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Abstract: Superhydrophobic coatings are limited to poor durability and a tedious preparation process.
In this work, an efficient, eco-friendly, and cost-effective sol-gel method is developed for preparing
superhydrophobic surfaces using an all-in-one suspension composed of methyltrimethoxysilane
(MTMS), nano silicon dioxide (SiO2) particles, and micron zinc oxide (ZnO) particles. Superhy-
drophobic coatings with a contact angle (CA) up to 153.9◦ and a sliding angle (SA) of about 3.0◦ are
prepared on Q235 steel substrates using MTMS 5 mL, 0.8 g of nano SiO2, and 0.2 g of micron ZnO.
The morphology of the superhydrophobic coating is characterized by scanning electron microscopy
(SEM), and the surface is covered with a micro- and nano-scaled hierarchical rough structure. A
series of tests are conducted, including long-term stability tests and thermostability tests. The CAs
are all above 150◦, and the SAs are below 6.3◦, indicating the excellent static stability of the prepared
superhydrophobic coatings. Moreover, the CA of the superhydrophobic coating remains above
152◦ after 120 h of UV exposure, and the time for a water droplet to freeze on the surface of the
superhydrophobic coating is 18 times of the bare Q235 steel, indicating that the superhydrophobic
coating exhibits good resistance to UV radiation and icing-delay properties.

Keywords: superhydrophobic; stability; icing delay; MTMS; ZnO; SiO2

1. Introduction

Superhydrophobicity is found on plant surfaces and the bodies of some insects, such
as lotus leaves, butterfly wings, and the legs of water striders [1,2]. It was discovered that
superhydrophobic properties are determined by the synergy of surface micro and nano
rough structures and low surface energy material modifications [3,4]. A superhydrophobic
coating is characterized by a water contact angle (WCA) over 150◦ and a sliding angle
(SA) lower than 10◦ [5]. Superhydrophobic surfaces are widely used in exterior wall coat-
ings [6], textiles [7,8], metal corrosion protection [9,10], anti-bacterial [11,12], anti-fogging,
and self-cleaning [13–15]. Especially in the field of icephobic coating in harsh outdoor
environments, superhydrophobic technology has a wide range of applications [16,17].
Therefore, the preparation of superhydrophobic surfaces has been investigated from sev-
eral angles by academics and industry to enhance their process capabilities. At present,
nearly 10 methods for the preparation of superhydrophobic surfaces have been developed,
mainly etching [18,19], vapor deposition [20,21], hydrothermal method [22,23], electrostatic
spinning [24,25], template method [26,27], sol-gel method [28,29], electrodeposition [30,31],
self-assembly method [32,33], and plasma deposition [34,35].

Amongst these methods, sol-gel method is favored by researchers because of its mild
reaction conditions and simple process. Silica sols were produced by ethyl orthosilicate
catalyzed by ammonia and then modified by perfluorodecyltrimethoxysilane to produce
superhydrophobic coatings [36]. Silica sols are produced via ethyl orthosilicate catalyzed by
hydrochloric acid [37]. The silica sols were catalyzed by hydrochloric acid and ammonium
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hydroxide and subsequently modified with expensive fluorosilanes [38]. In the above
methods of preparing superhydrophobic coatings, the preparation of sols requires 24 h of
aging. It is time-consuming, and a wide variety of chemical reagents were used.

Superhydrophobic surfaces applied for icephobic membranes have been widely re-
ported [16,39,40]. The superhydrophobic coatings prepared by methyl methacrylate, gly-
cidyl methacrylate, heptadecafluorodecyl acrylate, and poly (vinylidene) fluoride also
exhibited superior chemical stability, self-cleaning property, and icing-delaying ability [39].
A robust transparent superhydrophobic coating was developed using an alkoxysilane
binder, fumed SiO2 nanoparticles, and methyltriethoxysilane (MTES). In addition, the
superior icephobic behavior of the coating was confirmed [40]. An icephobic coating of
a self-formed superhydrophobic surface using polydimethylsiloxane (PDMS) and SiO2
nanoparticles was investigated. Polyvinylidene fluoride (PVDF) was added to the PDMS
solution to improve the mechanical properties of the icephobic layer. Moreover, the ef-
fect of superhydrophobicity on icephobicity was determined in different sizes of the SiO2
nanoparticles. Furthermore, the ice adhesion strength increases with the increase of the
SiO2 nanoparticles powder size [16].

