
December 2015 | Volume 2 | Article 851

Review
published: 15 December 2015

doi: 10.3389/fmed.2015.00085

Frontiers in Medicine | www.frontiersin.org

Edited by: 
Alfredo Fusco,  

IEOS – Consiglio Nazionale delle 
Ricerche, Italy

Reviewed by: 
Dario Palmieri,  

Ohio State University, USA  
Akira Yamauchi,  

Kitano Hospital, Japan

*Correspondence:
Ioana Berindan Neagoe  

ioananeagoe29@gmail.com

Specialty section: 
This article was submitted to 

Pathology,  
a section of the journal  

Frontiers in Medicine

Received: 28 September 2015
Accepted: 13 November 2015
Published: 15 December 2015

Citation: 
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Human aging is characterized by chronic low-grade inflammation known as “inflammag-
ing.” Persistent low-level inflammation also plays a key role in all stages of breast cancer 
since “inflammaging” is the potential link between cancer and aging through NF-kB 
pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding 
RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-
miRs have been implicated in the regulation of immune and inflammatory responses. Their 
abnormal expression contributes to the chronic pro-inflammatory status documented in 
normal aging and major age-related diseases (ARDs), inflammaging being a significant 
mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging 
is difficult to make and its hidden contribution to negative health outcomes remains 
unknown. This methodological work flow was aimed at defining crucial unanswered 
questions about inflammaging that can be used to clarify aging-related miRNAs in serum 
and cell lines as well as their targets, thus confirming their role in aging and breast cancer 
tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory 
mechanism underlying the cancer and aging processes and the precise function of certain 
miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent 
the basis for new therapeutic findings indicating that both cancer and ARDs genes are 
possible candidates involved in CS and vice versa. Our goal is to obtain a focused review 
that could facilitate future approaches in the investigation of the mechanisms by which 
miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. 
An understanding of the sources and modulation of inflamma-miRs along with the identi-
fication of their specific target genes could enhance their therapeutic potential.
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THe iNTeRCONNeCTeD NATURe OF THe HUMAN AGiNG AND 
THe ROLe miRNAs iN THiS PROCeSS

Aging is an inherently multifactorial process that is manifested within an organism at the genetic, 
molecular, cellular, organ, and system levels. Gene expression changes in aging at both protein 
and mRNA levels. An omnipresent feature of the aging process and most all age-related diseases 
(ARDs) is persistent inflammation. Research has recently shown the potential of Micro-RNAs 
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TABLe 1 | Common CS cancer-associated microRNAs and their target 
proteins found in HLN.

miRNA HLN targets Reference

Let-7b APP, NRAS, e-MYCa (12–14)

miR-15b Bcl-2, CCNE1 (15, 16)

miR-19ab IMPDH, NPEPL1 (17)

miR-21b Bcl-2, PDCD4, TPM1, TIMP3 (18–22)

miR-24b Bim, Bcl-2 (23, 24)

miR-124 SphK1 (25)

miR-126b SDF-1α (26)

miR-145 CDH2, Oct4, MUC1 (27, 28)

miR-146a/bb UHRF1 (29)

miR-155b STAT3, SOCS1 (30, 31)

miR-214b PTENa (32)

miR-221b Slug (SNAI2) (33)

miR-290b Arid4b (34)

miR-373 TXNIP, TRPS1, RABEP1, GRHL2, HIP1 (35)

