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Abstract

Closed-loop stimulation for targeted modulation of brain signals has emerged as a promising 

strategy for episodic memory restoration. In parallel, closed-loop neuromodulation strategies have 

been applied to treat brain conditions including drug-resistant depression, Parkinson’s Disease, 

and epilepsy. In this study, we seek to apply control theoretical principles to achieve closed 

loop modulation of hippocampal oscillatory activity. We focus on hippocampal gamma power, a 

signal with an established association for episodic memory processing, which may be a promising 

‘biomarker’ for the modulation of memory performance. To develop a closed-loop stimulation 

paradigm that effectively modulates hippocampal gamma power, we use a novel data-set in which 

open-loop stimulation was applied to the posterior cingulate cortex and hippocampal gamma 

power was recorded during the encoding of episodic memories. The dataset was used to design 

and evaluate a linear quadratic integral (LQI) servo-controller in order to determine its viability for 

in-vivo use. In our simulation framework, we demonstrate that applying an LQI servo controller 

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/
licenses/by/4.0/

(Corresponding author: Carlos E. Davila. cd@lyle.smu.edu). 

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 September 
13.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2022 ; 30: 2242–2253. doi:10.1109/TNSRE.2022.3192170.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


based on an autoregressive with exogenous input (ARX) plant model achieves effective control 

of hippocampal gamma power in 15 out of 17 experimental subjects. We demonstrate that we 

are able to modulate gamma power using stimulation thresholds that are physiologically safe 

and on time scales that are reasonable for application in a clinical system. We outline further 

experimentation to test our proposed system and compare our findings to emerging closed-loop 

neuromodulation strategies.

Keywords

Hippocampus; gamma oscillations; closed-loop modulation; open-loop stimulation; posterior 
cingulate cortex

I. Introduction

The last ten years have witnessed a flourishing in the development of therapeutic 

brain stimulation to treat memory disorders. Nascent therapies for memory benefit from 

antecedent experience in neuromodulation targeting Parkinson’s disease [1], [2], epilepsy 

[3], and depression [4]–[6], mostly in the form of open loop stimulation. Open-loop 

stimulation relies on manually setting stimulation parameters for each patient via a trial-and-

error procedure that is guided by clinical assessment of symptoms [1]. Such open-loop 

stimulation fails to account for the fast dynamics of electrophysiological signal during 

cognition, although it has proven effective for movement disorders. When applied for the 

neuromodulation of memory (unlike movement disorders), open-loop strategies have not 

only largely failed to demonstrate benefit in memory performance, but have been shown 

to worsen memory [7]–[11]. Stimulation paradigms that have shown greater promise in 

improving memory rely on responsive, closed-loop stimulation, in which a neural feedback 

signal guides subsequent stimulation pulses [12]–[14]. Closed loop neuromodulation 

strategies emerged from efforts within the DARPA Restoring Active Memory (RAM) 

program [15]. The effort to which we contributed, which reported a 15% average increase 

in memory performance across 40 participants, used logistic regression-based classifiers to 

predict encoding success [12]. Classifiers were trained for each patient from approximately 

700 milliseconds of brain recordings over 90 or more intracranial electrodes. The trained 

classifier decoded the likelihood of successful encoding following item presentation within 

an episodic memory task and delivered during ‘unfavorable’ brain states with a low 

likelihood of encoding success. While promising, several concerns remain that may impede 

the practical implementation of such a device. The first is a limit in classifier performance 

and generalizability across subjects and experimental sessions, requiring bespoke models 

uniquely trained for each patient [16]. Further, this method requires a cumbersome empirical 

parameter identification routine to identify the appropriate brain region and stimulation 

characteristics needed to predictably alter brain activity. Finally, the logistic regression 

models used for prediction of encoding success (and control of stimulation) required 

extensive patient data from over 100 recording contacts, more than would be feasible in a 

clinically-applicable system. Results remain preliminary overall, but these reports highlight 

the potential of closed loop approaches for memory restoration.
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Shanechi describes an alternative closed-loop, neuromodulation method in the context 

of treating depression [17]. The strategy incorporates an oscillatory signal acting as a 