According to the published articles, superhydrophobic coatings of ZnO or MTMS have
been widely reported. ZnO particles and molecular sieves are fused into PDMS films to
prepare superhydrophobic coatings [41]. Branched hierarchical ZnO nanowires and ZnO
nanowires were modified by MTMS, and the WCA of the coating was about 153 ± 3◦. The
coating showed the higher Cassie–Baxter stability [42]. Cui et al. analyzed the conditions
and products of five siloxanes such as KH550, KH570, and MTMS for modification of silica
sol. MTMS was finally selected as the modifier for silica sol because of its low experimental
conditions and transparent products [43]. MTMS was hydrolyzed and mixed with silica sol
at different parameters to form the hybrid nanocomposite coating [44]. Alkaline silica sols
were modified by MTMS to prepare transparent hydrophobic coatings containing silicon
with a low surface energy and high temperature resistance [45]. In conclusion, all the above
scholars have successfully prepared superhydrophobic coatings. However, the operation
process is tedious and complicated, and at least five kinds of chemical reagents were used
in each preparation process.

To address the common problems of tedious preparation process, a superhydrophobic
film based on MTMS, SiO2 nanoparticles, and micron ZnO particles by facile sol-gel was
prepared. The preparation of silicone dioxide sols took only 1 h. The superhydrophobic
coating was successfully produced using only three chemical reagents. In this paper, a
superhydrophobic surface with a two-level bionic rough structure using SiO2 nano powder
combined with micron ZnO is innovatively presented. It is worth mentioning that the
superhydrophobic films have good ultraviolet (UV) resistance, icing-delay capacity, film
formation, self-cleaning characteristics, and environmental friendliness.

2. Materials and Methods
2.1. Reagents and Materials

The size of Q235 steel substrate was 20 mm × 20 mm × 1 mm. Hydrofluoric acid (HF,
0.4 mol/L, 25 ◦C) was purchased from Nantong Mingxin Chemical Co., LTD (Nantong,
China). Methyltrimethoxysilane (MTMS, purity ≥ 98.0%, 25 ◦C) was purchased from Run-
hui Biotechnology Co., LTD (Weihai, China). The SiO2 nanoparticles with specific surface
area of 220 ± 30 m2/g and diameter of 30 ± 5 nm were purchased from Shanghai Kaiyin
Chemical Co., LTD (Shanghai, China). Zinc oxide (ZnO, particle size 25 µm, analytical
purity) was purchased from Tianjin Hengxing Fine Chemical Co., LTD (Tianjin, China). All
chemical and reagents were used as received without further treatment. The water used in
all experiments and tests was obtained from the UPC-III water purification system.
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2.2. Preparation
2.2.1. Q235 Steel Substrate Pretreatment

The surface of the Q235 steel was sanded with 500# sandpaper and wiped clean
with alcohol wool. Subsequently, the substrate was activated with hydrofluoric acid
for 1 min, cleaned with deionized water, and dried. The pretreatment of Q235 steel
substrates was carried out at room temperature (25 ◦C). Microscopic images of the two
substrates are shown in Figure 1. The microscope images were taken using Keyence
VHX-2000 digital Microscope. The magnification is 200×. After activation treatment with
hydrofluoric acid, the surface texture was uniform and fine. In contrast, it appeared that
the surface of the substrate after sandpaper sanding only had many obvious scratches. The
Q235 steel substrate was activated to reveal the active metal interface, which facilitates the
improvement of the bond between the plating and the substrate.
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2.2.2. Different Amount of SiO2 and Modification Time

Five milliliters of MTMS was added separately to 10–20 mL beakers, numbered 1–10.
Then, from 0.1 g to 1 g of SiO2 nanoparticles was added into beakers and stirred for 1 h
at room temperature (22 ◦C). Five milliliters of MTMS was added separately to 10–20 mL
beakers, numbered 11–20. Then, from 0.1 g to 1 g of SiO2 nanoparticles was added into
beakers and stirred for 2 h at room temperature (22 ◦C). Five milliliters of MTMS was
added separately to 10–20 mL beakers, numbered 21–30. Then, from 0.1 g to 1 g of SiO2
nanoparticles was added into beakers and stirred for 3 h at room temperature (22 ◦C). Then
the stirred solution was applied dropwise to the Q235 substrate and left to dry at room
temperature for 24 h. Then, the coatings Nos. 1–30 were heated at 330 ◦C in a chamber
furnace for 30 min.

2.2.3. Different Amount of ZnO

Five milliliters of MTMS was added separately to 7–20 mL beakers, numbered 31–37.
Then, ZnO from 0.02 g to 0.5 g was added and stirred magnetically at room temperature
(22 ◦C) for 2 h. The stirred solution was applied dropwise to the Q235 substrate and left to
dry at room temperature for 24 h. It was found that the surface of No. 31–35 was flat, and
the surface of Nos. 36 and 37 showed obvious cracks. Then, the coatings of Nos. 31–35 were
heated in a chamber furnace at 330 ◦C for 30 min.