aProteins with altered levels in age-related diseases.
bBreast cancer.
HLN, human longevity network; Bcl-2, B cell lymphoma2 (antiapoptotic protein); 
IMPDH1, inosine-5′-monophosphate dehydrogenase 1; NPEPL1, aminopeptidase 
like-1; PDCD4, programed cell death 4 (neoplastic transformation inhibitor); PTEN, 
phosphatase and tensin homolog; TPM1, tropomyosin 1 (alpha); TIMP3, TIMP 
metallopeptidase inhibitor 3; CCNE1, cyclin-E1; Bim, BH3-only domain-containing 
protein Bim, which positively regulates apoptosis; SphK1, sphingosine kinase 1 is 
an important enzyme encoded during neoplastic transformation; SDF-1α, stromal 
cell-derived factor 1-alpha; CDH2, N-cadherin; Oct4, OCT4 transcription factor (TF), 
MUC1, mucin1; UHRF1, ubiquitin-like, containing PHD and RING finger domains 
1; STAT3, signal transducer and activator of transcription 3; SOCS1, suppressor of 
cytokine signaling 1; Slug, transcription factor; TXNIP, thioredoxin-interacting protein.
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(miRNAs) to modulate the development period, thus playing a 
major role in lifespan and the aging process. The spectrum of 
miRNAs is highly specific for different pathologies contributing 
to distinct patterns of gene expression (1–3).

The fact that a single miRNA has multiple targets is crucial for 
understanding the role of miRNAs in normal and pathological 
processes. The target mRNAs of a given miRNA could be pre-
dicted using homologies between the miRNA “seed” region and 
the complementary site on the target mRNA 3′-untranslated 
region (UTR) (1, 2). Furthermore, miRNAs are critical regula-
tors of cellular processes such as cell division, differentiation, 
apoptosis, and senescence. The discovery of extracellular miR-
NAs enabled such small non-coding molecules to be used for 
monitoring both cancer and the biomarkers of aging. However, 
patients need additional investigations. In breast cancer, miRNAs 
have the potential to facilitate diagnosis and prognosis, predict 
the response to therapy, and act as therapeutic targets for miRNA-
based replacement treatment (4–6). Age is known to be a major 
risk factor for several pathological conditions, including cancer, 
cardiovascular diseases, diabetes, and neurodegeneration (7). 
Breast cancer is the most frequent malignancy and the second 
cause of carcinoma-related death in women (5, 7).

Recent research demonstrated that miRNAs function in a 
multiple-to-multiple relationship with their specific target genes. 
Therefore, a certain miRNA can modulate expression of up to 
thousand mRNAs, and a specific mRNA can be coordinated by 
multiple miRNAs, suggesting that the interference of miRNAs 
in aging, inflammation, and cancer processes is complicated (1). 
Since miRNAs and their target mRNAs take effect cooperatively, 
it will be needed of a miRNAs network-based systems biology 
approach. Recently constructed, the human protein interaction 
network that consists of approximately 10,000 proteins has over 
200,000 documented specific interactions (3). Moreover, the 
network of the aging process was proved to be a very efficient 
tool for integrating multiple strong links between the Human 
protein–protein interaction (PPI) network, the Human longevity 
network (HLN), and ARD transcriptional regulatory network 
nodes (proteins) (8).

microRNAs directly and indirectly connect senescence and 
tumorigenesis through HLN (1) (Table 1). Furthermore, from 
yeast to mouse, the pattern of evolutionary conservation of CS 
genes is almost identical to that of cancer-associated genes, this 
similarity being the result of the coevolution between these two 
processes. In addition, cellular senescence (CS) could be consid-
ered the tumor-suppresor mechanism of a molecular program 
that inexorably arrests cells at risk for malignant transforma-
tion. However, recent research reveals that senescent cells can 
also have detrimental effects on the tissue microenvironment. 
The most convincing of these effects is the acquisition of a 
senescence-associated secretory phenotype (SASP) that trans-
forms senescent fibroblasts into pro-inflammatory cells able to 
promote tumor growth. CS genes, LAGs (longevity-associated) 
and cancer genes could be linked through miRNAs. Forty CS 
genes were validated as targets of 39 miRNAs. From these 
miRNAs many of them (including miR-21, miR-17, miR-29b) 
have targets involved in cancer, associated with other ARDs and 
longevity as well (1, 7, 9–11).

