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A B S T R A C T   

New variants of SARS-CoV-2 Alpha (B.1.1.7); Beta (B.1.351) Gamma (P.1) and Delta (B.1.617.2) quickly spread 
in the UK, South Africa, Brazil and India, respectively. To address whether mutations in SARS-CoV-2 RBD spike 
protein could affect virus infectivity, peptides containing RBD amino acids mutations have been constructed and 
interacted with human ACE2 by computational methods. Our results suggest that mutations in RBD amino acids 
K417, E484, L452, T478 and N501 are expressively increasing the affinity of this protein with human 
angiotensin-converting enzyme 2 (ACE2), consequently, variants Alpha (B.1.1.7), Beta (B1.351), Gamma (P.1) 
and Delta (B.1.617.2) could be more infective in human cells compared with SARS-CoV-2 isolated in Wuhan- 
2019 and the Gamma and Delta variants could be the most infective among them.   

1. Introduction 

In 2002–2003, the outbreak of severe acute respiratory syndrome 
occurred due to SARS-CoV in the Guangdong Province of China and 
quickly spread to twenty-seven countries.1–3 One decade later, in 2012, 
MERS-CoV caused a severe respiratory disease that emerged in the 
Middle East with 2494 confirmed cases of human infection and 858 
deaths.4–7 The rate of human-to-human transmission of SARS-CoV-2 is 
higher than earlier outbreaks of Coronavirus via cough and/or sneezing 
droplets emitted from infected people.1,8 Due to this rapidly spreading 
and no efficient repairing mechanisms for RNA mutations, SARS-CoV-2 
is susceptible to several and constant mutations. Notably, a single 
SARS-CoV amino acid change, Spike D480 A/G in the receptor 
binding-domain (RBD), arose in infected humans and civets and became 
the dominant variant among 2003/2004 viruses. SARS-CoV-2 is a pos-
itive single-stranded RNA virus whose genome encodes four structural 

proteins: spike (S), small protein (E), matrix (M), and nucleocapsid (N). 
The Spike protein is a type I fusion protein that forms trimers on the 
surface of the virion9,10,11,.12–14 It is composed of two subunits, with S1 
responsible for receptor-binding and S2 for membrane fusion. 
SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the 
receptor for entry into target cells.15–23 Therefore, the S protein de-
termines the infectivity of the virus and its transmissibility in the host. 
According to several studies, receptor-binding domain (RBD) from Spike 
protein of SARS-CoV-2 contain six most important amino acids residues 
(L455, F486, Q493, S494, N501, and Y505) that mediate virus entry into 
the host cells.12,14,17,26–31 However, mutations in other amino acids 
from Spike protein (S) could affect virus infection despite his interaction 
with human ACE2. Understanding the effect of amino acid substitutions 
in S protein from new variants comparing the strains on the trans-
missibility and virulence of SARS-CoV-2 is of broad and immediate in-
terest. In the present study, we assess the impact of the RBD associated 
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amino acid substitutions in the UK (Alpha, B.1.1.7), South Africa (Beta, 
B.1.351), Brazil (Gamma, P.1) and India (Delta, B.1.617.2) SARS-CoV-2 
variants. 

2. Methods 

2.1. Amino acid sequence alignment 

Complete genome from SARS-CoV-2 and Spike protein sequence 
isolated in Wuhan was downloaded from GenBank (NC_045512.2). 
SARS-CoV-2 amino acid substitutions in the Spike protein were obtained 
from CDC (https://www.cdc.gov/coronavirus) and WHO (https://www 
.who.int/) web sites and global reports platform (https://cov-lineages. 
org). SARS-CoV-2 spike protein amino acids (Wuhan) were grouped in 
peptides of 60 residues and compared with 60 residues peptides of Spike 
protein from SARS-CoV-2 variants. Receptor binding domain (RBD) re-
gions are highlighted. 