2.2.4. Different Amount of SiO2 and ZnO

Five milliliters of MTMS was added separately to 5–20 mL beakers. Then 0.8 g of SiO2
nanoparticles was added, respectively, and stirred magnetically at room temperature for 1 h.
Then 0.02 g, 0.05 g, 0.1 g, 0.2 g, and 0.3 g of micron-grade ZnO was added, respectively, and
stirred magnetically at room temperature for 1 h, numbered 38–42. The uniform solution
was applied dropwise to Q235 steel substrate and left to dry at room temperature for 24 h;
then, the coating was heated in a chamber furnace at 330 ◦C for 30 min.
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2.2.5. Heating Temperature

The coatings were prepared with 5 mL MTMS, 0.8 g of SiO2 nanoparticles, and 0.2 g
micron ZnO. To further verify the effect of temperature on coating wettability, the coatings
made from the above formulations were tested for CA after treatment at room temperature,
130 ◦C, 230 ◦C, 330 ◦C, and 430 ◦C for 30 min, Nos. 43–47.

The preparation process of the superhydrophobic coating is shown in Figure 2.
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Figure 2. Diagram of coating preparation process.

2.3. Characterization

Wettability of the coating was evaluated by a commercial CA instrument (Attension
Theta by Biolin Scientific, Sweden). The test droplets were 4 µL distilled water droplets.
The test sample was fixed on the sample table, a drop was placed on the sample table,
the sample table was automatically tilted, the drop rolled down, and then the value of SA
was recorded. Three random locations were selected at room temperature on the coating
surface. The fitting method was Laplace fitting. The superhydrophobic surface morphology
of the coating surface was characterized by scanning electron microscopy (SEM, JSM-IT100,
Japan). A digital camera (Canon EOS 90D, Japan) was used to photograph the self-cleaning
process. Two different particle sizes of contaminants (sand 150 µm and chalk powder
10 µm) were spread evenly on the superhydrophobic surface, and water droplets (0.25 mL)
were used to clean the surface to evaluate the self-cleaning performance. The FTIR spectra
were tested by Fourier transform infrared spectrometer (Tensor 27, Bruker, Germany) with
the single reflection method in the range of 500–4000 cm−1. The resolution was 2 cm−1, and
the samples were prepared by KBr compression method. The coatings were stored in air
for 6 months to test their long-term stability. The thermal stability of the superhydrophobic
coating was tested by two methods. The first was to heat the coating in a chamber furnace
at 300 ◦C for different times. The second was to heat the coating in a chamber furnace
at different temperatures for 30 min. Superhydrophobic coating heat treatment used a
chamber furnace (Bo yuntong KF 1100). In addition, the bond strength between the coating
and the Q235 steel substrate was evaluated by a tape peeling test; 3M 810 tape was used in
the tape peeling test on the superhydrophobic coating. A sand impact test was conducted.
Moreover, UV irradiation resistance and icing-delay tests of superhydrophobic coatings
were conducted. The wavelength of the UV lamp was UVC-253.7, power 39W (Bobo home).
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3. Results and Discussion
3.1. Processing

The CAs of coatings 1–30 are shown in Figure 3a. The change of CA is shown in
Figure 3. The results manifested that CA increased gradually with the increase of nano SiO2
from 0.1 g to 0.8 g. The CA decreased slightly, with the additional amount increasing to 1 g.
The CA of the modification time of 2 h was longer than the modification time of 1 h with
the same amount of nano SiO2. However, the CA was to some extent decreased, with the
modification time increasing to 3 h. Therefore, the optimal test parameters were as follows,
MTMS 5 mL, nano SiO2 0.8 g, stirring time 2 h, static drying 24 h at room temperature, and
heating temperature 330 ◦C.
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With increasing SiO2 nanoparticles content, the WCA of the composite coating im-
proved gradually. It was analyzed that when the addition of silica is low, the gap between
the surface silica nanoparticles is large and cannot form a continuous support structure,
so the surface water contact angle is small. When the amount of silica exceeded 0.8 g, the
nano-silica tended to aggregate and form a cluster structure, making the surface structure
gap smaller and the contact angle smaller.

The CAs of coatings 31–35 are shown in Figure 3b. Results manifested that CA
increased from 123.6◦ to 143.8◦ with the increase of micron ZnO from 0.02 g to 0.3 g. With
increasing ZnO micron particles content, the WCA of the composite coating improved
gradually. It was analyzed that with the increase of zinc oxide addition, the surface formed
a single-level rough structure with a certain structural gap.

