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ABSTRACT Both plants and their associated arbuscular mycorrhizal (AM) fungi require
nitrogen (N) for their metabolism and growth. This can result in both positive and nega-
tive effects of AM symbiosis on plant N nutrition. Either way, the demand for and effi-
ciency of uptake of mineral N from the soil by mycorrhizal plants are often higher than
those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi
exerts important feedbacks on soil processes in general and N cycling in particular. Here,
we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from
an organic source (15N-labeled plant litter) that was provided beyond the direct reach of
roots. In addition, we tested if pathways of 15N uptake from litter by mycorrhizal hyphae
were affected by amendment with different synthetic nitrification inhibitors (dicyandia-
mide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient
acquisition of 15N by mycorrhizal plants through the mycorrhizal pathway, independent
of nitrification inhibitors. These results were in stark contrast to 15N uptake by nonmycor-
rhizal plants, which generally took up much less 15N, and the uptake was further sup-
pressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed
that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were
suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not
DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were
not strongly affected by either the AM fungi or the nitrification inhibitors.

IMPORTANCE Nitrogen is one of the most important elements for all life on Earth. In
soil, N is present in various chemical forms and is fiercely competed for by various
microorganisms as well as plants. Here, we address competition for reduced N (ammo-
nia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These
two functionally important groups of soil microorganisms, participating in nitrification
and plant mineral nutrient acquisition, respectively, have often been studied in separa-
tion in the past. Here, we showed, using various biochemical and molecular approaches,
that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar
to that of some widely used synthetic nitrification inhibitors, whereas they have only a
limited impact on abundance of ammonia-oxidizing archaea. Competition for free am-
monium is a plausible explanation here, but it is also possible that the fungi produce
some compounds acting as so-called biological nitrification inhibitors.

KEYWORDS ammonia-oxidizing bacteria, ammonia-oxidizing archaea, amplicon
sequencing, arbuscular mycorrhiza, isotopic (15N) labeling and tracing, quantitative
real-time PCR, Rhizophagus irregularis, synthetic nitrification inhibitor

While the involvement of arbuscular mycorrhizal (AM) symbiosis in the uptake of phos-
phorus (P) by plants is well established, its importance for plant nitrogen (N) uptake

is less frequently reported and discussed (1–4). In general, AM symbiosis establishment
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usually has less pronounced effects on N uptake by host plants when the primary N source
is nitrates. If N is predominantly available in the form of ammonium or in poorly mobile or-
ganic N forms, and/or out of the direct reach of roots, AM symbiosis often does affect plant
N uptake significantly (5–11). Among the various N forms present in soil environments,
NH4

1 appears to be a preferred N source for AM fungi (12–15), and strong competition
between ammonia oxidizers and AM fungal hyphae for ammonium has been suggested
(7, 16, 17).

Both plants and AM fungi (as well as all other living organisms) require N for their
metabolism and growth, particularly as a component of nucleic acids, proteins, and a
number of other molecules (3, 18). This can potentially result in highly variable effects
of AM symbiosis establishment on plant N nutrition, ranging from positive to negative
(19–21). The demand for and efficiency of mineral N uptake from soil by a mycorrhizal
plant are generally higher than in a nonmycorrhizal plant (22, 23), resulting in lower N
losses via leaching or gaseous N2O emissions (16, 24, 25). Thus, important feedbacks
are exerted by AM symbiosis on soil processes in general and N cycling (and the rele-
vant soil microbes) in particular. The importance of low-mobility N forms in soil (e.g.,
organic forms or ammonium ions) for mycorrhiza-mediated plant N nutrition has long
been recognized (7, 10, 26–28). Likewise, interactions of AM fungi with symbiotic and
asymbiotic N2 fixers (29), canonical ammonia oxidizers, and comammox and anammox
species, denitrifiers, as well as microbes involved in organic N mineralization, have
been investigated before (3, 16, 30, 31). However, the interactions of AM fungi with
these organisms and processes within the soil N cycle remain poorly understood (16,
17), due to the complexity of the N cycle (32) and the diversity of and possible func-
tional redundancy among the microorganisms involved. Furthermore, N2O emissions
have usually been studied separately, so a holistic picture is still largely lacking (25).

Here, we elucidate the role of symbiosis of plants with AM fungi in N acquisition by
a model plant, Andropogon gerardii, from an organic N source (i.e., 15N-labeled plant lit-
ter) supplied in a soil zone beyond direct access to roots. In addition, we tested
whether N uptake from litter by the plant via mycorrhizal hyphae, and associated N
losses, could also be influenced by amendments with different synthetic nitrification
inhibitors (SNI), such as dicyandiamide (DCD), nitrapyrin, or 3,4-dimethylpyrazole phos-
phate (DMPP). Particular attention was paid to the effects on abundance and commu-
nity structure of aerobic ammonia-oxidizing microorganisms. The conceptual model
underlying this research is presented in Fig. 1.

RESULTS
Plant growth and mineral nutrition. The shoot and root biomass produced by

mycorrhizal plants was significantly larger than that of nonmycorrhizal plants (Fig. 2;
also, see Table S9 in the supplemental material), whereas no difference between the
mycorrhizal and nonmycorrhizal plants was observed for the root-to-shoot biomass ra-
tio (Table S9). None of the plant biomass parameters was significantly affected by the
application of SNI or by the interaction between mycorrhiza formation and the SNI
(Table S9). The mycorrhizal benefits (i.e., higher values in mycorrhizal than nonmycor-
rhizal treatments) seen in plant P and N concentrations and plant P and N contents
were also significant and even stronger than the effects on plant biomass, with a par-
ticularly strong effects of AM symbiosis formation on plant P nutrition (Fig. 2; Table S9).
Mycorrhizal symbiosis effectively multiplied the P content of mycorrhizal plants by a
factor of four (P , 0.001) compared with nonmycorrhizal treatment (Fig. 2; Table S9).
Plant N content improved by approximately 40% (P , 0.001) in response to the estab-
lishment of mycorrhizal symbiosis (Fig. 2; Table S9). The application of SNI and the
interaction between mycorrhiza formation and SNI application did not significantly
affect any parameter of plant mineral (P or N) nutrition (Table S9).