The canonical miRNAs biogenesis pathway starts in the 
nucleus (7). MiRNAs are firstly transcribed by RNA polymerase 
II (RNA Pol II) as an approximately 70-nucleotide (nt) long stem-
loop primary structure named primary-miRNA transcripts, 
pri-miRNAs (long miRNA precursors), which are processed 
by DROSHA RNase III enzyme into a precursor to generate 
premiRNAs structure (10). Finally, the two strands of the duplex 
are separated from each other by the Dicer–TRBP complex. Next, 
the RNA-induced silencing complex (RISC), which also consists 
of the Argonaute protein and the target mRNA, is complementary 
bound by specific miRNAs. Consequently, the target mRNAs 
translation is repressed resulting in translational silencing (10, 
11, 36) [Biogenesis of miRNAs is presented in Figure 1 adapted 
from Ref. (7, 10, 11)].

microRNAs iN AGiNG AND BReAST 
CANCeR

microRNAs are unique due to their small size, which is approxi-
mately 22-nt-long. miRNAs control gene activity by interacting 
with the RNA that has been copied from DNA. There was no 
agreement on whether miRNAs were the “key” players in aging 
or not until 2008 (37). First, researchers were particularly 
interested in the inflammatory response and found an important 
role for a few miRNAs. They also showed that these small non-
coding RNAs modulate the immune cell development as well 
as inflammation. In that research work, genetically engineered 
mice, blood stem cells, and in vitro techniques were used. Work 
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FiGURe 1 | microRNAs biogenesis. miRNAs, microRNAs; RISC, RNA-induced silencing complex; TRBP, transactivating response (TAR) RNA-binding protein as a 
protein partner of human Dicer.
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was extended to examine the importance of miRNAs in the 
aging process, using microarrays in young and old mice (38). 
Subsequent research also revealed for the first time a signature 
of genotype-by-age changes in the circulating levels of miRNAs 
in the long-lived Ames mice (39).

The first evidence for the involvement of endogenous miR-
NAs in the control of lifespan was reported in 2005 (40, 41). The 
overexpression of miRNAs lin-4 led to an extended lifespan in 
Caenorhabditis elegans whereas its loss of it had the opposite 
effect (42). We also wish to focus on the important role of miR-
NAs in the immune function. Immunosenescence is “the key” to 
human aging, all aging-associated diseases (cancer, Alzheimer’s 
disease, metabolic diseases, and atherosclerosis) being caused 
by the chronic inflammation coordinated by oxidative stress 
and manifested by the increase in the level of proinflammatory 
cytokines, IL (interleukin)-1, IL-6, IL-17 coded by genes activated 
by the kappa B transcription factor (TF), NF-kB (nuclear factor 
kappa B) (43).

The comparative analysis between patients with ARDs (neu-
rological or cardiovascular pathology) and controls revealed 

statistically significant differences in the anti (IL-10) and pro (IL-
6, IL-17)-inflammatory investigated cytokines (44) (Figure 2).

Another reason to focus on miRNAs is that they are involved 
in chronic inflammation, a characteristic of aging and tumori-
genesis. NF-κB is the master modulator of the pro-inflammatory 
status in these processes. A recent paper has shown that in mice, 
inhibiting one DNA-binding protein can revert aging skin to a 
pattern of gene activity characteristic to young skin. For example, 
inducible genetic blockade of NF-κB for 2 weeks in the epidermis 
of chronologically aged mice reverted the tissue characteristics 
and global gene expression programs to those of young mice. The 
chronic activation of this protein is indicative of an inflammatory 
condition, which strengthens the association between aging and 
inflammation and suggests that the examination of inflammatory 
miRNAs may be useful (45). Besides its major role in chronic 
inflammation, the downregulation of the NF-κB-signaling path-
way could inhibit tumor cell growth in breast cancer (46).