The CAs were below 150◦ in the above two experimental groups. MTMS and nano
SiO2 were used in the first set of experiments. MTMS and micron ZnO were used in the
second set of experiments. Only one hierarchical particle of micron or nanometer was
contained in the hydrophobic coatings prepared by the above two methods. The possibility
of constructing micro and nano rough graded structures was explored to enable the coatings
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to achieve a superhydrophobic state in the following studies using micron-scale ZnO and
nanoscale SiO2.

The CAs of coatings 38–42 are shown in Figure 3c. The results manifested that CA
increased from 130.7◦ to a maximum of 153.9◦ with the increase of micron ZnO from
0.02 g to 0.2 g. However, the CA decreased to 151.8◦, with the addition amount of ZnO
increasing to 0.3 g. The superhydrophobic coating can be successfully produced using
MTMS, micron ZnO, and nano SiO2. With increasing ZnO micron particles content, the
WCA of the composite coating improved gradually. The contact angle reached a maximum
value of 153.9◦ when zinc oxide was added at 0.2 g. It was analyzed that with the increase
addition of ZnO, micro-nano hierarchical rough structures are formed on the surface. The
optimal mass ratio of micron ZnO and nano SiO2 is 1:4.

CAs of coatings at different temperatures are shown in Figure 3d. The CA of the
coating at room temperature was only 76.2◦. The CA of the coating surface increased from
121◦ to 153.9◦ with the temperature increasing from 130 ◦C to 330 ◦C. The CA of the coating
decreased to 141◦ after heating at 430 ◦C. The superhydrophobic coatings were obtained
with 5 mL MTMS, 0.8 g of SiO2 nanoparticles, and 0.2 g micron-grade ZnO after heated
in a chamber furnace at 330 ◦C for 30 min. In the following, the specimens tested and
characterized were prepared using this process parameter, if not otherwise stated. Micron
ZnO and nano-SiO2 built rough graded structures, and MTMS provided low surface energy.

3.2. Superhydrophobicity and Morphology

In order to compare the Q235 steel substrate with the superhydrophobic coating,
the contact angle was tested separately. The test results were shown in Figure 4. Q235
steel is a hydrophilic material with CAs of 67.8◦ and 73.2◦ before and after sanding by
500# sandpaper. The wettability of Q235 steel substrate is presented in Figure 4a,b. The
superhydrophobic behavior with a water CA of 153.9◦ and SA of about 3.0◦ is shown in
Figure 4c,d.
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The surface morphology of the superhydrophobic coating is shown in Figure 5. The
superhydrophobic surface was composed of rough, complex, accumulated micro and
nano-block particles. It is the inhomogeneous rough structure and the low surface energy
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modification of the MTMS that constituted the superhydrophobic surface. The accumu-
lation of the micro and nano particles formed rough hierarchical micro-nano structures.
The rougher the surface, the smaller the liquid-solid contact surface and the more effective
the hydrophobic effect. Apparently, there is a large space to trap air between these micro
and nano particles. As a result, the actual contact area between the solid surface and
the water droplet will be reduced, making the surface of Q235 steel significantly more
hydrophobic [46]. The superhydrophobic surface has a hierarchical structure, in which
ZnO resembles the protruding nubs in a lotus leaf as a primary structure, and the SiO2
nanoparticles attached to it can resemble the epidermal wax crystals in a lotus leaf. It was
considered that the combination of the two-level hierarchical structures on the surface of
SiO2-ZnO-MTMS stacked film, like the surface of lotus leaves, and the low surface energy
MTMS substrate was the root cause of their superhydrophobicity [41].
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Figure 5. SEM image of superhydrophobic coating surface.

The shapes of water, milk, green tea, vinegar, cola, wine, soy sauce, orange juice, and
coffee on the surface of superhydrophobic coating are shown in Figure 6. It isa obvious that
all probe droplets presented a spherical shape. The prepared surfaces exhibited hydropho-
bic properties for different liquids, indicating the universality of the superhydrophobic
coating.
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surface. It was shown that the aggregates are composed of microscale and nanoscale spher-
ical structures. The hierarchical micro-nano structures produce enough surface roughness
for generating superhydrophobicity [16]. This is because the MTMS with abundant methyl
functional groups is hydrophobic molecules, which would penetrate into the spaces among
SiO2 nanoparticles and interconnect these particles to form a low-surface coating [44].