15N allocation to plants and substrates. Mycorrhizal plants took up on average,
across all nitrification inhibitor treatments, approximately 14% of the 15N supplied to
the pots with the labeled plant litter, which was significantly (P , 0.001) more than the
amount of 15N assimilated by the nonmycorrhizal plants (;2% on average, across all
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SNI treatments) (Fig. 3; Table S9). No significant differences in 15N transfer from the lit-
ter to the mycorrhizal plants due to SNI application were observed (Table S9). The SNI
did, however, significantly (P = 0.002) affect 15N transfer to the plants in nonmycorrhi-
zal pots (Fig. 3; Table S9): the 15N transfer from the litter to nonmycorrhizal plants in
pots amended with nitrapyrin or DMPP remained below 1%, while for DCD and the
control without SNI, it was well above 2% (Fig. 3).

Significantly (P, 0.001) more 15N was detected in the substrate of the plant compart-
ment of mycorrhizal pots (;1%) than in the nonmycorrhizal pots (;0.3%, on average,
across all SNI treatments); no significant effect of the SNI was detected on the amount of
excess 15N in the plant compartment (Fig. 3; Table S9). In contrast, the allocation of 15N
from the litter to the substrate of the root-free compartment was not significantly

FIG 1 Conceptual model depicting major processes involved in nitrogen release from litter amendment
and its subsequent transformation and movement in the substrate (blue arrows) and N acquisition by the
plants via either the mycorrhiza (indirect) pathway (red) or the root (direct) pathway (green). Due to
spatial compartmentalization of our experimental system (the dashed line illustrates the root-penetration
barrier) and specific physicochemical properties (particularly, the high pH) of the substrate, which limited
ammonium diffusion, the mycorrhizal hyphae had nearly exclusive access to the ammonium (NH4

1) pool
released from the organic amendment to a root-free substrate via microbially driven ammonification.
Once ammonium was oxidized to nitrate via nitrification, N mobility in the substrate increased and roots
could more efficiently acquire N directly, thus circumventing uptake via the mycorrhizal pathway. [CH]n
collectively represents organic C compounds after their deamination.

FIG 2 Plant biomass (shoots and roots combined, on a per-pot basis) (A) and the phosphorus (B) and nitrogen (C) contents in plant biomass as affected by
mycorrhizal inoculation (M1, mycorrhizal treatment; NM, nonmycorrhizal treatment) and nitrification inhibitor amendment to the mesh bag in the root-free
zone (none, DCD, DMPP, or nitrapyrin). Means and standard deviations of the means (n = 4) are shown. Whereas significant differences were encountered
between M1 and NM treatments in all three cases, nitrification inhibitors had no significant effect on either of the variables (see Table S9 for ANOVA results).
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affected by mycorrhizal inoculation (Table S9), but a significant effect of SNI application was
observed across both mycorrhizal treatments, and particularly in the nonmycorrhizal pots
(Table S9; Fig. 3). A significantly (P, 0.001) higher 15N allocation to the substrate of the root-
free compartment was observed in the DMPP- and nitrapyrin-amended nonmycorrhizal pots
than in those amended with DCD or those without SNI (Fig. 3; Table S9). Finally, in nonmy-
corrhizal pots, a significantly (P, 0.001) larger fraction of the 15N excess (;35% on average,
across all SNI treatments) remained in the mesh bags than in mycorrhizal pots (;30% on av-
erage; Table S9). The 15N retention in the mesh bags of nonmycorrhizal pots was additionally
impacted by SNI treatment and was significantly higher in DMPP- and nitrapyrin-amended
pots than in DCD-amended or control pots (Fig. 3; Table S9).

In summary, calculated 15N losses were significantly (P , 0.001) higher in the non-
mycorrhizal pots (54%) than in the mycorrhizal pots (45%; Table S9), with a significant
(P , 0.001) effect of SNI application on 15N losses being observed only for nonmycor-
rhizal pots: calculated 15N losses exceeded 60% in the nonmycorrhizal pots amended
with DCD or those without any SNI, whereas they remained below 50% on average for
nonmycorrhizal pots amended with nitrapyrin or DMPP (Table S9).

Mycorrhizal colonization under nitrification inhibitor treatment. Using qPCR tar-
geting the nuclear large ribosomal subunit gene of Rhizophagus irregularis, no significant
differences in R. irregularis abundances were detected between treatments with different
SNI in the mycorrhizal pots, either in the plant roots or in any of the substrate compart-
ments (Table S9). The results were essentially the same when qPCR targeted the mito-
chondrial large ribosomal subunit gene of R. irregularis in the substrate DNA samples,
i.e., using the mt5 primers and hydrolysis probe (see Table S8 for the data). No develop-
ment of mycorrhizal fungi was detectable in the nonmycorrhizal pots (Table S8).

FIG 3 Allocation of 15N, added to the pots with 15N-labeled litter contained in the mesh bag, to different pot compartments
as affected by mycorrhizal inoculation (M1, mycorrhizal treatment; NM, nonmycorrhizal treatment) and nitrification inhibitor
amendment to the mesh bags (none, DCD, DMPP, or nitrapyrin). Means and standard deviations of the means (n = 4) are
shown. Different lowercase letters within each panel distinguish significant differences between nitrification inhibitors
treatments for the NM pots. Absence of letters indicates no significant differences between nitrification inhibitor treatments
for the specific variable separately within the M1 or NM group. See Table S9 for all ANOVA results.
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Microbial guild abundances. Abundances of fungi, bacteria, archaea (the last two
groups were assessed together by using primers 515IL and 806IL), and protists were
determined by group-specific qPCR assays (Table 1). In the substrate from plant com-
partments, abundance of none of these groups was affected by AM symbiosis forma-
tion (Table S9). In the root-free compartment, a consistent and statistically significant
(P , 0.05) decrease in all above-mentioned microbial guilds was observed due to AM
symbiosis, while on the other hand, mycorrhizal symbiosis formation resulted in a con-
sistent and statistically significant (P , 0.05) increase in the same communities in the
mesh bags (Fig. 4; Table S9). No significant effect of SNI application on these microbial
guilds was observed in any of the pot compartments (Table S9). The results obtained
with primers 515IL and 806IL were essentially the same as those obtained with primers
Eub 338 and Eub 518 (see Table S8 for data), and thus, only the former are presented
here.