‘biomarker’ of mood, namely orbitofrontal theta or alpha power, which is used as a signal 

amenable to control using state space modeling and an LQI servo-controller. A proposed 

testbench for incorporating this approach was described by Yang et al (2018). Their 

proposed system implements a Kalman filter to estimate the biomarker signal and an LQR 

controller to manipulate it precisely [18]. Here, we seek to apply some of the principles 

described in this approach to neuromodulation strategies for memory disorders. Two 

essential questions must be considered when developing this approach: 1) what brain signal 

can serve as an effective ‘biomarker’ for memory, and 2) what stimulation strategy can 

modulate this biomarker safely and effectively? Hippocampal gamma oscillatory power is a 

logical choice to address the first question. Both animal and human studies have established 

that changes in gamma oscillatory power predict memory success, along with participating 

in local and regional coupling via phase synchrony and cross frequency coupling [19], 

[20]. Regarding a strategy for modulating hippocampal gamma oscillations, we recently 

published data demonstrating that stimulation of the posterior cingulate cortex (PCC) 

reliably elicits increases in hippocampal gamma band oscillatory power during episodic 

memory processing [8]. The PCC represents a promising target for neuromodulation given 

its dense connectivity to diverse brain regions, including participation in the default mode 

network [21], [22]. These data were collected using an open-loop stimulation paradigm 

(with overall reduction in memory performance, as with previous publications targeting 

brain locations other than the PCC). However, these data allowed us to model hippocampal 

gamma power in the presence and absence of stimulation during memory behavior, which 

facilitated the construction of a control model for the modulation of this signal.

Our efforts establish the feasibility of a control system for memory neuromodulation 

predicated on posterior cingulate stimulation using linear system identification methods 

similar to those reported previously [18]. We show that we are able to model the relationship 

between PCC stimulation and responsive hippocampal gamma power using our ARX 

framework, accurately representing the gamma power time series in both stimulation and 

non-stimulation conditions. Next, we show that a system using PCC stimulation to modulate 

hippocampal gamma power is controllable in 100% of subjects as measured by computing 

the rank of the controllability matrix [23]. We then describe a simulation framework for the 

PCC–hippocampal system constructed using Simulink.

II. Materials and Methods

A. Participants

A total of 18 participants (ages 20–60, 9 female) with medication-resistant epilepsy who 

underwent stereo-electroencephalography surgery with the goal of identifying their ictal 

onset region(s) participated in the study. Participants came from our epilepsy surgery 

program across a time of span of 4 years. Only patients who had intracranial electrodes 

placed within the posterior cingulate were included in the study. The research protocol was 

approved by the UT Southwestern Medical Center Institutional Review Board (082014–075 

on 08/2014), and each participant gave informed consent prior to data collection. Following 
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implantation, electrode localization was achieved by co-registration of the post-operative 

computer tomography scans with pre-operative magnetic resonance images using the FLIRT 

software package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). The co-registered images 

were evaluated by a member of the neuroradiology team to determine the final electrode 

locations.

B. Experimental Task

Each subject participated in a verbal free-recall task in which they studied a list of 

words with the intention to commit the items to memory. The task was performed at 

bedside on a laptop. In the encoding phase, lists of 10 words were visually presented. 

Words were selected at random from a pool of high frequency English nouns (http://

memory.psych.uppen.edu/WordPools). Each word was presented for 1500 ms, followed by 

a blank inter-stimulus interval of 1000 ms. Stimulation to the PCC was applied during the 

entire duration of the encoding phase and was synchronized with the onset of the first word 

in each list. All items were encoded in the presence of stimulation. After presenting the 

word list, a post-encoding delay was followed for 20 seconds during which there was no 

stimulation. During this delay, each subject performs an arithmetic task to limit rehearsal. 

Math problems of the form A + B + C = ?? were given to each subject, with the values 

of A, B, and C set to random single digit integers. Subsequently, the recall period started 

(after 20 seconds of math) with an auditory tone of 60 Hz of a 300 millisecond duration. 

Subjects were instructed to recall as many words as possible from the previously presented 

word list within this 30 second recall period (memory retrieval). During this recall interval, 

there was no stimulation. Vocal responses were digitally recorded and parsed offline using 

Penn TotalRecall (http://memory.psych.upenn.edu/TotalRecall). Further details of the task 

are described previously in extensive published work [8], [19]. The experiment included 

stimulation and non-stimulation item lists. The non-stimulation lists were interleaved with 

stimulation lists in a pseudo random fashion. This allowed us to compare the effects of 

stimulation on gamma power and control for gamma power increases resulting from task-

induced gamma.

C. Electrical Stimulation

Stimulation was applied to the PCC with an amplitude of 2 mA and a frequency of 100 

Hz using the Grass S88 stimulator (Grass Technologies). Stimulation parameters were 

determined using accepted safety thresholds for DBS drawn from initial work [24] and by 

incorporating typical parameters used for DBS techniques [9], [11]. We used bipolar pairs 

of electrodes for stimulation with the deepest contact localized to the PCC. The critical 

safety threshold that is generally accepted is 30 μC/cm2/phase [25]. Here, we used biphasic 

matched-square wave pulses with a pulse width of 200 μs. The surface area of depth 

electrodes is 0.05 cm2. All of the 18 participants had their stimulation sites in the left PCC.