3.3. Chemical Composition of Superhydrophobic Coatings

A small amount of powder from the surface layer of the coating was mixed and
pressed with KBr powder. The ambient humidity was 63%. The infrared spectrum was
tested by Fourier infrared spectrometer. FTIR spectra of the superhydrophobic film is
shown in Figure 7. The O-H stretching vibration peak of intermolecular hydrogen bond
is at 3435 cm−1. The C-H stretching vibration absorption peak is at 3000~2850 cm−1,
indicating that the products of MTMS hydrolysis include -CH3. One MTMS molecule
contains one methyl and three methoxy, and its surface energy is less than 25 mJ/m2 [47].
The C-H stretching vibration peak at 2985 cm−1 indicates that the hydrolyzed MTMS and
SiO2 reacted to attach -CH3 to the surface of SiO2. The characteristic absorption peaks of
Si-CH3 780 cm−1 indicate that the MTMS hydrolysate and organic SiO2 coatings contain
-CH3. The hydroxyl bending vibration characteristic peak of water is at 1630 cm−1, which
may be residual adsorbed water or crystal water in the coating. It can be seen that all
four contain the hydroxyl bending vibration characteristic peak of water. The peak here
in the coating is significantly weaker, indicating that the hydrolytic condensation reaction
of MTMS with the crystalline or adsorbed water in ZnO and SiO2 has occurred. Heating
catalyzes the hydrolysis condensation reaction of MTMS. The vibration absorption peaks
of 1000~1250 cm−1 are strong and wide, which is the vibration absorption band of Si-O
caused by Si-O, Si-O-Si, Si-O-C, and O-Si-O. The intensity weakens and widens, indicating
that MTMS cross-linked with the -OH on the surface of SiO2 particles and wrapped the
Si-O-Si bond inside the SiO2 [48]. After modification by MTMS, the characteristic peak of
ZnO disappeared within 455–1300 cm−1, and the characteristic peak of SiO2 disappeared
at 1093 cm−1. It indicates that the methyl group produced by the hydrolytic condensation
of MTMS successfully modified ZnO and SiO2. The hydrophobic group wraps the -
OH inside, and the coating exhibits superhydrophobicity [47]. The analysis concluded
that after modification by MTMS, its methyl group was successfully grafted onto the
surface of ZnO and silica, and the -OH in the coating was mainly from MTMS with low
surface energy [47]. It was shown that the hydrolyzation–condensation reaction occurs
in the process of modification of SiO2 and ZnO by MTMS. The crosslinking reaction
occurs between MTMS and -OH on the surface of SiO2 and ZnO particles, which envelops
SiO2 particles and generates a Si-O-Si inorganic skeleton structure containing organic
groups [46,49].
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The surface of nano SiO2 contains -OH groups (4.6 ± 0.5)/nm2), which provides
the possibility of chemical modification. Three kinds of hydroxyl groups on the surface of
SiO2 are shown in Figure 8, including the free hydroxyl group, twin hydroxyl group, and
associated hydroxyl group [50].
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It can be seen from the above reactions that each monomer of MTMS contains one
nonhydrolyzable Si-CH3 group. In principle, the hydroxyl group formed by the hydrolysis
of methoxy react with hydroxyl groups on the surface of nano SiO2 and micron ZnO [51].



Polymers 2022, 14, 3124 10 of 20

The hydrolysis product of MTMS contains many -CH3, and the surface of nano
SiO2 and micron ZnO contains many -OH. A highly cross-linked network polymer was
formed by the above hydrolysis addition reaction at 330 ◦C. The -CH3 was successfully
grafted onto the surface of the nano SiO2 and micron ZnO, making the coating exhibit
superhydrophobicity. The modification process is shown in Figure 9; the hydrophobic
methyl groups generated by the hydrolysis of MTMS replace the hydrophilic -OH on the
surface of nano SiO2 and micron ZnO.
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3.4. Self-Cleaning

The self-cleaning properties of superhydrophobic surfaces can protect them from
contamination. The self-cleaning properties of the prepared superhydrophobic surfaces
were investigated with two different contaminants, chalk powder with a particle size of
10 µm and sand with a particle size of 150 µm. A layer of chalk powder was spread on
the superhydrophobic surface as shown in Figure 10a. A layer of sand was sprinkled
on the superhydrophobic surface as shown in Figure 11a. Subsequently, the specimen
surface was tilted about 10◦. When a droplet (0.25 mL) was placed on the contaminated
surface, it slid easily, sweeping away the contaminants in its path. The motion of the
droplet appeared to be unhindered by particulate contaminants. There are two factors
having played roles in this phenomenon. Firstly, the air trapped in the space around the
microstructure reduces the contact area of the droplet with the superhydrophobic surface.
In addition, the combined effect of the high capillary force of the water droplets and the low
adhesion of particulate contaminants in this particle size range to the superhydrophobic
surface facilitates the self-cleaning performance. The surface of the Q235 steel substrate is
shown in Figures 12 and 13. It can be seen that the water flowed down and did not carry
away sand and chalk powder.
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Figure 10. Self-cleaning process of superhydrophobic coating surface: (a) chalk dust was spread on
the surface of the coating, (b) chalk dust adhering to the surface of the coating migrates to the surface
of the droplets, (c) the water droplets roll off and carry away the chalk dust from the surface, and
(d) the surface restored to its original clean state.
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Figure 11. Self-cleaning process of superhydrophobic coating surface: (a) sand was spread on the
surface of the coating, (b) sand adhering to the surface of the coating migrates to the surface of the
droplets, (c) the water droplets roll off and carry away the sand from the surface, and (d) the surface
restores to its original clean state.
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Figure 13. Cleaning process of Q235 steel surface: (a) sand was spread on the surface of Q235 steel
surface, (b) water drops on the surface of Q235 steel, (c) water flowing over the surface of Q235 steel
sprinkled with sand, and (d) large amount of sand still on the surface of Q235 steel.