The effects of both mycorrhizal inoculation and SNI application on the ammonia-
oxidizing communities (assessed by targeting either the 16S rRNA or amoA genes)
remained limited in the plant compartment, with one notable exception: the abun-
dance of bacterial amoA genes was significantly (P = 0.015) and consistently reduced
by mycorrhizal inoculation (Table S9). In the root-free compartment, the abundance of
16S rRNA genes of ammonia-oxidizing bacteria (AOB) and archaeal amoA genes,
assessed using the previously described primers (33), decreased significantly (P , 0.05)
due to mycorrhizal inoculation (Fig. 5; Table S9). Moreover, the abundance of archaeal
amoA genes in the root-free compartment was higher in the DCD-supplemented non-
mycorrhizal pots than in the other nonmycorrhizal pots (Fig. 5; Table S9), resulting in
the effect of the SNI applications as well as the interaction between the factors (mycor-
rhiza and the SNI) both being significant (Table S9). The results of archaeal amoA gene
abundances obtained with two independent primer sets (see Table 1 for technical
details and Table S8 for data) were essentially identical, and thus, only the results
obtained with primers described by Alves et al. (33) are discussed here.

In the mesh bags, the AOB 16S rRNA and AOB amoA gene abundances were lower
(P , 0.001) in mycorrhizal pots, whereas the abundance of archaeal amoA genes was
higher (P , 0.001) than in the nonmycorrhizal pots (Fig. 5; Table S9). The SNI mainly had
an effect on the AOB community abundance in the nonmycorrhizal pots: decreased
(P , 0.01) abundances of AOB 16S rRNA and amoA genes were detected in DMPP- and
nitrapyrin-treated nonmycorrhizal mesh bags compared to DCD-amended mesh bags or
mesh bags without any SNI (Fig. 5). A similar, although weaker, effect on the abundance
of AOB amoA genes was also detected in mycorrhizal mesh bags (Fig. 5; Table S9). In
contrast to results for AOB, The SNI did not significantly affect the abundance of amoA
genes of ammonia-oxidizing archaea (AOA) in the mesh bags (Fig. 5; Table S9).

Microbial community composition. The relative abundances of operational taxo-
nomic units (OTUs) calculated from the bacterial plus archaeal 16S rRNA gene and protist
18S rRNA gene amplicons were grouped into prokaryotic and protist phyla (35 and 17
taxa, respectively). For downstream multivariate statistical analyses, a relative abundance
threshold value of 1% in at least one sample was set, resulting in the inclusion of abun-
dance data of 13 prokaryotic and 12 protistan phyla to the analyses (see Tables S4 and S5
for details). The structure of both prokaryotic and protistan communities was significantly
affected by the identity of the pot compartments, indicating significant differences due to
the presence of plant roots and/or patchily applied organic amendment (Fig. 6A and B;
Table S10). Notably, this compartmental effect explained the vast majority (more than 50%
for both prokaryotes and protists) of the data variation, whereas the other factors (i.e.,
addition of SNI and mycorrhizal inoculation) explained only a much smaller portion
(always below 11%), if any, of the data variation for these two microbial guilds (Table S10).

For AOB amoA gene sequence types (21 taxa belonging to two bacterial genera), and
AOA amoA gene sequence types (23 taxa) (see Tables S6 and S7 for details), we applied a
relative abundance threshold value of 0.75% in at least one sample, resulting in 14 AOB
and 15 AOA taxa included in the follow-up multivariate statistical analyses. For both amoA
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gene-carrying AOB and AOA microorganisms, both pot compartment and mycorrhizal
inoculation had significant (P , 0.05) effects on their community structures (Fig. 6C and D
and Fig. 7, respectively; also, see Table S10 for more details). Moreover, the community
structure of amoA gene-carrying archaea was significantly (P, 0.01) affected by the appli-
cation of the SNI (Fig. 8), whereas the effect of the SNI on the community structure of
amoA gene-carrying bacteria was not significant (Table S10).

DISCUSSION
Mycorrhizal responses. In the experiment described here, we observed that mycor-

rhizal responses were strongest for plant P uptake, followed by plant N uptake and then
by plant biomass (Fig. 2), which is consistent with previous research (3, 10, 21, 34). In this
experiment, significantly improved N uptake, which is not always detected in mycorrhi-
zal experiments, was most likely due to spatially restricted root development. In contrast,
the AM fungal hyphae had access to a volume of substrate several times larger than that
accessible to roots, and our results agree well with previous data from similar compart-
mentalized experiments (7, 16, 27, 35).

FIG 4 Abundance of fungi (A and B), prokaryotes (C and D), and protists (E and F), assessed by qPCR with group-
specific primers in the root-free zone of the pots (A, C, and E) and in the mesh bags (B, D, and F), as affected by
mycorrhizal inoculation (M1, mycorrhizal treatment; NM, nonmycorrhizal treatment) and nitrification inhibitor
amendment to the mesh bags (none, DCD, DMPP, or nitrapyrin). Means and standard deviations of the means (n = 4)
are shown. No statistically significant differences were detected between nitrification inhibitor treatments in the M1
and NM groups for any of the displayed variables. See Table S9 for all ANOVA results.
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N transport from mesh bags to plants—effects of SNI and the AM fungus. Using
15N isotopic labeling and tracing, we confirmed that large amounts (.10%) of 15N sup-
plied as organic fertilizer in the form of clover litter were actively transported via AM
fungal hyphae from the mesh bags to the plants within 42 days (Fig. 3). Furthermore, a
greater portion of the supplied 15N isotope was retained in the plant/substrate samples
from the mycorrhizal pots than in those from nonmycorrhizal pots, indicating lower N
losses from the cultivation system due to mycorrhizal inoculation. This is in good
agreement with previous reports (1, 24, 36, 37). Reduced losses of 15N from the nonmy-
corrhizal pots amended with DMPP or nitrapyrin compared to the nonmycorrhizal pots
amended with DCD or with no SNI coincided with lower transfer of 15N from the mesh
bags to the plants (Fig. 3). These results indicate that DMPP and nitrapyrin effectively
suppressed nitrification, whereas DCD did not. By suppressing nitrification, the DMPP

