing force against the inner wall of the larger pipe and
can thus move. However, the front tip is always pressed against the inner wall; therefore, it
is caught by the step part and cannot enter the smaller pipe.

To pass through the step part, we propose a device that deforms into a tapered shape
that is thicker at the root and thinner toward the tip when air pressure is applied, as shown
in Figure 6c. A device with this tip shape is believed to pass through the step part because
the tip is pointed and can move freely in the radial direction. A tapered tip shape is
produced by bundling the root with a helix possessing a larger pitch, and then bundling it
with a helix possessing a smaller pitch as it approaches the tip. We aim to move the step
part by driving a twisted bundled-tube locomotive device with this tip geometry under
appropriate pneumatic control.

b

a

Figure 5. Relationship between the initial pitch and the outer diameter after deformation when
α = 1.11.
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(a) 𝑃0 = 50𝑚𝑚

φ52.9mm

(b) 𝑃0 = 320𝑚𝑚

(c) 𝑃0 = 50𝑚𝑚 𝑃0 = 320𝑚𝑚

Figure 6. Initial shape and deformed shape when α = 1.11, where (a–c) show devices whose initial
pitches are 50 mm, 320 mm, and biased, respectively.

3. Experiments
3.1. Tube Manufacturing Method

In Japan, the 20A pipe is widely used for water pipes, with the designation A being
the nominal diameter of a water pipe, as defined by the Japanese Industrial Standard (JIS).
The inside diameter of a 20A pipe is 21.6 mm. Considering the deformation of the device,
the device was designed such that its diameter is approximately half of the inside diameter
of a 20A pipe. Therefore, silicone tubes with an outer diameter of 6 mm were used to
fabricate it. A commercial silicone tube is not designed to be inflated and can only be
inflated at high pressure. In addition, it does not return to its original size. Therefore, soft
silicone tubes have been fabricated. Molds and caps were used, as shown in Figure 7a.
The molds had half pipe-shaped grooves. The diameter of these grooves was the same
as that of the developed silicone tube. The caps were shaped to fit both ends of the mold.
They also had a hole in the center through which a stainless-steel rod could be passed. The
molding proceeded as follows: (1) Liquid silicone was poured into the grooves of the molds,
as shown in Figure 7b. (2) Stainless-steel rods were prepared. These rods should be slightly
longer than the mold and slightly thicker than the commercial tubes joined at both ends of
the silicone tube. (3) Both ends of the stainless-steel rod were inserted approximately 1 cm
into the commercial tubes. A cap was then placed at both ends. (4) A stainless-steel rod was
sandwiched between the molds, as shown in Figure 7c. When liquid silicone hardens, it
merges with the commercial tubes. Once hardened, as shown in Figure 7d, the silicone tube
was removed from the molds and caps, and the rod was pulled out. In this way, silicone
tubes with a length of 220 mm, an outer diameter of 6 mm, and an inner diameter of 1.6 mm
were fabricated with X-32-2428-4 (Shin-Etsu Chemical Co., Ltd., Tokyo, Japan).
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Stainless-Steel rod

Commercial tube

Cap

Developed silicone tube

(a)

(b)

(c)

(d)

Liquid silicone rubber

Mold Cap

(e)

φ6mm

φ1.6mm

Figure 7. Molding procedure, where (a–d) show overview of molds and caps, liquid silicone which
poured into the grooves of the molds, A stainless-steel rod which sandwiched between the molds,
and the developed silicone tube.

3.2. Experiment Using a Uniform Pitch Device

For comparison, an experiment was conducted using a device with a constant initial
pitch. From the analysis results, the relationship between α and the outer diameter after
deformation can be expressed by determining the initial pitch. Based on Equations (8)–(11),
a graph that shows the relationship between α and the outer diameter after deformation
was drawn. Several graphs were drawn by changing the initial pitch P0, and when α = 1.11
in the graph of P0 = 320, the outer diameter after deformation became 52.9 mm, which
is the same as the inner diameter of a 50A pipe, as shown in Figure 8. From this result,
the larger pipe used in the following experiments was determined to be a 50A pipe; the
50A pipe is also a widely used pipe standard in Japan. We manufactured a device with an
initial pitch of 320 mm and attempted to move from 50A to 20A.