To further demonstrate the good self-cleaning properties of superhydrophobic surfaces,
four surfaces with different wettabilities were tested. The microstructure was made of
MTMS and micron-scale ZnO, and the CA was about 132.7◦. The nanostructure was
made of MTMS and nano SiO2, and the CA was about 141.5◦. The superhydrophobic
hierarchical structure was made of MTMS, nano SiO2, and micron ZnO, and the CA is
about 153.9◦. The water cleaning test was carried out for 1.5 min (water quantity, 10 mL)
with nearly zero kinetic energy of droplets. The self-cleaning efficiencies of surfaces with
different wettabilities are shown in Figure 14. Most particles (90–95%) remained on the
Q235 steel surface. About 50–65% particles remained on the microstructure surface, and
35–55% particles remained on nanostructure surface. Most particles were removed from
the hierarchical structured surfaces, but approximately 15–25% of particles remained. This
result is generally consistent with the previously reported literature [52]. The analysis
results show that the self-cleaning efficiency increases with an increasing surface CA.
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3.5. Stability
3.5.1. Atmospheric Exposure Test

Superhydrophobic coating was exposed to air in the laboratory at 27 ◦C room tem-
perature, 63% humidity, and without UV light exposure. Five samples were tested. Three
random locations of each coating were tested at room temperature on the coating surface.
The coatings were exposed to air for six months, and CAs were performed every month.
The results were shown in Figure 15.
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The change of SA is shown in Figure 15. It varied between 3.0◦ and 4.7◦. The change
of CA is shown in Figure 15. The CA of the superhydrophobic coating did not change
significantly with exposure to air for six months, indicating that the stability is good.

3.5.2. Heat Stability

The superhydrophobic coating was placed in a crucible and then placed in a chamber
furnace. Five samples were tested. Three randomly locations of each coating were tested at
room temperature on the coating surface. The coatings were heated at 300 ◦C in the heating
oven for different times, and then CA was tested. The results are shown in Figure 16.

Polymers 2022, 14, 3124 12 of 20 
 

 

3.5. Stability 

3.5.1. Atmospheric Exposure Test 

Superhydrophobic coating was exposed to air in the laboratory at 27 °C room tem-

perature, 63% humidity, and without UV light exposure. Five samples were tested. Three 

random locations of each coating were tested at room temperature on the coating surface. 

The coatings were exposed to air for six months, and CAs were performed every month. 

The results were shown in Figure 15. 

 

Figure 15. CA and SA of coatings exposed to air at different time. 

The change of SA is shown in Figure 15. It varied between 3.0° and 4.7°. The change 

of CA is shown in Figure 15. The CA of the superhydrophobic coating did not change 

significantly with exposure to air for six months, indicating that the stability is good. 

3.5.2. Heat Stability 

The superhydrophobic coating was placed in a crucible and then placed in a chamber 

furnace. Five samples were tested. Three randomly locations of each coating were tested 

at room temperature on the coating surface. The coatings were heated at 300 °C in the 

heating oven for different times, and then CA was tested. The results are shown in Figure 

16. 

 

Figure 16. CA and SA corresponding to different treatment durations at 300 °C. Figure 16. CA and SA corresponding to different treatment durations at 300 ◦C.



Polymers 2022, 14, 3124 13 of 20

The SA varied between 3.3◦ and 6.3◦ with no significant change. The smallest CA was
151.3◦ with an SA of 6.3◦. The CA and SA corresponding to different treatment durations
at 300 ◦C are shown in Figure 16.

Five samples were tested. The coatings were heated at 150 ◦C, 250 ◦C, 350 ◦C, and
450 ◦C for 30 min, respectively. After cooling, the surface CA was tested, and the results are
shown in Figure 17. After two sets of heat stability tests, all specimens had a flat surface,
no cracks, and no significant changes compared with those before heating.
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The CA and SA at different heating temperature conditions are shown in Figure 17.
The CA of the coatings did not change significantly with the increase of the heat treat-
ment temperature from 150 ◦C to 350 ◦C. When the temperature was 450 ◦C, the CA
decreased significantly. At the time, the CA was 145.4 ◦, and the SA was the largest with
the value 13.0◦.