FIG 5 Abundance of ammonia-oxidizing bacteria assessed by qPCR targeting either 16S rRNA (A and B) or amoA genes (C and D)
and ammonia-oxidizing archaea targeting the amoA gene as per Alves et al. (33) (E and F), in the root-free zone of the pots (A, C,
and E) and in the mesh bags (B, D, and F), as affected by mycorrhizal inoculation (M1, mycorrhizal treatment; NM, nonmycorrhizal
treatment) and nitrification inhibitor amendment to the mesh bags (none, DCD, DMPP, or nitrapyrin). Means and standard
deviations of the means (n = 4) are shown. Different uppercase letters distinguish significant differences between nitrification
inhibitor treatments in the M1 pots. Different lowercase letters distinguish significant differences between nitrification inhibitors
treatments in the NM pots for each panel. Absence of letters indicates no significant differences between nitrification inhibitor
treatments for the specific M1 or NM group. See Table S9 for all ANOVA results.
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and nitrapyrin reduced formation of mobile N species (i.e., nitrite and nitrate) from the
15N-labeled litter (38). Interestingly, DCD did not suppress nitrification in our experi-
ment, although it is a commonly applied SNI which was previously reported to be as
effective as DMPP in reducing soil N losses (39). Interestingly, SNI application did not
show a significant effect on the acquisition of 15N by mycorrhizal plants from the

FIG 6 Redundancy analysis (RDA) biplots showing relationships between relative abundances of microbial taxa in four community profiles (prokaryotes [A],
protists [B], ammonia-oxidizing bacteria [C], and ammonia-oxidizing archaea [D]) as affected by system compartment from which the samples were recovered
(red triangles show treatment centroids). P values refer to partial RDA permutation tests (999 permutations) considering both canonical axes. Altogether, 96
individual substrate samples were included in the analyses (3 pot compartments, 4 nitrification inhibitors, 2 mycorrhizal inoculation treatments and 4
biological replicates for each combination of factors), except ammonia-oxidizing bacteria (C). In the latter case, sequencing depth (after sequence cleanup) in 4
individual samples was below 100 reads, and thus, the relevant pots (i.e., 12 individual samples) were excluded from the subsequent RDA analyses. See Table
S10 for more details on the statistics.
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organic amendment. This indirectly supports the previous hypothesis that AM fungal
hyphae effectively take up ammonium ions from the soil solution shortly after organic
N mineralization, preventing this N from entering the nitrification pathway (16, 40, 41).
Alternatively, it is possible that AM fungal hyphae themselves produced and excreted
metabolites that inhibited the activity of ammonium oxidizing microorganisms by act-
ing as biological nitrification inhibitors (BNI). Likewise, it is possible that the establish-
ment of a mycorrhizal symbiosis stimulates production of plant root exudates with BNI
activity (42).

FIG 7 Redundancy analysis (RDA) biplots showing relationships between relative abundances of microbial taxa in two community profiles (ammonia-
oxidizing bacteria [A] and ammonia-oxidizing archaea [B]) as affected by mycorrhizal inoculation of the pots from which the samples were recovered (red
triangles show treatment centroids; M1, mycorrhizal treatment; NM, nonmycorrhizal treatment). P values refer to partial RDA permutation tests (999
permutations) considering the first (and only) canonical axis. For ammonia-oxidizing bacteria (A), 84 individual substrate samples were included (for details,
see the legend to Fig. 5); for the archaea (B), 96 individual substrate samples were included (3 pot compartments, 4 nitrification inhibitors, 2 mycorrhizal
inoculation treatments, and 4 biological replicates for each combination of factors). See Table S10 for more details on the statistics.

FIG 8 Redundancy analysis (RDA) biplot showing relationships between relative abundances of
ammonia-oxidizing archaea in the community profile of substrate samples recovered from the pots,
as affected by the identity of nitrification inhibitor added to the mesh bags (none, DCD, DMPP, or
nitrapyrin). The P value refers to the partial RDA permutation test (999 permutations) considering the
three canonical axes. Altogether, 96 individual substrate samples were included (3 pot compartments,
4 nitrification inhibitors, 2 mycorrhizal inoculation treatments, and 4 biological replicates for each
combination of factors). See Table S10 for more details on the statistics.
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Microbial communities in different pot compartments. Quantitative estimates of
the abundance of bacterial and archaeal, fungal (due to selectivity of the ITS primers,
this operationally defined guild is almost exclusively composed of nonmycorrhizal
fungi [43]), and protistan communities revealed no effects of any of the experimental
factors on the abundance of these guilds in the plant compartment. The activity and
structure of microbial communities in this compartment were most likely primarily
determined by rhizosphere effects (i.e., the supply of root exudates and/or root litter),
which are well-recognized and strong drivers of soil life (44–46). In the root-free zone,
which can be characterized as a very oligotrophic environment (a “nutrient desert”) in
our experimental setup, AM fungi significantly suppressed the abundances of all micro-
bial guilds (Fig. 4). This was most likely due to increased competition for bioavailable
nutrients such as orthophosphate (47) or soluble mineral N species (41). In contrast,
the abundance of the same microbial guilds was significantly higher in the organically
supplemented mesh bags in the presence of AM fungi (Fig. 4), a pattern that has been
reported previously (48, 49). The latter effect was most likely due to mycorrhiza-induced
priming, accompanied by enhanced organic-matter decomposition supporting copious
microbial communities (50–52). It is also possible that protists directly benefited by graz-
ing the AM fungal biomass (53, 54). Alternatively, the AM fungal hyphae acting as “soil
superhighways” could have facilitated the dispersion of microorganisms (bacteria, arch-
aea, and/or protists) toward the mesh bags, as previously suggested (55, 56). However,
facilitated dispersion is unlikely the main cause of the observed effect, as the same mi-
crobial communities were added to the root-free compartments and to the mesh bags
at the start of the experiment. Also notable was the lack of any significant effect of the
SNI on the abundance of any of the broad microbial guilds in any of the pot compart-
ments, which strongly contrasts with the observed effects on ammonia-oxidizing micro-
organisms, discussed further below.