Figure 8. Relationship between the axial expansion rate and the outer diameter after deformation.
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The device was driven by applying air pressure using three solenoid valves (VP544R-
6M1-A, SMC Co., Ltd., Tokyo, Japan ) driven by a USB I/O Terminal (A10-160802AY-USB,
CONTEC Co., Ltd., Osaka, Japan ). The period, duty ratio, and strength of the air pressure
were controlled. The period spans the time from the start of pressurizing a tube to the
start of pressurizing it again after depressurizing it (indicated by T), as shown in Figure 9.
The duty ratio is the ratio of the time required to pressurize each tube to the period,
indicated by D = t

T , as shown in Figure 9. The tube takes time to fully inflate. Therefore,
if the time when the two tubes are simultaneously pressurized is short, a timing will
exist when the pressurization is insufficient; hence, twisting cannot be performed while
maintaining the deformed shape at the assumed α. In addition, a longer time for each tube
to be pressurized generates time for the device to stand still. This reduces the movement
efficiency. First, the duty ratio was verified. The device was driven at various duty ratios
with an air pressure of 0.14 MPa (gauge pressure) and a period of 1000 ms, as shown in
Figure 10. When the duty ratio was low, such as 0.38, the device could not maintain its
deformed shape during twisting. At a duty ratio of 0.43, the device maintained a constant
deformation shape and torsion. These results indicate that the deformed shape could be
maintained when the two tubes were simultaneously pressurized for 90–100 ms.

T

t

TubeA

TubeB

TubeC

S
ig

n
al

 f
o
r 

so
le

n
o
id

 v
al

v
es

High

High

High

Low

Low

Low

Figure 9. Pneumatic control.

D=0.38

D=0.45

D=0.43D=0.41

D=0.48

D=0.42

Transition
state

stable state

Figure 10. Experiments in which the device was driven within a period of 1000 ms and at an air
pressure of 0.14 MPa with different duty ratios.

Next, the period was verified by simultaneously changing the duty ratio and the
period such that the time during which the two tubes were simultaneously pressurized
was within this range. If the period is more than 700ms with a duty ratio of 0.47, the period
is sufficiently long to expand the silicone tube because there is a moment when the tube is
sufficiently inflated and the device stops moving, as shown in Figure 11.
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T=6.26(s) T=6.30(s)

Figure 11. Experiments in which the device was driven with a period of 700 ms, a duty ratio of 0.47,
and an air pressure of 0.14 MPa.

Finally, air pressure was confirmed. The expansion rate of the tube depends on the
strength of the air pressure. The constructed device was gradually pressurized, and when
the pressure reached 0.14 MPa, the device was deformed and acquired the same outer
diameter as the inner diameter of the 50A pipe, as shown in Figure 12b. Consequently, our
assumption was confirmed—that when the tube is pressurized at 0.14 MPa, the expansion
ratio is 1.11. Based on the aforementioned verification, the experiment was conducted
at an air pressure of 0.14 MPa, within a period of 700 ms, and at a duty ratio of 0.47.
Two transparent pipes, one with the same inner diameter as that of the 50A pipe and
the other with the same inner diameter as that of the 20A pipe, were fabricated using
a polypropylene sheet and connected such that their centers coincided and were fixed
horizontally. As shown in Figure 12d, when the device was driven, the tip of the device
was caught in the step part and could not pass through.

(a)

(d)

(c)

(b)

220mm

φ12mm

φ52.9mmφ21.6mm

(a)

(b)

Figure 12. Experiment using a uniform pitch device. (a–d) show the initial shape, deformed shape,
the moment when the front tip contacts the step, and the situation when the tip is caught by the step
part, respectively.
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3.3. Design of the Proposed Device

A device was designed with the proposed tip geometry to pass from a 50A to a 20A.
As before, the initial pitch at the root was designed to be 320 mm, assuming that it was
driven with an α of 1.11. To move efficiently within the 50A, it must stick strongly to all
directions within the pipe. Therefore, the root was wound at a constant pitch with a length
of 130 mm, which is approximately one round of the spiral after deformation. The device
was designed such that the initial pitch gradually decreased as it approached the tip that
had an initial pitch of 50 mm. The manufactured device is shown in Figure 13a. When
pressurized, the device was deformed into a tapered shape, as shown in Figure 13b.

(a)

(c)

(b)

220mm

φ12mm

φ21.6mm

φ52.9mm

0.00s

8.00s

13.70s

19.56s

Figure 13. Experiment using a biased pitch device driven by an air pressure of 0.14 MPa in a
horizontally fixed pipe with the same diameter as that of the 50A and the 20A pipes. (a–c) show the
initial shape, the deformed shape, and the process of being inserted into a 20A pipe, respectively.