The cellular participants involved in the pro-inflammatory 
status known as “inflammaging” cause senescence by inducing 
genotoxic stress and the SASP (1, 44, 47). These findings may be 
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FiGURe 2 | iL-17, iL-6, and iL-10 levels in patients and controls.
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relevant for tumor growth, aging, and the senescence-activated 
inflammation responsible for the increased cancer incidence 
associated with aging. The inflammatory loop is fueled by SASP. 
Multiple doses of rapamycin, a promising therapeutic agent with 
both anti-tumor and immunosuppressive properties selectively 
splits the cascade of pro-inflammatory events associated with CS 
(48). Aging is plastic, as it can be shaped by adequate interven-
tions such as specific miRNAs, which could be active components 
of SASP (49). This fact might contribute to the disease-free phe-
notype known as “Healthy Aging” (50, 51).

Researchers identified miRNAs that can be associated with 
cancer (oncomiRs), inflammation (inflamma-miRs), and aging/
senescence (SA-miRs). Three of them, namely, miR-21, miR-126, 
and miR-146a and their target mRNAs belong to the NF-kB 
pathway, which is the master modulator of the pro-inflammatory 
status in ARDs (49, 52). MiR-126 and miR-126*, a miRNA pair 
derived from a single precursor, repress recruitment of mesen-
chymal stem cells and inflammatory monocytes to inhibit breast 
cancer metastasis, which demonstrates a correlation between 
miR-126/126* downregulation and poor metastasis-free survival 
in breast cancer patients (26).

A senescent cell phenotype reduced the expression of 
proliferation-stimulating/apoptosis-suppressing miR-21, 
miR-214, and miR-92 and increased the expression of tumor 
suppressors and apoptotic markers; inflammation-repressing 
miR-126 was reduced, whereas inflammatory proteins had a 
higher level in senescent human aortic endothelial cells (53). 
For example, high levels of miR-21 occur in invasive breast 
tumors. There are two tumor suppressors among the miR-21 
targets: tropomyosin I (TPMI) and phosphatase and tensin 

homolog (PTEN), plus the proteins involved in suppression, 
invasion, and metastasis: programed cell death 4 protein 
(PDCD4) and maspin (54–56).

In cancer cells, all these proteins are inhibited by high levels of 
miR-21, while inhibition of this miRNA has the opposite effect of 
decreasing tumor cell growth, migration, and invasion (57). It has 
recently been demonstrated that miR-146a plays an important role 
in the modulation of the innate immune response (58). Several 
studies have shown the relevance of the upregulation of NF-kB/
miR-146a in breast cancer. In addition, by counteracting the pro-
inflammatory effects of CS, miR-146 provides anti-inflammatory 
effects and general suppressive action (52).

microRNAs iN BReAST CANCeR: 
oncomiRs AND TUMOR SUPPReSSOR 
microRNAs

Normal cells must acquire several characteristics in order to 
become a tumor. Furthermore, cancerous cells thrive if they 
maintain a proliferative status, survive despite strict environmen-
tal conditions, induce local angiogenesis, invade other tissues, 
metastasize and avoid being recognized by the immune system 
(59). Non-coding small miRNAs play an important role in cancer 
(60–62). The association between miRNAs and breast cancer has 
been recognized since 2005, including multiple functions such as 
suppression of tumorigenesis, promotion or inhibition of metas-
tasis, and sensitivity or resistance to chemotherapy. According to 
the role of miRNAs in cancer cell phenotypes, some are oncogenic 
(oncomiRs) and others are tumor-suppressive (TS-miRNAs), 
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TABLe 3 | TS-miRNAs involved in breast cancer.