For this study, we used the first word presented from each list. Since these words were 

preceeded by the 50-second post-encoding delay and recall tasks, during which there was no 

stimulation, the stimulus amplitude took the form of a step function going from zero to 2 

mA at the onset of the presentation of the first word (encoding event). Each subject exhibited 

a total of 10 such encoding events. We chose to focus on these events since it allowed us to 
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compare gamma power level over a 2 second period prior to stimulation onset with gamma 

power during a 2 second interval after the onset of stimulation. This eliminated the effects of 

changes in baseline gamma over longer periods of time that can result from nonstationarity 

in the iEEG.

D. Electrocorticographic Recordings and Simulation Framework

Intracortical electroencephalogram (iEEG) signals were recorded via depth electrodes 

(contacts spaced 5–10 mm apart) using a Nihon-Kohden EEG system under a bipolar 

montage with the most medial white matter contact on individual electrodes as the reference 

(for hippocampal recordings, this was white matter in the adjacent subcortical temporal 

lobe). For each subject, ten 4-second trials corresponding to the first encoding event for 

each list were collected using a sampling interval of 0.002 seconds. Channels exhibiting 

highly nonphysiologic signals due to damage or misplacement were excluded prior to 

re-referencing. We utilized a bipolar referencing scheme to reduce the effect of stimulation 

artifact from affected electrodes modifying signal at other locations. A projection-based 60 

Hz notch filter was applied. The notch filter has zero phase distortion and narrow notch 

width [26]. In addition, a linear phase FIR notch filter having a notch width of 98–102 Hz 

was applied to filter out stimulus artifact at 100 Hz. One subject who showed significant 

nonstationarity in baseline gamma power during the recording epochs was removed from the 

study, leaving a total of 17 subjects.

Our simulation framework consists of a plant model that generates gamma power and 

a closed-loop LQI controller that attempts to drive measured gamma power towards a 

designated setpoint. The plant consists of a stimulator, the brain, iEEG measurement 

instrumentation, and a wavelet filter bank that estimates instantaneous RMS gamma power 

(see Figure 1). The input to the plant is the stimulus amplitude, and the output is estimated 

RMS gamma power. Intracranial EEG (iEEG) is passed through an analytic wavelet filter 

bank consisting of Morse wavelets with symmetry parameter equal to 3 and time-bandwidth 

product equal to 60 [27]. We used 10 wavelet filters covering three gamma frequency 

sub-bands of 30–50 Hz, 50–70Hz, and 70–90 Hz. Estimates of instantaneous RMS gamma 

power were obtained by taking the square root of the sum of the squared magnitudes of 

the wavelet filter outputs, as shown in Figure 1. Analytic wavelet filters were found to 

have greater sensitivity in detecting short-duration gamma oscillations compared to using 

a bandpass filter followed by conversion to analytic signal via the Hilbert transform. In 

our simulation framework, the plant is modeled using an ARX model as described in the 

following section.

E. Modeling Gamma Power in the Hippocampus

Rather than model iEEG, our approach seeks to directly model hippocampal gamma power. 

Modelling the full spectrum of iEEG would have necessitated arriving at a model that 

generates gamma power with the same statistical properties as our experimentally measured 

gamma power, and would have presented a more challenging modeling problem. The 

selection of a suitable model for hippocampal gamma power was based on the following 

criteria:
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1. The model should exhibit random fluctuations in instantaneous gamma power 

regardless of whether the brain is being stimulated or not.

2. The power spectral density (PSD) of the model output should closely match that 

of actual RMS gamma power.

3. The model should predict experimentally measured mean RMS gamma power 

during stimulation as well as in the absence of stimulation.

4. Inputs and outputs for the model should reflect physiologically relevant 

quantities, namely limiting the amplitude of stimulation to less than 9 mA in 

order to insure that the current will be physiologically safe. [25].

5. The model should be as simple as possible in order to minimize the 

computational complexity of the controller.

We modeled gamma power using an autoregressive model with exogenous input (ARX) 

model, given by,

x(t) = − ∑
k = 1

p
akx(t − k) + bDCuDC + bsus(t) + w(t) (1)

Here, x(t) represents the instantaneous RMS gamma power having units of μV at discrete-

time t. The exogenous input uDC is a constant that determines the mean value of the RMS 

gamma power when the stimulus current us(t) = 0. Both uDC and us(t) are currents having 

units of mA, corresponding to the amplitude of the stimulus current. This choice of units 

for the input is justified since the power in a periodic signal is proportional to its amplitude. 