Activities and community structures of AOA and AOB in the different pot com-
partments.We observed a strong and significant negative effect of AM fungal inoculation
on AOB abundance in all pot compartments. In the absence of AM fungi, DMPP and nitra-
pyrin treatment also resulted in decreased AOB abundance in the mesh bags, while this
effect was surprisingly not observed in the DCD treatment (Fig. 5). In contrast and consist-
ent with previous observations (57), AOA abundances were largely unaffected by the SNI
(Fig. 5). Interestingly, mycorrhizal inoculation only had a significant negative effect on AOA
abundance in the nutrient-limited root-free compartment, whereas a positive effect of AM
fungal inoculation on AOA abundances was observed in the mesh bags (Fig. 5). The very
divergent effects of AM fungi and the SNI on the abundances of AOB and AOA not only
confirm the previously reported differential sensitivity of soil AOB and AOA to the SNI (58)
but also point toward differential fitness of these two microbial groups in competition
with AM fungi, or sensitivity to AM fungi-produced metabolites. In addition, the quantita-
tive molecular assays indicated generally higher levels of amoA genes of AOA than AOB
per unit weight of soil, a recurrent pattern in soil microbiome analyses (59, 60).

At first glance, these results suggest that in our experimental system, AOA play a
more important role in ammonia oxidation than AOB (61–63). However, it is important
to note that amoA gene abundances do not directly relate to the metabolic activity of
the respective microorganisms or their contribution to the process of ammonia oxida-
tion (64, 65). When these results are interpreted in accordance with the rates of 15N
uptake by the nonmycorrhizal plants (see above), it becomes evident that the AOB
were actually responsible for the majority of ammonia oxidation in our experimental
system, consistent with other studies (66–68). Our results indicate that, while highly
abundant, AOA are likely not particularly active at oxidizing ammonium under the
given conditions.

Another interesting, and counterintuitive, observation was the increased abun-
dance of AOA (and to a lesser extent of AOB) in the root-free zone of nonmycorrhizal
pots when DCD was used as an amendment in the mesh bags. This could be related to
the fact that DCD, unlike nitrapyrin and DMPP, is water soluble and thus more mobile
and degrades to urea and (subsequently) ammonium within a few weeks of
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application (69, 70). Such degradation could have promoted nitrification in the root-
free zone. It is indeed surprising that DCD was shown to be completely ineffective in
our hands, despite being one of the oldest SNI studied for almost 80 years and one
that is still being used regularly around the world (71). Longer-term efficiency of the
different SNI has been shown to be soil and environmental context dependent (72).
Notably, the efficacy of DCD was previously reported to decrease with increasing soil
pH (72, 73). Consequently, the high pH of our experimental substrate (8.9 before plant-
ing [74] and 8.4 at the end of the experiment; n = 16) might be the main reason that
DCD was rendered practically ineffective in our experimental system.

AOA and AOB community structures. An important result of NGS profiling of mi-
crobial communities was that AOA community composition (i.e., relative abundances
of different taxa) was significantly affected by the different SNI amendments (Fig. 8),
whereas AOB composition was not (Table S10). Furthermore, both pot compartment
identity and mycorrhizal inoculation had significant effects on both of these ammonia-
oxidizing microbial guilds (Fig. 6C and D and 7).

In our system, effective SNI (i.e., nitrapyrin and DMPP) suppressed all AOB without
significant discrimination between taxa, while distinct AOA taxa responded differently
to the SNI. Similar results were previously obtained regarding the sensitivity of AOB
and AOA to antibiotics (75). While the AOA amoA gene diversity in all samples analyzed
here was strongly dominated by sequences related to a recently described, cold-adapted
Nitrosocosmicus strain, “Candidatus Nitrosocosmicus arcticus” (76), amendment with SNI
still resulted in significant shifts in community composition (Fig. 8; Table S10). This is ei-
ther due to the fact that competing AOB populations were suppressed by the SNI, allow-
ing AOA to occupy their niches, or due to differential sensitivity of distinct AOA taxa
to the supplied SNI. It was recently shown that distinct AOA, and in particular the
Nitrosocosmicus- and Nitrososphaera-related AOA, which are both abundant in our exper-
imental system (Table S7), have very different affinities for ammonia (77). Compositional
shifts in the AOA community thus could be related to the proliferation of taxa with dif-
ferent substrate preferences in SNI-amended pots, as ammonia availability in these pots
is likely altered in comparison to SNI-free controls (although we currently have no experi-
mental data to prove this).

Either way, our results indicate there is considerable functional redundancy and ver-
satility within the AOA communities that possibly leads to community composition
shifts without necessarily changing the total abundance of the guild.

Conclusions and future perspectives. In summary, successful competition of AM
fungi with other soil microbes for mineral nutrients in general and free ammonium in
particular leads to a reduction of N losses by leaching and/or N volatilization (78–81).
Our results further suggest that AM fungi are more competitive at scavenging ammo-
nia than ammonia-oxidizing microorganisms, and AOB in particular. This competitive
advantage might be driven by a higher affinity or higher reaction rate of ammonia
transporters of AM fungi compared to those of AOB (and to a lesser extent AOA), as
has been previously determined for other organismal groups such as phytoplankton
(82, 83). However, given the periplasmic location of the ammonia monooxygenase
(AMO) enzyme in both AOA and AOB, which makes the process of ammonia oxidation
ammonium transport independent, and the comparatively high affinity of the AMO
enzyme for ammonia (77), it is also possible that AM fungi produce and exude metabo-
lites that directly inhibit ammonia oxidation in the vicinity of the AM fungal hyphae.
The mode of competition, however, cannot be resolved from the currently available
data and deserves to be further explored in detail.