TS-miRNAs Breast cancer-related proteins encoded 
by mRNAs that are TS-miRNAs targets

Reference

Cell growth and proliferation
miR-34a Bcl-2, SirT1 (73)

miR-17-5p AIB1 (74)

miR-125b Ets 1, Bcl-2 (75, 76)

miR-128 EGFR, PDGFRα (77)

miR-125b EPO, EPOR, ENPEP, CK2-α, CCNJ, MEGF9 (7)

Cell survival

miR-34a Bcl-2, SirT1, BIRC3, DcR3, c-Met, Notch-1, 
Notch-2, Cyclin D1, Cyclin E2, Cdk4, Cdk6, 
E2F

(73, 78, 79)

Angiogenesis

miR-145 VEGF-A, N-Ras, p70s6K1 (80, 81)

miR-519c HIF-1α, HuR (82–87)

miR-340 c-Met (88)

miR-126 IGFBP2, MERTK, PITPNC1 (7)

Suppressors of immune recognition

miR-322 Galectin-3 (89)

miR-93 Genes of the TGF-β and/STAT3 pathway (90)

invasion and metastasis, eMT

Let-7 families H-ras, HMGA2, PAK1, DIAPH2, RDX, ITGB8 (5, 91)

miR-200 families ZEB2 (5)

miR-205 ZEB1, ZEB2 (5, 92)

miR-335 SOX4 (5)

miR-340 c-Met (88)

miR-34a c-Met (93)

miR-145 VEGF, N-Ras (80)

miR-183 Villin 2 (Ezrin) (94)

miR-19a Fra-1 (5, 95)

miR-17-92 Mekk2 (7, 96, 97)

miR-206 Cyclin D2, Cx43 (7)

miR-146b NFkB, STAT3 (7, 98)

miR-31 RhoA, WAVE3 (7)

Bcl-2, B cell lymphoma2; SirT1, sirtuin 1; AIB1, amplified in breast cancer; Ets 1, 
protooncogene; EGFR, epidermal growth factor receptor; PDGFRα, platelet derived 
growth factor; BIRC3, baculoviral IAP repeat-containing 3; DcR3 (decoy receptor 
3), c-Met, Notch-1 and Notch-2 are pro-cell-survival factors; Cyclin D1, Cyclin E2, 
Cdk4, Cdk6, E2F-cell cycle regulators; VEGF-A, vascular endothelial growth factor-A; 
N-Ras, tumor suppressors; p70s6K1, serine/threonine kinase; HIF-1α, hypoxia 
inducible factor-1 alpha; HuR, Hu-antigen R; c-Met, hepatocyte growth factor receptor; 
VEGF, vascular endothelial growth factor; H-ras, transforming protein p21; HMGA2, 
high-mobility group AT-hook 2; PAK1, serine/threonine-protein kinase 1; DIAPH2, 
protein diaphanous homolog 2; RDX, radixin; ITGB8, integrin β-8; ZEB1, zinc finger 
E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; EMT, 
epithelial to mesenchymal transition, Fra-1, Fos-related antigen 1; EPO, erytropoietin; 
EPOR, erytropoietin receptor; ENPEP, glutamylaminopeptidase or aminopeptidase A; 
CK2-α, casein kinase 2-alpha; CCNJ, cyclin J; MEGF9, multiple EGF-like domains 9; 
Mekk2, mitogen activated protein kinase kinase kinase 2; Cx43, connexin 43; STAT3, 
signal transducer and activator of transcription 3; NFkB, nuclear factor kappa B; 
RhoA, Ras homolog gene family; WAVE3, WAS protein family, member 3; IGFBP2, 
insulin-like growth factor-binding protein 2; MERTK, c-Mer tyrosine kinase; PITPNC1, 
phosphatidylinositol transfer protein, cytoplasmic 1.

TABLe 2 | Breast cancer oncomiRs and their target proteins.