2.2. Computational methods 

We performed our analyses using the crystallographic models of the 
SARS-CoV-2 Spike protein available in Protein Data Bank (PDBID 
6LZG) and PyMol software to analyses the structures. PDB peptides 
sequences have been built with Swiss Model on line software and 3D 
structures constructed by PyMol. Docking analyses was performed by 
ClusPro 2.0 24,.25 

3. Results 

Using the crystal structure from Human ACE2-SARS-CoV-2 S protein 
deposited in Protein Data Bank (PDBID 6LZG -Fig. 1) and the genome 
sequence from SARS-CoV-2 (NC_045512.2) we identified and aligned 
amino acids residues and 3D structures have been built from all 
mentioned strains (Figs. 2 and 3). Peptides containing RBD mutant re-
gions were built using Swiss online software (Fig. 4) and interacted with 
human ACE2 using ClusPro 2.0 (Fig. 5), where differences in amino 

acids interactions from peptides with ACE2 have been identified. Amino 
acids substitutions Alpha (UK) – N501Y; A570D; P681H; T716I; S982A 
and D1118H, Beta (South Africa) - D80A; D215G; K417 N; E484K; 
N501Y; A701V; Gamma (Brazil) - L18F; T20 N; P26S; D138Y; R190S; 
K417T; E484K; N501Y; H655Y; T1027I and Delta (India) – T19R; 
L452R; T478K; P681R; D950 N showed that virus mutants presented 
different regions of mutations compared with SARS-CoV-2 from Wuhan. 
However, Alpha, Beta and Gamma variants presented the same change 
N501Y while the Delta variant did not show changes in this amino acid. 
Interestingly, among RBD amino acids (residues 331–524), Alpha pre-
sents only N501Y substitution while Beta presents K417 N; N501Y; 
E484K, Gamma presents K417 N; E484K; N501Y and Delta presents 
L452R; T478K. Peptides containing residues 361–420 (E: Wuhan/UK: 
1054.6; South Africa: 1087.2 and Brazil: 1192.6), 481–540 (E: Wuhan: 
1019.3; UK: 1022.9 and South Africa/Brazil: 1086,0) and 421–480 (E: 
Wuhan/UK/South Africa/Brazil: 891.5; India: 1393.1) residues showed 
different binding energy with ACE2 showing that amino acid sub-
stitutions at positions 417, 452, 478, 484 and 501 from Spike protein 
could affect SARS-CoV-2 infectivity. 

4. Discussion 

Variants are characterized by multiple mutations in the Spike protein 
(S protein). Under the current public health emergency, it is imperative 
to understand the mutations that occurred in SARS-CoV-2 since 2019 and 
investigate if they could bring consequences to virus infection and human 
disease development. To address these important issues, amino acid se-
quences of Spike protein from different strains of SARS-CoV-2 (Fig. 1) 
have been compared and mutations have been highlighted following 
deposited data from Protein Data Bank (PDB) and Global reports, WHO 
and CDC (Fig. 2). According to global reports and Health agencies, in 
comparison with SARS-CoV-2 from Wuhan-2019, the new variants pre-
sent the following mutations in S protein: Alpha (6 mutations) - N501Y; 
A570D; P681H; T716I; S982A and D1118H, Beta (6 mutations) - D80A; 
D215G; K417 N; A701V; N501Y; E484K, Gamma (10 mutations) - L18F; 
T20 N; P26S; D138Y; R190S; K417T; E484K; N501Y; H655Y; T1027I and 
Delta (5 mutations) - T19R; L452R; T478K; P681R; D950 N. 

Among all mutations, N501Y is of major concern because it in-
volves one of the six key amino acid residues determining a tight 
interaction of the SARS-CoV-2 receptor-binding domain (RBD) with its 
cellular receptor angiotensin-converting enzyme 2 (ACE2). However, 
there are additional mutations in the RBD from Beta and Gamma 
variants that also could affect the infectivity of SARS-Cov-2 in human 
cells. As shown, variant Beta carries mutations in the spike protein 
named as K417 N and E484K while variant Gamma carries K417T and 
E484K which are not found in the variant Alpha (Fig. 3). To assess if 
those mutations are able to affect virus infection, 60 residues peptides 
containing RBD regions and mutations (peptides containing residues 
361–420 from Wuhan/UK, South Africa and Brazil and 481–540 from 
Wuhan, UK and South Africa/Brazil) have been drawn by Swiss model 
online software (Fig. 4). The interaction with human ACE2 was 
modeled using software ClusPro 2.0 (Fig. 5). Our results suggest that 
mutations in spike protein are increasing the interaction with human 
ACE2 and the amino acid substitutions at positions 417, 484 and 501 
are directly contributing to this increase. Additionally, cumulative 
mutations in the same variants expressively increase the binding en-
ergy with ACE2. The variant first identified in Manaus-Brazil (Gamma) 
presented the highest interaction with ACE2 in both peptides 
(361–420 – E: 1192.6; 481–540 – E: 1086.0) and could be the most 
infectious variant among them. While UK (Alpha) variant presents 