Regardless of the underlying mechanism: Given the decreased N loss and increased
plant N acquisition promoted by AM fungi, mycorrhizal inoculation and native AM fun-
gal community management have to be considered as prospective tools to improve N
fertilizer use efficiency, especially when the fertilizer is provided as ammonium or as or-
ganic N. Consequently, AM fungi could supplement or fully replace the application of
SNI. Such compounds are widely (and successfully) used in tandem with N fertilizers to
reduce N losses (84–86). Agricultural management practices that reduce nitrification
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rates are generally desirable, as they have the potential to attenuate emerging environ-
mental threats such as groundwater pollution, eutrophication of surface waters, and
greenhouse gas (e.g., N2O) emissions.

To gain more insight into these intricately interwoven processes, further specific
studies aimed at elucidating the modes of interaction and competition between AM
fungi and AOB/AOA, as well as the potential inhibition of AOB by AM fungi, are
needed. Such studies should also include measurements of ammonium, nitrite, and ni-
trate levels in the different compartments and at different time points. Ideally, such
studies should be further supported by culturing the various microbes under in vitro
conditions, although some of them (particularly the soil AOA) are notoriously difficult
to isolate (87).

MATERIALS ANDMETHODS
Experimental setup, establishment, and maintenance. The experiment was conducted in tall pots

(20 cm high by 11 cm wide by 11 cm deep), each containing 2 L of cultivation substrate. Each pot con-
tained two zones, a 500-mL central cylinder and the surrounding space (1.5 L). While the first zone
housed the plants and was accessible to both roots and the AM fungi (if present), the surrounding space
was designed to be inaccessible to roots. Zone separation was ensured by a root-impermeable barrier,
composed of a scaffold-forming plastic grid (commercially available cheese mold; no. P00718; Annelli,
Montanaso Lombardo, Italy) lined with a polyamide mesh fabric (42-mm mesh size; commercially avail-
able as Uhelon 130T; Silk & Progress, Brn�enec, Czech Republic). The design of the pots with respect to
the establishment of the root-free zone was as in previous experiments described in more detail else-
where (7, 8, 16).

The cultivation substrate was a mixture (45:45:10 [vol/vol/vol]) of autoclaved quartz sand, autoclaved
zeolite, and gamma-irradiated (.25 kGy) soil from Litom�e�rice, Czech Republic. Physicochemical proper-
ties of this substrate have been described previously (74, 88). To ensure that the pots contained suffi-
cient amounts and similar starting communities of soil microorganisms and protists, a nonmycorrhizal
microbial inoculum (also called a mock inoculum), which was described in detail previously (89), was
added to the substrate. The central cylinders received 2% of their volume (i.e., 10 mL) of the mock inocu-
lum, which was suspended in 50 mL sterile water and filtered through a 20-mm steel mesh (to prevent
accidental contamination with AM fungi). The substrate that filled the surrounding space was mixed
with 4% (i.e., 60 mL) of solid mock inoculum without plant roots. The roots were manually removed
from the inoculum before applying it to the substrate.

While the microbial mock inoculum was applied uniformly to all pots, half of the pots (pots 1 to 16)
also received AM fungal inoculum, while the others (pots 25 to 40) served as nonmycorrhizal controls.
AM fungal inoculum (i.e., sterile AM fungal biomass) was obtained from monoxenic cultures of
Rhizophagus irregularis isolate LPA9, produced for 6 months in association with Cichorium intybus Ri
T-DNA-transformed roots, as described previously (40). The living biomass (i.e., extraradical hyphae and
spores) of the AM fungus was released from the solid cultivation medium by incubation in citrate buffer
(10 mM) at pH 6.0 for 30 min and wet sieving through a 20-mm steel mesh. Approximately 30,000 AM
fungal spores (besides hyphal fragments) were added to each mycorrhizal pot 2 cm below the surface.

In each of the central cylinders, 50 seeds of Andropogon gerardii (obtained from Jelitto Staudensamen,
Schwarmstedt, Germany) were sown in a layer;1 cm below the substrate surface at the beginning of the
experiment. The substrate surface was moistened twice daily, using deionized water applied with a water
nebulizer. After the plants emerged above the substrate (which happened 3 days after sowing [DAS]), the
pots were watered once daily with deionized water, to maintain substrate moisture at 65 to 80% of the
water holding capacity (determined by weighing the pots).

At sowing the seeds, a 50-mL conical centrifugation tube was placed in a corner of each pot (Fig. 9),
as a placeholder to be replaced later by a mesh bag containing substrate with organic 15N-labeled
amendment (plant litter). Throughout the experiment (70 days), the pots were incubated in the green-
house of the Institute of Microbiology in Prague, Czech Republic. The positions of pots were completely
randomized with respect to experimental treatments to avoid potentially confounding spatial effects.
The temperature in the greenhouse varied between 18°C and 28°C (night and day, respectively) (see
Table S1 for details). Two weeks after planting, natural light was supplemented with artificial lighting
(high-pressure metal halide lamps, 500 W) to ensure photosynthetically active radiation flux density of
more than 200mmol m22 s21 at plant level throughout the photoperiod (12 h day21).