OncomiRs Breast cancer-related proteins encoded 
by mRNAs that are oncomiRs targets

Reference

miR-21 Bcl-2, PDCD4, TPM1, TIMP3 (18–22)

miR-155 Caspase 3, SOCS1 (5, 66)

miR-27a ZBTB10, FOXO1 (67, 68)

miR-96 FOXO1 (68)

miR-182 FOXO1 (68)

miR-128a TGF-βR1 (69)

miR-10b Tiam1, TWIST, HOXD10, E-cadherin (5, 70)

miR-9 E-cadherin (5, 71)

miR-373 CD44 (7)

miR-520c CD44 (7)

Bcl-2, B cell lymphoma2 (antiapoptotic protein); PDCD4, programed cell death 4 
(neoplastic transformation inhibitor); TPM1, tropomyosin 1 (alpha); PTEN, phosphatase 
and tensin homolog; TIMP3, TIMP metallopeptidase inhibitor 3; SOCS1, tumor 
suppressor gene suppressor of cytokine signaling; ZBTB10, zinc finger and BTB 
domain containing 10; FOXO1, Forkhead box protein O1; TGF-βR1, transforming 
growth factor-β type 1 receptor; Tiam1, T lymphoma invasion and metastasis; TWIST, 
twist-related protein; HOXD10, homeobox D10.
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depending on the cellular context and on their specific targets in 
each cellular event (62, 63).

Underexpressed miRNAs in cancers, such as the let-7 family 
members (TS-miRs) function as tumor suppressor genes. They 
also induce p53 mediated apoptosis, inhibit the cell cycle and cause 
breast cancer resistance to tamoxifen. Moreover, experiments car-
ried out between 2008 and 2013 suggest that let-7 based therapy 
in breast cancer could be available in the near future, especially 
for drug resistant and estrogen-positive metastatic variants (13). 
In addition, let-7 is a well-known enhancer of CS (14).

Conversely, overexpressed miRNAs in cancer such as miR-17-
92 may function as oncogenes and promote cancer development 
by negatively regulating tumor suppressor genes that control 
apoptosis or cell differentiation. In breast cancer, excellent infor-
mation coverage on certain miRNAs named oncomiRs was also 
provided (64, 65) [Table 2; (5, 7, 18–22, 66–71)].

Tumor suppressor miRNAs are extremely effective in breast 
cancer progression because they suppress cell growth, prolifera-
tion, angiogenesis, invasion, and metastasis. They also enhance 
cell death and immune recognition, as well as cancer therapy. For 
most of the above processes, TS-miRNAs are downregulated in 
cancer tissues. Upon re-expression they suppress tumorigenesis, 
including proliferation, apoptosis, and migration (72) [Table 3; 
(5, 7, 73–98)].

microRNAs such as TS-miRNAs (let-7, miR-15a/16, and miR 
143/145) act as tumor suppressors while miR-21, miR-17-92, and 
miR-155 act as oncogenes by suppressing and promoting tumo-
rigenesis. Highly specific miRNAs also control the development 
of the metastatic phenotype and are present in different types of 
cancer (72).

In a certain stage of the same cancer, they are used as a marker 
for diagnosis, prognosis, and therapy response. In invasive breast 
tumor, two miR-21 targets mentioned before (TPMI, PTEN) 
are inhibited by high levels of miR-21, while inhibition of this 
miRNA has the opposite effect of decreasing tumor cell growth, 
migration and invasion (19, 20, 55, 57).

iNFLAMMA-miRNAs MODULATiON iN 
CANCeR AND AGiNG

Interestingly, all ARDs, including cancer share inflammation 
as a common denominator, CS being at the basis of the chronic 
inflammatory state in aging (99). Many individual miRNAs 
identified in humans target “key” proteins involved in aging and 
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cancer, thus demonstrating their crucial role in aging and breast 
cancer tumorigenesis. For example, miR-146b increase with age 
and repress the senescence-associated proinflammatory cytokines 
IL-6 and IL-8 Activator of transcription 3 (STAT3) and interleu-
kin-6 (IL-6)-mediated signal transducer could be mechanisms by 
which chronic inflammation contributes to breast cancer such as 
a common oncogenic event. The gene encoding the TS miRNA, 
miR-146b is a direct STAT3 target gene, its expression being 
decreased in tumor cells but increased in normal breast epithelial 
cells. Moreover, miR-146b inhibits NF-κB-dependent production 
of IL-6, subsequent STAT3 activation, and IL-6/STAT3-driven 
invasion and migration in breast cancer cells. Therefore, higher 
expression of miR-146b was positively correlated with patient 
survival in breast cancer subtypes with increased IL6 expression 
and STAT3 phosphorylation. The use of antagomirs directed 
against breast tumor cells represents a new and highly important 
therapeutic method (98, 100).