The infrared spectra of coatings after heat treatment at different temperatures are
shown in Figure 18. The broad absorption peak at 3435 cm−1 is the O-H stretching vibra-
tion peak; 1630 cm−1 is the hydroxyl bending vibration peak of water. The absorption peaks
at 3435 cm−1 and 1630 cm−1 gradually weakened with the increase of temperature, and the
hydroxyl bending vibration peak of water almost disappeared when the temperature in-
creased to 430 ◦C, indicating that the O-H bond in the modified gum gradually disappeared
with the increase of temperature [47]. The intensity of the characteristic Si-CH3 absorption
peak at 780 cm−1 was essentially constant in the range of 130~330 ◦C, and decreased signif-
icantly at 430 ◦C. This may be due to the gradual decomposition of hydrophobic -CH3 in
the coating above 400 ◦C, which causes the decrease of hydrophobicity and the decrease
of CA. Compared with the room temperature coating, the heating at 130 ◦C indicates that
the hydrolytic condensation reaction of MTMS was catalyzed by heating at 130 ◦C. From
130–330 ◦C, the -OH peak gradually became weaker, and the contact angle of the coating
gradually increased [47].

3.6. Binding and Impact Test

Five samples were used in the tape peeling test and sand impact test separately. Three
random locations of each coating were tested at room temperature on the coating surface.
Microscopic images of superhydrophobic coating after six strips of tape were shown in
Figure 19. There was a little white powder stuck on the tape after the first tape peeling test.
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Five more tape peel tests were then conducted, with more white powder on the tape after
each test. After six tests, the surface of the superhydrophobic coating became uneven with
small pits. The CA and SA after tape peeling are shown in Figure 20; the CA reduced from
153.9◦ to 110.9◦, and the SA increased from 3◦ to 47.7◦.
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Figure 19. Microscopic image of superhydrophobic coating after six tape peeling. (a) First tape
peeling, (b) second tape peeling, (c) the third time of tape peeling, (d) the fourth time of tape peeling,
(e) the fifth time of tape peeling, and (f) the sixth time of tape peeling.
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Figure 20. (a) CA and SA after tape peeling and (b) CA and SA after sand impact.

A sand impact test was conducted, the coating was placed at an inclination of 45◦,
and 20 g of sand was dumped every 60 s from 30 cm above. As the number of tests with
sand impacting the surface increased, the superhydrophobic surface gradually became
uneven, with small pits and white powder coming off. The CA and SA after tape sand
impact are shown in Figure 20. the CA reduced from 153.9◦ to 116.7◦, and the SA increased
from 3◦ to 40.0◦.

The results of the above tests showed that the prepared bionic superhydrophobic
coatings have good static stability and poor dynamic mechanical stability. This was because
that the hydrolysis product of MTMS contained a large amount of -CH3, and a large
amount of -OH on the surface of nano SiO2 and micron ZnO provided the possibility of
chemical modification. The three formed a highly cross-linked network polymer by the
above hydrolysis condensation reaction at 330 ◦C, resulting in the micro-nano structures.
The surface of superhydrophobic surface micron-sized ZnO was covered with hydrophobic
nanoscale SiO2 particles modified by MTMS, and the clusters adhere to each other to form
a compact and unbreakable microstructure. The special structure of the aforementioned
superhydrophobic surface ensures its good static stability. However, when the force of
tape peeling and sand impact exceeded the force of the formed mesh, the coating surface
microstructure was gradually destroyed. The wetting state of the coating surface changes
from Cassie–Baxter to Wenzel [46].

3.7. UV Irradiation Test

Five samples were tested. Three randomly locations of each coating were tested at
room temperature on the coating surface. UV irradiation tests were conducted on the
superhydrophobic coating. The CA evolution of superhydrophobic coating upon UV
light irradiation is shown in Figure 21. It indicates that CA was kept almost unchanged
basically upon UV light irradiation. Additionally, it could still reach as high as 153.0◦ and
above, even though UV irradiation time extended to 120 h. The SA varied between 3.0◦

and 5.3◦. This was because UV light could be easily absorbed by SiO2 nanoparticles [53].
Consequently, the superhydrophobic coating presented excellent UV resistance.