Each mesh bag (made of 100-mm nylon mesh fabric and holding 20 mL/29 g of substrate) contained
60 mg of clover biomass (plant litter), which is described in full detail elsewhere (7). The litter had N iso-
topic composition equaling 42 atom% 15N and was added either with no nitrification inhibitor or with
one of the following SNI: 2 mg DCD, 0.3 mg DMPP, or 2 mg nitrapyrin. Eight mesh bags with each type
of amendment were prepared, and four mesh bags of each type were then used for the mycorrhizal and
the nonmycorrhizal treatments, respectively. The zip-tied mesh bags were placed in the pots at 28 DAS,
replacing the centrifugation vials. At this time point, the positions of the pots in the greenhouse were
also completely rerandomized. Nutrient input from the litter added with the mesh bag was 1.45 mg N
and 0.1 mg P per pot (see reference 7 for further details). Starting at 35 DAS, each pot received 65 mL of
Long Ashton nutrient solution with reduced P concentration (see reference 74 and Table S2 for more
details), added to the central cylinder each week. Nutrient input with the nutrient solution was 54.6 mg

AMF and Nitrification Interconnections Revealed by SNI Applied and Environmental Microbiology

October 2022 Volume 88 Issue 20 10.1128/aem.01369-22 13

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.01369-22


N and 2.61 mg P per pot throughout the experiment (i.e., 10.9 mg N and 0.52 mg P weekly), with N
applied predominantly in the form of nitrate.

Harvest. The plants were harvested at 70 DAS. Plant biomass and substrate samples were processed
immediately. First, plant shoots were cut at the substrate level. Thereafter, roots were extracted from the
substrate by shaking, then washed thoroughly under tap water, and rinsed briefly under deionized
water. Both shoots and roots were (separately) weighed fresh, placed in paper bags, and dried in a dry-
ing cabinet with forced air circulation at 65°C for 3 days before dry weight was determined. Substrate
samples were collected from the central cylinder (i.e., the plant compartment [compartment A]), the sur-
rounding space (i.e., the root-free compartment [compartment N]), and mesh bags (compartment M). A
representative sample of ;20 g fresh weight was taken from each substrate compartment in each pot,
placed in a paper bag, and dried at 65°C for 3 days. Both plant and substrate samples were subsequently
pulverized in an MM200 ball mill (Retsch, Haan, Germany) at 25 Hz for 2 min using two stainless steel
balls (10-mm diameter) per sample, prior to all downstream analyses.

Elemental and isotopic analyses. For analysis of P concentration in plant biomass, samples of
shoots or roots (0.1 g each) were incinerated at 550°C for 12 h, the ashes were extracted with 1 mL boil-
ing concentrated HNO3, and the extracts were then made up to 50 mL with ultrapure (18.2-MX) water.
Phosphorus concentration in the acid extracts was measured spectrophotometrically by the malachite
green method (90). The N and C concentrations in the plant biomass (2-mg ground samples) and sub-
strates (20-mg ground samples), as well as the isotopic composition of N in the same samples, were ana-
lyzed using the Flash EA 2000 elemental analyzer coupled to a Delta V Advantage isotope ratio mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany).

Quantitative molecular genetic analyses. DNA from roots (;10 mg dry powder) and substrate
samples (;600 mg dry powder) was extracted using the Plant DNeasy kit (Qiagen, Venlo, Netherlands)
and DNeasy PowerSoil kit (Qiagen), respectively, following the manufacturer’s recommendations. To
quantify DNA extraction losses, 2 � 1010 copies of an internal DNA standard (91) were added to each
sample prior to DNA extraction.

Molecular quantification of various microorganisms (AM fungi, bacteria, fungi, AOB, AOA, and pro-
tists) in the different samples was performed by qPCR (see Table 1 for a detailed list of assays and corre-
sponding references). All analyses were performed using the LightCycler 480 II instrument (Roche,
Rotkreuz, Switzerland). Each qPCR assay was first calibrated with the product of endpoint PCR performed
with the corresponding primers on the DNA extracted from at least four different substrate samples. The
amplicons produced with the same primers were pooled and purified (QIAquick PCR purification kit;
Qiagen), fragment length was evaluated using electrophoresis on a 0.8% agarose gel, and DNA concen-
tration in the amplicon samples was measured using the Quant-iT PicoGreen double-stranded-DNA
(dsDNA) assay (Thermo Fisher Scientific, Waltham MA, USA) on a plate reader (Infinite 200 Pro; Tecan,
Männedorf, Switzerland). Dilution series were then prepared from the amplicons and used as templates
for qPCR calibration as described previously (91). The qPCR quantification was carried out in 96-well

FIG 9 Experimental pots with the Andropogon gerardii plant roots confined to the central plant compartments in the glasshouse 25 (A) and 28 (B) DAS,
showing the placement of empty centrifugation vials in the substrate in the root-free zone. The vials were then replaced by mesh bags (C) containing 15N-labeled
plant litter with or without added nitrification inhibitors at 28 DAS. Appearance of the plants in randomly placed pots in the greenhouse at 52 DAS (D) and
grouped mycorrhizal (E) and nonmycorrhizal (F) plants upon harvest at 70 DAS.
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plates using a 20-mL final reaction volume. Depending on whether primer sets were designed together
with TaqMan (hydrolysis) probes, which would be double labeled with fluorescein as a fluorophore and
BHQ1 as a quencher, reaction mixtures were prepared using two master mixes. We used either Luna uni-
versal probe qPCR master mix (M3004; for assays including a probe) or Luna universal qPCR master mix
(M3003; without a probe), both purchased from New England Biosciences (Ipswich, MA, USA).
Fluorescence was recorded in the SYBR green/fluorescein color channel.