For example for a sinusoidal signal Ac cos(ωct + θ), the root mean square (RMS) power 

is given by Ac/ 2, independently of the frequency ωc and phase θ. From the Fourier series 

representation of periodic signals and Parseval’s theorem, the result holds for any periodic 

signal. Therefore setting us(t) equal to the stimulus amplitude will proportionally affect the 

mean RMS gamma power. The quantity w(t) is a zero-mean Gaussian white noise process 

having variance σw2  and units of μV. This noise is not measurable and produces random 

fluctuations in the RMS gamma power. The ARX model parameters, ak, k = 1, . . ., p are 

dimensionless, while bDC and bS have units of resistance (m). All model parameters can be 

identified from experimental iEEG data for given values of uDC and us. We chose uDC = 

1 mA, this value is not critical since uDC will be scaled by bDC to provide the correct DC 

value for the gamma signal. An expression for the mean RMS gamma power predicted by 

the model can be established by ignoring the random signal w(t) and using the Final Value 

Theorem. The result is,

lim
t ∞

x(t) = bDCuDC + bsus
1 + ∑k = 1

p ak
≡ γ (2)

Equation (2) can be used to predict the mean RMS gamma power for any fixed amplitude 

stimulus current with amplitude us. In our model, us was the step function
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us(t) = 0, t = 1, …, N /2
2, t = N /2 + 1, …, N (3)

where N is assumed to be even. Using (2), the mean gamma power for no-stimulation is

γns ≡ bDC
1 + ∑k = 1

p ak
(4)

while for the stimulation case, it is given by

γ s ≡ bDC + 2bs
1 + ∑k = 1

p ak
(5)

Using well known relationships between the power spectral density (PSD) of the input and 

output of a linear time-invariant system, we can arrive at an expression for the PSD of our 

ARX model:

Pxx(f) = σw2 + 4bs
2/ 2πf /Fs

2

1 + ∑k = 1
p ake−j2πfk/Fs 2 (6)

where f is continuous-time frequency in Hz and Fs is the sampling frequency in Hz [28]. We 

will use this expression to compare the theoretical PSD of our model with the estimated PSD 

of experimentally measured instantaneous gamma power.

F. Identification of ARX Model

The ARX model parameters can be estimated with a least squares linear prediction approach 

using only the ARX data samples x(t), and the exogenous inputs, uDC, us(t), t = 1, . . ., N. 

This approach seeks to minimize the quantity

ϵpred = ∑
t = p + 1

N
e(t)2

(7)

over the ARX model parameters, ak, k = 1, . . ., p, bDC, and bs, where the prediction errors 

are given by

e(t) = x(t) − ∑
k = 1

p
akx(t − k) − bDCuDC − bsus(t) (8)

with t = p + 1, . . ., N. In matrix notation, (8) represents an overdetermined system of 

equations,

Cv ≈ d (9)

with
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C =

x(p) ⋯ x(1) uDC us(p + 1)
x(p + 1) ⋯ x(2) uDC us(p + 2)

⋮ ⋱ ⋮ ⋮ ⋮
x(N − 1) ⋯ x(N − p) uDC us(N − p)

(10)

d = [x(p + 1)x(p +·2)· · ·x(N)]T and the ARX parameter vector v = [a1 a2· · · ap bDC 

bs]T. It is well known that these least squares equations have a unique solution provided 

that the matrix C has full column rank [29]. This is discussed in detail in Section VI. 

The least squares solution to (9) is given by v* = CTC −1CTd, although in practice, it is 

more computationally efficient and accurate to compute a QR decomposition of C [30]. A 

commonly used quality metric for ARX models is the minimum mean-squared prediction 

error, which can be estimated using the squared norm of the minimum prediction error 

vector [31]

ϵpred* = 1
N Cv* − d 2

(11)

where Cv* is the optimal least squares prediction of the values in d and ∥·∥ is the vector 

2-norm. A normalized measure which takes into account the variance of x(t) is the “fit 

percentage”, given by

FitPerc = 100 1 −
ϵpred*

d − μd
(12)

where μd is the sample mean of the data vector d [32]. Note that a low mean squared 

prediction error leads to a fit percentage close to 100%. In Section VI-C we demonstrate that 

the linear prediction approach to identifying the parameters of our ARX model gives good 

results.