3.4. Experiment Using a Horizontally Fixed Stepped Pipe

Experiments were performed using the pipe used in the previous experiment. The
pipe was fixed horizontally. The device fabricated in Section 3.3 was driven within a period
of 700 ms and at a duty ratio of 0.47. When the device was driven by an air pressure of
0.14 MPa, it moved through the step part. The same experiments were performed four
more times, and the same results were obtained all four times, as shown in Figure 14.
Next, experiments were conducted at different air pressure strengths. When the device was
driven at 0.10 MPa, the tip of the device was caught by the step part, as shown in Figure 15a.
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When the device was driven at 0.15 MPa, the base of the device, which was deformed and
acquired a large diameter, was caught by the step part, as shown in Figure 15b.

Figure 14. Results of four experiments conducted under the same driving conditions as in Figure 13.

(a)

(d)

(c)

(b)

220mm

12mm

52.9mm21.6mm

(a) 0.10MPa

(b) 0.15MPa

0.00s

6.27s

3.47s

Figure 15. Experiment using a biased pitch device in a horizontally fixed pipe with the same diameter
as that of the 50A and 20A pipes. (a,b) depict the device driven by an air pressure of 0.10 MPa and
0.15 MPa, respectively.

3.5. Experiment Using a Vertically Fixed Stepped Pipe

The pipe used in the previous experiment was fixed vertically. The device used in the
previous experiment was driven within a period of 700 ms and at a duty ratio of 0.47. When
the device was driven by an air pressure of 0.14 MPa, the device remained stationary inside
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a pipe, as shown in Figure 16a; however, once it started moving, it slid inside the pipe.
By increasing the air pressure, this device could be strongly stuck inside the pipe [25]. On
the other hand, even when the air pressure was increased up to 0.18 MPa, the same results
were obtained, as shown in Figure 16b. Consequently, we confirmed that the prototype
device could not move within the 50A. Therefore, the movement in a vertically fixed tube
was evaluated using a 40A pipe, which is one thickness smaller than the 50A.

(b)(a) φ52.9mm

𝒈

Figure 16. Experiment using a biased pitch device in a vertically fixed pipe with the same di-
ameter as that of the 50A. (a,b) depict the device driven by an air pressure of 0.14 MPa and
0.18 MPa, respectively.

A transparent pipe with the same inner diameter as that of the 40A was manufactured
and connected to a pipe with the same inner diameter as that of the 20A, such that their
centers coincided and were fixed vertically. When the device was driven by an air pressure
of 0.14 MPa, it remained stationary inside the pipe, as shown in Figure 17, However, once it
started moving, it slid inside the pipe. When the device was driven at 0.15 MPa, it moved
through the step part, as shown in Figure 18.

𝒈

Figure 17. Experiment using a biased pitch device, driven by an air pressure of 0.14 MPa into a
vertically fixed pipe with the same diameter as that of the 40A and the 20A.
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φ21.6mm

φ41.6mm

𝒈

0.00s 12.86s6.56s 19.13s

𝒈

(a) (b)

𝒈

Figure 18. Experiment using a biased pitch device, driven by an air pressure of 0.15 MPa into a
vertically fixed pipe with the same diameter as that of the 40A and the 20A.

4. Discussion

First, the minimum and maximum pipe diameter within which the device can move
at an air pressure of 0.14 MPa is discussed. When pressure is applied to the silicone
tube, the device expands both axially and radially. From the relationship between α
and β in Equation (10), the body diameter of the device can be obtained as follows:
2× 6× {0.60(1.11− 1) + 1} = 12.792. Therefore, we can estimate that the diameter of
the smallest pipe within which the device can move is 12.792 mm. The difference be-
tween the diameters with the largest and the smallest values is calculated as follows:
52.9− 12.792 = 40.108 (mm). In the same way, we can estimate the difference between the
diameters due to α. The difference becomes maximal at α = 1.06. The largest pipe diameter
is 60.40 mm and the smallest is 12.432 mm, and the difference between the diameters is
60.40− 12.432 = 47.968 (mm). We thus assume that this difference can be further increased
by increasing the initial pitch since the maximum is larger.

In an experiment using a horizontally fixed pipe, the device moved when driven at
0.14 MPa, but not at 0.10 MPa and 0.15 MPa. Based on these results, the effect of air pressure
strength on the device is discussed. Figure 5 indicates that the device is deformed and
acquires a larger diameter when pressurized at 0.10 MPa instead of 0.14 MPa. However, this
was not the case in this experiment. Hence, at a low air pressure, the friction between the
device and the pipe was believed to prevent deformation, and the device could not deform
as analyzed. Therefore, the diameters of the root and tip did not differ greatly, and the
tip of the device was caught in the step part. When the device was driven at 0.15 MPa,
it lost flexibility owing to the high air pressure and could not accommodate pipes with a
smaller diameter.