NGS analyses. The amplified loci (the V4 region of bacterial and archaeal 16S rRNA genes, bacterial
amoA genes, archaeal amoA genes, and the V4 region of protist 18S rRNA genes) and primers used for
next-generation sequencing (NGS) analyses are all listed in Table 1. All listed primers were synthesized
and purified by high-performance liquid chromatography (HPLC) by Generi Biotech (Hradec Králové,
Czech Republic). Library preparation consisted of two subsequent endpoint PCR amplifications. The first
amplification step (35 cycles) was performed in triplicate, using a PPP master mix (Top-Bio, Vestec, Czech
Republic), except for the amplification of the prokaryotic 16S rRNA gene, where the TP HS DNA-free 2�
master mix from the same supplier was used instead. The products of the triplicate first-step PCRs were
pooled and purified using the QIAquick PCR purification kit (Qiagen). In the second PCR (10 cycles), pre-
vious amplicons were extended using Illumina i5 and i7 adapters that carried sample-specific barcode
combinations (Nextera XT dual indexes [Table 1]). The products of the second PCR were purified as
described above, and amplicon length was checked by standard agarose gel electrophoresis (0.8%). An
equimolar mixture of all amplicons was then prepared in a single tube based on amplicon concentra-
tions determined with the Quant-iT PicoGreen dsDNA assay (Thermo Fisher Scientific). A final size selec-
tion of this library pool, using paramagnetic beads (Agencourt AMPure XP PCR purification kit; Beckman
Coulter, Brea, CA, USA) was performed, the purified library pool was then diluted to 10 pM, denatured,
and sequenced on the Illumina MiSeq platform, using proprietary 600-cycle V3 chemistry (2 � 300-bp
paired-end reads) at the Joint Microbiome Facility (JMF, Vienna, Austria).

Bioinformatic analyses. Sequencing data were first demultiplexed to individual amplicons using
bcl2fastq v2.20.0.422 (Illumina, San Diego CA, USA) with default settings. The resulting data were then
processed using the software package SEED v2.1.1 (92). Forward and reverse sequence reads were
paired when an overlap of 20 bp was detected, with a maximum allowed mismatch set at 3 bp/15%.
Subsequently, the PCR primers (both forward and reverse) were then trimmed off the paired sequences.
All sequences with an average quality score of less than 30, a per-base quality score of less than 7, and a
length of less than 200 bp were removed. Sequences with any ambiguous base(s) and potentially chi-
meric sequences were removed using the v-search algorithm embedded in SEED. Additionally, sequen-
ces of AOB amoA genes were size filtered to match a 452- 6 3-bp length window. Thereafter, sequences
were clustered into operational taxonomic units (OTUs) using v-search at a similarity threshold of 97%.
OTUs were identified by conducting BLAST of the most abundant sequences for each of the OTUs
against the NCBI NR and custom databases (containing AOB amoA gene sequences or AOA amoA gene
sequences), the SILVA (prokaryotic 16S rRNA gene) database, or the PR2 (protist 18S rRNA gene) data-
base to identify and remove nontarget sequences (e.g., chloroplasts from the prokaryotic data set or
plant sequences from the protist data set). The custom databases for identification of AOA and AOB
based on the amoA gene sequences were created by downloading all NCBI GenBank entries quoting
ammonia monooxygenase for archaea and bacteria, respectively. The sequencing depths per sample
were rarefied separately for each data set by random resampling of sequences to the following sequenc-
ing depths: 1,500 (AOA amoA gene), 2,080 (AOB amoA gene), 16,186 (protist 18S rRNA gene), and 31,246
(prokaryotic 16S rRNA gene) reads per sample (details in Table S3). At least 80% of the individual sam-
ples were originally sequenced with greater sequencing depth than those chosen for resampling (for
details, see Table S3). The OTU relative abundances in each sample were then summed at higher taxo-
nomic levels (e.g., sequence types, genera, families, orders, or phyla) to be used in multivariate statistical
analyses. The data used for the statistical analyses are provided in Tables S4 to S7.

Calculations and statistics. The N and P concentrations measured in the plant tissues were used to
calculate the N and P contents in the shoots and roots on a per-pot basis, by using the dry biomass of
the shoots and roots per pot, respectively. Allocation of 15N from the labeled organic amendment into
the different system compartments (i.e., plant shoots, roots, and the substrate in the plant compartment,
in the root-free compartment except the mesh bag, and in the mesh bag) was calculated by considering
the molar amount of N in the different system compartments and the isotopic composition of the N
(expressed as atoms percent). A value of 0.37 atom% 15N was considered isotopic background (i.e., natu-
ral abundance) for all substrate samples, while a value of 0.366 atom% 15N was considered isotopic 15N
background in plant (shoot and root) biomass samples according to our previous results (16).
Nonspecific 15N losses from our experimental system (whether due to leaching or gaseous losses) were
calculated on a per-pot basis as the difference between the excess 15N provided with the input of the la-
beled plant litter per pot (i.e., 104 mmol 15N) and the sum of excess 15N in all measured compartments
per pot. The data are provided in Table S8.

The abundances of the different microbial guilds/functional genes measured by qPCR were corrected
for nonspecific losses during DNA extraction for each individual sample. Losses were calculated by deter-
mining the total copy number of the internal DNA standard per sample (assessed experimentally for each
extraction batch), the extraction volume (200 mL), and the amount of internal DNA standard spiked into
each sample (for more details, see reference 91).

Data were analyzed by one-way or two-way analysis of variance (ANOVA) using SigmaPlot for
Windows v. 13.0 (Systat Software, Inc., Palo Alto, CA, USA) after being checked for normality (Shapiro-
Wilks test) and subjected to a Levene median test for variance equality. Results of the ANOVA are pro-
vided in Table S9. The microbial community data derived from the NGS analyses (provided in Tables S4
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to S7) were subjected to multivariate principal component analysis (PCA) and redundancy analysis
(RDA), carried out in Canoco v. 5.12 (http://www.canoco5.com/index.php); details are provided in Table
S10. Because of low sequencing depth of four AOB amoA amplicons after removal of nontarget sequen-
ces, only 84 individual samples were included in multivariate analyses of AOB amoA (i.e., removing the
amplicons with low sequencing depth and corresponding samples from other compartments of the
same pots; see Table S3 for details). In all other multivariate statistical analyses, 96 individual samples
were always included. Only taxa with at least four occurrences across the relevant data sets were
included into the multivariate statistical analyses.

Data availability. All experimental data generated within this research and used for the different sta-
tistical analyses are provided in the supplemental material (see Tables S4–S8). For the NGS data, the paired
sequences (sorted by primer group but otherwise unchanged) were deposited in the Sequence Read
Archive under accession number PRJNA693256.
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