Fig. 1. Spike protein from SARS-CoV-2 (blue) interaction with Human 
angiotensin-converting enzyme 2 (ACE2-green). RBD 331–524 (orange) means 
reception binding domain amino acids from 331 to 524. PDBID 6LZG. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 2. Mutation regions from Spike protein amino acid sequences: SARS-CoV-2 and A) Alpha (B.1.1.7), B) Beta (B.1.351), C) Gamma (P1) and D) Delta (B.1.617.2) 
variants highlighting RBD regions. Picture shows the alignment of 60 consecutive amino acids residues from S protein where mutations have been occurred. 
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Fig. 3. Mutation regions from the Spike protein amino acid sequences: SARS-CoV-2 and A) Alpha (B.1.1.7), B) Beta (B.1.351), C) Gamma (P.1) and D) Delta 
(B.1.617.2). The picture highlights the mutation regions in the Spike protein. Alpha - N501Y; A570D; P681H; T716I; S982A and D1118H, Beta- D80A; D215G; K417 
N; E484K; N501Y; A701V, Gamma- L18F; T20 N; P26S; D138Y; R190S; K417T; E484K; N501Y; H655Y; T1027I and Delta- T19R; L452R; T478K; P681R; D950 N. 
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N501Y substitution, the variant from Africa (Beta) presents additional 
substitutions K417 N and E484K. Lys484 interacts with Glu89 and 
Gln88 from ACE2 while E484 did not present interactions with amino 
acids from this receptor. K417 N substitution increased the binding 
energy compared with Wuhan and UK lineages (E: 1054.6 to 
− 1087.2), but the amino acid does not interact with the receptor in all 
peptides. The Brazilian variant (Gamma) carries peculiar substitutions 
K417T additionally to E484K and N501Y. Our results suggest that 
T417 interacts with Glu199 from ACE2 while Lys417 (Wuhan) and 
N417 (South Africa) do not present interaction with amino acids from 
ACE2. Interestingly, the two modifications in the RBD region in the 
variant from India (L452R and T478K), expressively increased the 
interaction with ACE2 showing the highest binding energy of all 
compared peptides. 

5. Conclusion 

In conclusion, mutations in Spike protein from SARS-CoV-2 are 
expressively increasing the affinity of this protein with human angiotensin- 
converting enzyme 2 (ACE2), consequently variants Alpha, Beta, Gamma 
and Delta could be more infective in human cells compared with SARS- 
CoV-2 isolated in Wuhan-2019 and the Gamma and Delta variants could 
be the most infective among them. 
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Fig. 4. Peptides from SARS-CoV-2 containing amino acids residues A) 361–420 from Wuhan/UK, South Africa and Brazil; B) 481–540 from Wuhan, UK, South 
Africa/Brazil and C) 421–480 from Wuhan/UK/South Africa/Brazil and India. 
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Fig. 5. Peptides of SARS-CoV-2 spike protein interaction with human ACE2. A) Peptides 361–420 from Wuhan/UK (B.1.1.7), South Africa (B1.351), Brazil and B) 
481–540 from Wuhan, UK (B.1.1.7), South Africa (B1.351)/Brazil (P.1) and C) 421–480 from Wuhan/UK/South Africa/Brazil and India. E means binding affinity 
energy between peptides and ACE2 obtained by docking analysis. Interactions of amino acids at position 417 (Lys57, Asn57 and Thr57), 484 (Glu4 and Lys4), 452 
(Leu32 and Arg32) and 478 (Thr58 and Lys58) are highlighted. Light Blue (A, B) and gray (C): ACE2, Dark Blue, pink and orange: peptides, Red: Regions of 
interaction between peptides and ACE2. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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