MiR-21 promoter contains binding sites for the TF STAT-3 
activated by IL-6 signaling pathway (37). In the elderly, an 
increased production of proinflammatory cytokines such as 
IL-6 was observed, which proves the link between tumorigenesis 
and the aging process; miR-21 was also found elevated in other 
ARDs such as hypertrophic heart, neointimal formation and 
Alzheimer’s disease. High levels of pro-inflammatory molecules 
found in centenarians were offset by large amounts of anti-
inflammatory molecules such as TGF-β and IL-10. Besides CDK 
(cyclin-dependent kinase) regulators driving cell cycle progres-
sion in all eukaryotes, new strategies for controlling the NF-kB 
related inflammation pathway in pathological aging should be 
used (101, 102).

MiR-519 represses the production of HuR, an RNA-binding 
protein very abundantly found in tumor cells and less expressed 
in untransformed cells, while the overexpression of HuR delays 
the senescent phenotype (83).

MiR-155, which is only one example, out of the many miRNAs 
could be considered a bridge between inflammation and breast 
cancer. The overexpression of miR-155 in breast cancer cells 
leads to constitutive activation of signal transducer and activator 
of transcription 3 (STAT3) through the Janus-activated kinase 
(JAK) pathway, and stimulation of breast cancer cells by the 
inflammatory cytokines IFN-γ and interleukin-6 (IL-6), lipopol-
ysaccharide (LPS), and polyriboinosinic: polyribocytidylic acid 
[poly(I:C)] significantly upregulates mir-155 expression. In 
addition, the suppressor of cytokine signaling 1 (socs1) is a new 
target of miR-155 in breast cancer cells, thus contributing as a 
consequence to the constitutive STAT3 activation. The cross talk 
between miR-155, SOCS1, and STAT3 signaling may provide a 
new mechanism for inflammation-associated tumorigenesis, 
which suggests that miR-155 and SOCS1 could potentially be 
used in cancer therapy (30, 31).

Furthermore, serum miR-155 could be a potential bio-
marker for differentiating between cancer patients and healthy 
subjects, as well as an indicator of treatment response. Low 
levels of miR-155 were also observed after surgery and chemo-
therapy (103, 104). In addition, serum miR-155 is particularly 
upregulated in more advanced cancer stages than in low-grade 
breast tumor (105).

The overexpression of miR-34a, a TS-miRNA that represses 
the production of Bcl-2 and SirT1 (two proteins displaying 
high levels of expression in breast tumors, which are involved 
in cell growth and proliferation) induces the senescence (the 
phenomenon by which normal diploid cells cease to divide) 
of cancer cells. This miR impairs angiogenesis by induction of 
senescence via SirT. Higher miR-34c was observed in senes-
cent cells and also in the blood of breast cancer women, the 
reduced expression of miR-34c being particularly important 
for progression to the most advanced stages. It also controls 
the NF NF-kB and could be considered an inflamma-miR 
(105). Let-7 miRNAs are also upregulated in senescent cells, 
thus suppressing tumor growth and contributing to the aging 
process (52).

MiR-195, which is involved in the activation of NF-kB, is 
highly increased in the blood of breast cancer patients and in 
CS. The abrogation of the miR-195 expression is a promising 
therapy in elderly patients. Therefore, miR-195 could serve as 
an inflammatory biomarker in ARDs (105, 106). Based on the 
finding that certain miRNAs decreased tumorigenesis, and it was 
proposed that the coordinated action of upregulated-senescence 
inflamma-miRs could block cancerous cell growth by reducing 
oncogenes and tumor promoters’ levels. Their regulation chelp 
treat ARDs (83, 107).