We also discuss the velocity of the device. From the experimental video shown in
Figure 13, we measured the times at which the device began to enter the thin pipe and
when the whole body finished entering in order to obtain the average progress velocity of
the device. We also measured the progress velocity of the device in the 20A and 50A pipes
that have no steps inside them. Next, we calculated the theoretical progress velocities of the
device. The theoretical velocity is calculated from the pipe diameter, the pitch of the device,
and the driving period [22]. It is difficult to estimate the deformation while the device
passes the step part because its deformation is not constant. Moreover, the initial pitch of the
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device is not constant. Therefore, we obtained theoretical values by applying the maximum
and the minimum pitches to the equations. If there exist multiple theoretical velocities,
the minimum and the maximum values are shown (Figure 19). If the theoretical velocity
can be estimated by the average of the maximum and the minimum values, the progress
efficiency can be calculated from 0.65 (in 20A) to 0.76 (in 50A).

The speed of the device to 
completely enter the thin pipe 
after the tip of the device 
passes over the step part (s)

The speed of the device in the 
pipe
with the same diameter as that 
of 50A (s)

Experiment results 18.08 10.58
Theorical speed 19.84 11.35

Velocity in the experiment (mm/s) Theoretical velocity (mm/s)

In the pipe with the same diameter as that of 20A 10.56
Minimum Max

4.99 22.60
The process of entering the thin pipe after the tip of 
the device passes over the step part 13.20

In the pipe with the same diameter as that of 50A 32.26 49.22

Figure 19. The velocities of the device.

In an experiment using a vertically fixed pipe, the device that was meant to move
within the 50A pipe failed to achieve this. Because the device could remain stationary in the
pipe, it was deformed and acquired a diameter of 52.9 mm, as designed. The slippage and
fall during the drive can be attributed to the length of the device. The device has a short
contact length with the inside of the pipe owing to the small diameter of the tip, which
results in a low gripping force on the pipe. Increasing the length of the device and the
length that contributes to its sticking allows it to move through the pipe without slipping.

Finally, we verified whether it was possible for the device to move inside a vertically
fixed pipe that had the same diameter as that of the 50A pipe by using a device with a
uniform initial pitch of 320 mm. When the device was driven by an air pressure of 0.17 MPa
and 0.18 MPa, it sometimes moved upward in the pipe. However, it slid inside the pipe,
as shown in Figure 20. When the device was driven by an air pressure of 0.20 MPa, it
deformed into a helix smaller than the diameter of the pipe. Therefore, it soon slid inside
the pipe, as shown in Figure 21. From the experiments, it was confirmed that moving
within a vertically fixed 50A pipe is difficult for the current device design. The cause of this
is a lack of gripping force. The gripping force of the device is determined from the driving
pressure and the contact area [22]. The contact area is determined by the outer diameter of
the device after deformation. Therefore, the gripping force can be increased by increasing
the initial pitch in order to increase the outer diameter after deformation.

1.00s 2.73s

1.00s 2.93s

0.00s

𝑔𝑔

0.00s

𝑔𝑔

0.70s 1.40s

0.57s 1.40s

(a)

(b)Figure 20. Cont.
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1.00s 2.73s

1.00s 2.93s

0.00s

𝑔𝑔

0.00s

𝑔𝑔

0.70s 1.40s

0.57s 1.40s

(a)

(b)

Figure 20. Experiment using a device with a uniform initial pitch of 320 mm driven into a vertically
fixed pipe with the same diameter as that of the 50A and 20A pipes, where (a,b) show devices driven
by air pressures of 0.17 MPa and 0.18 MPa, respectively.

0.00s 0.37s

𝑔𝑔

Figure 21. Experiment using a uniform pitch device driven by an air pressure of 0.20 MPa into a
vertically fixed pipe with the same diameter as that of the 50A and 20A pipes.

5. Conclusions

The purpose of this study was to develop a twisted bundled-tube locomotive device
capable of moving over a step. A new tip shape and method for gradually changing the
initial pitch were proposed. In the experiments using a horizontally fixed pipe, the device
moved from 50A to 20A when driven at 0.14 MPa. The same result was obtained even after
the experiment was repeated. In the experiments using a vertically fixed pipe, the device
moved from 40A to 20A when driven at 0.15 MPa. However, the device could not move
inside the 50A even when a uniform device whose gripping force was larger than that
of tapered devices was used. In the future, we will attempt to move this device through
a pipe with a larger diameter difference. Therefore, we will improve the tubes that can
be applied with greater pressure and make a device with a larger initial pitch in order to
achieve a more considerable deformation. Moreover, we will try to make the device with
an extrusion method in order to enable mass production. The proposed method required a
different pitch at the front tip. It is necessary to develop methods that can make different
pitch areas by extrusion.
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