3.8. Icing Delay

It was shown that superhydrophobic surfaces have an icing-delay ability due to
their special structure and properties, which are of great importance for practical applica-
tions [54–56]. The freezing of liquids on superhydrophobic surfaces is a complex process.
The anti-icing ability of superhydrophobic coatings not only depends on their excellent
water repellency, but also has relation with the nucleation ability of water drops on the
surface [39]. The special micro and nano rough structure and low surface energy of the
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superhydrophobic surface reduces the adhesion of the liquid to the surface. The heteroge-
neous nucleation of ice is difficult on a low-energy surface; ice has a low contact area with
the surface that results in a low adhesion force [16].
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Figure 21. CA and SA under different UV irradiation times.

Three superhydrophobic coatings were tested with five water droplets on each coating.
The water droplet diameter was 1.25 mm, and the test temperature was −16 ◦C. The rate
of droplet cooling from room temperature to freezing temperature was 2 ◦C /h. The
freezing time of static water droplets on the coating is usually used to characterize the
anti-icing ability. The freezing process of water drops on the superhydrophobic coating
and Q235 steel is shown in Figure 22a, the water freezing time on the bare Q235 steel and
superhydrophobic coating were recorded and compared. On bare Q235 steel, the droplet
was fully frozen after 2.5 min. However, on the superhydrophobic coating, it was freezing
at the 13th minute. At the 45th minute, only two of the five drops were frozen. The time
for a water droplet to freeze on the surface of the superhydrophobic coating is 18 times of
the bare Q235 steel. The error in the time required for the first droplet to be frozen in the
icing delay experiments for the three coatings was within ±0.5 min. The superhydrophobic
coating showed excellent icing-delay ability. The relevant explanation for this phenomenon
is as follows: (1) the contact area of water droplet with superhydrophobic surface is smaller,
which provides much less area for ice nucleation, and the nucleation of water near the
interface is disturbed, and (2) the air layer between water and the superhydrophobic coating
hinders the heat transfer [16,39]. The Boinovich group has also studied the icing-delay
properties of superhydrophobic coatings, including one study in which only two of five
drops crystallized after 155 min on a superhydrophobic surface [57,58]. Compared with
their prepared coatings, the superhydrophobic coatings prepared in this paper need to
be improved.

Cyclic icing/melting experiment was assessed to study the lifespan of the superhy-
drophobic coating. After 10 icing/melting cycles, the water CA was still above 150◦, and it
can be found that there was no observable change on the coating surface according to the
comparison of SEM images (Figure 22b,c).
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4. Conclusions

The superhydrophobic coating with a CA of 153.9◦ and an SA of about 3.0◦ was
prepared on Q235 steel substrate with 5 mL MTMS, 0.8 g of SiO2 nanoparticles and 0.2 g
micron-grade ZnO heating 30 min at 330 ◦C by a simple timesaving sol-gel method. The
preparation of superhydrophobic coatings uses only three reagents, which is resource-
saving. The superhydrophobic coating surface was composed of rough micro/nano hierar-
chical structures. The structure was generated by the hydrolytic condensation cross-linking
reaction of the MTMS hydrolysis products with the -hydroxyl groups on the surface of
the SiO2 and ZnO. The superhydrophobic surface exhibited a good self-cleaning effect on
both 150 µm fine sand and 10 µm chalk powder. Moreover, the superhydrophobic surface
has good static stability at atmospheric exposure test and thermal stability testing. The
CA of the superhydrophobic coating was still as high as 153◦ with exposure to air for six
months. The contact angle was still as high as 151.3◦ after the coating was heated at 300 ◦C
for 11 h. In addition, the superhydrophobic surface showed a self-cleaning property due
to a stable gas–liquid interface provided by the micro-nano hierarchical rough structures.
In addition, the superhydrophobic coating has good resistance to UV radiation and de-
layed icing properties. It could still reach as high as 153.0◦ and above, even though UV
irradiation time extended to 120 h. The time for a water droplet to freeze on the surface
of the superhydrophobic coating was 18 times that of the bare Q235 steel. However, in
sand impact test and tape peeling test, the surface of the superhydrophobic coating became
uneven with small pits. The CA after tape peeling reduced from 153.9◦ to 110.9◦, and the SA
increased from 3◦ to 47.7◦. The CA and SA after tape sand impact reduced from 153.9◦ to
116.7◦, and the SA increased from 3◦ to 40.0◦. Highly cross-linked mesh structures formed
gave the surface a certain static stability. When the force of tape peeling and sand impact
exceeded the force of the formed mesh, the coating surface microstructure was gradually
destroyed. In this work, an efficient, eco-friendly, and cost-effective sol-gel method was
developed for preparing superhydrophobic surfaces. However, the prepared bionic super-
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hydrophobic coatings have good static stability and poor dynamic mechanical stability.
The improvement of mechanical stability will become the focus of subsequent research.
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