IL-6 leads to the activation of Stat3, which then dimerizes 
and binds to its cognate sites located in the regulatory regions of 
genes. The Stat3-mediated transcription of several antiapoptotic 
genes contributes to the survival of cancer cells. In a separate 
mechanism, Stat3 directs the expression of miR-21, resulting in 
the suppression of apoptosis possibly through the inhibition of 
TPM1 and/or other proteins [Figure 3 adapted from Ref. (108)].

The inflammaging phenotype results from age-related cell 
and tissue adaptation/remodeling interacting with the genetic/
epigenetic background. This is a complex phenotype involving 
not only innate but also adaptive immunity and affecting a range 
of tissues and organs such as the gut, liver, muscle, and brain. 
Importantly, inflammaging appears to be accelerated in a variety 
of age-associated diseases. Tissue and circulating inflamma-miRs 
could restrain the activity of the senescent cell secretome and 
check the destruction induced by the activation of the inflamma-
tory response (109).

Inflamma-miRs have been involved in the regulation of the 
immune and inflammatory response, and their abnormal expres-
sion may contribute to the low-level chronic inflammation that 
has been documented both in normal aging and in the major 
ARDs (109).

Circulating inflamma-miRs could thus have diagnostic/prog-
nostic relevance in human diseases with a common inflammatory 
background, such as cancer. Recent studies have shown upregula-
tion of inflamma-miRs in the circulation of healthy elderly and 
chronically ill old individuals: the increase is less pronounced in 
centenarians and greater in patients with ARDs. It is generally 
accepted that the main sources of circulating inflamma-miRs 
in aging and ARDs are immunity circulating/tissue cells and 
endothelial circulating/resident cells. Inflammatory stimulation 
and cell senescence can induce and perpetuate systemic inflam-
mation over time, by inducing the upregulation of inflamma-miRs 
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FiGURe 3 | The status of miRs in chronic inflammation. STAT3, signal transducer and activator of transcription 3; NFkB, nuclear factor kappa; PDCD4, 
programed cell death 4 (neoplastic transformation inhibitor); TPM1, tropomyosin 1 (alpha); PTEN, phosphatase and tensin homolog B; Bcl-2, B cell lymphoma 2; 
mcl-1, myeloid cell leukemia-1; JAK 2, Janus kinase-2 (the Janus family of tyrosine kinase plays an essential role in coupling cytokine receptors to downstream 
intracellular signaling pathways).

TABLe 4 | Circulating inflamma-miRs in breast cancer and cellular 
senescence.

Circulating inflamma-miRs Samples Reference

miR-21 Serum (102, 110, 111)

miR-126 Plasma/serum (109)

miR-146a Plasma (109)

miR-155 Serum (110)

Let-7a Plasma/serum (97, 105)

miR-34a Plasma/serum (105)

miR-195 Plasma/serum (105, 106)
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through the excessive activation of inflammatory pathways (109, 
112) [Table 4; (105, 106, 109–112)].

CONCLUDiNG ReMARKS

Circulating miR-21, miR-34, miR-126, miR-195, let-7a, miR-
146a, and miR-155 could be considered as inflamma-miRs that 
modulate the NF-kB signaling pathway in aging, inflammation, 
and breast cancer. The similar features of miRNAs in cancer 
and aging elucidate the functions and therapeutic implications 
of these common small RNAs. Interestingly, a number of such 
circulating miRNAs seem to be promising biomarkers for major 
ARDs that share a common chronic, low-level pro-inflammatory 
status, such as breast cancer and other ARDs.

A better understanding of the sources and modulation of 
inflamma-miRs, along with the identification of their specific 
target genes may enhance their therapeutic potential. New drug 
development and biological understanding of the inflammatory 
processes need to be improved. The seven miRs are promising 

targets as they can be an extremely selective and effective thera-
peutic strategy against aging and breast cancer.
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