G. State-Space Model

Our controller requires that the model be in state-space form, given by

xt + 1 = Axt + But + Gw(t)
y t = Cxt + Dut + v t (13)

where xt is the system state vector at discrete-time t, ut = [uDC us]T and yt are scalar input 

and measurements, respectively, and w(t), and v(t) are the (scalar) system disturbance and 

observation noise signals, respectively. The dimensions of these vectors, as well as that of 

matrices A, B, C, D, and G, depend on the state-space model. The ARX model can be 

readily implemented using a state-space model. In our case, the state vector consists of 

p consecutive samples of the RMS gamma power signal, xt = [x(t) x(t − 1) ··· x(t − p + 

1)]T. Both the observation y(t) = x(t) and the system disturbance w(t) are scalar quantities. 

The observation noise v(t) accounts for measurement noise and modeling uncertainties. 

Correspondingly, in order for (13) to agree with (1), we must have:
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A =

−a1 −a2 ⋯ −ap − 1 −ap
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

B =

bDC bs
0 0
⋮ ⋮
0 0

(14)

G = [1 0 ··· 0]T, C = [1 0 ··· 0], and D = 0. The choice of an ARX model has an important 

advantage compared to a general linear state-space model (LSSM). Since the state vector 

consists of consecutive samples of the RMS gamma power, there is no need to estimate the 

state vector using a Kalman filter.

H. LQI Servo-Controller

When stimulating to control gamma power, we are faced with two competing goals: 

to bring gamma power to some predetermined setpoint r as quickly as possible while 

minimizing the amount of stimulus energy delivered to the patient. These conflicting aims 

lend themselves to employing linear quadratic integral (LQI) control [33]. The cost function 

for our controller takes the form:

J = ∑
t = 0

∞
ztTQzt + Rus(t)2

(15)

where zt = xtT ei(t)
T , and

ei(t) = Ts ∑
k = 0

t
r − y(t) (16)

is the discrete-time integration of the difference between the gamma power setpoint r and 

the observed gamma power y(t). The user sets the parameters Q and R, in order to tune 

the controller’s performance. The parameter Q adjusts the rate at which gamma power 

approaches the setpoint, while the parameter R determines the amount of stimulus energy 

delivered to the patient via the stimulus amplitude us(t). This optimal control problem 

has a well-known solution, the cost function in (15) is minimized using the control law 

us t = − Kzt, where K is the solution to an algebraic Ricatti equation that depends on the 

state-space model A, B, C, D, G. The controller takes the buffered plant output as the 

state vector xt, which after augmenting with the integrated setpoint error ei(t), is multiplied 

by the gain vector −K to determine the stimulation current amplitude. The resulting LQI 

servo-controller is shown in Fig. 2. In practice, the optimal set point can be modified 

based on subject-level empirical observations. We assigned ‘guardrails’ to the maximum 

stimulation amplitude delivered by the Blackrock device with a maximum of 9 mA to reflect 

safety requirements; this kept stimulation well-within the approximately 25 μC per cm2 

employed in clinical systems [25], [34].
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III. Results

A. Prediction of Mean RMS Gamma Power Levels With ARX Models

The Matlab “arx” function was then used to estimate ARX models for each of the 15 

subjects who experienced RMS gamma power increases, based on the 10 trials where the 

stimulus was a step function as described in Section II-C. We used the exogenous inputs 

given by uDC = 1 mA and us(t) given by (3). The ARX models derived for each trial 

were then averaged to form a composite ARX model for each subject. The mean squared 

prediction error (ϵpred* ) and fit percentage (FitPerc) quality metrics were computed for p 

= 1, . . ., 20, and are shown in Fig. 3. To select a model order, we concluded that p = 

6 offered a reasonable trade-off between mean-squared prediction error, fit percentage, 

and computational complexity. At p = 6 all but one subject had mean-squared prediction 

error values lower than 10−6. Moreover, fit percentage approached 100% for model orders 

satisfying p ≥ 4. In order to check that these results were not due to over-training, we 

performed 10-fold cross validation, by computing an ARX model based on 9 of 10 trials 

and checking the ability of the model to predict the data in the 10th trial, then averaging 

over all test trials. There was virtually no change in the model quality metrics. The mean 

10-fold cross validation fit percentage was 99.9930% averaged over all subjects, compared 

to 99.9931% when using the model for the test trial.

Given the results of the previous section, we conclude that the ARX model is adequate for 

instantaneous RMS gamma power. Next we compared the model predictions of mean RMS 

gamma power for the no-stimulus and stimulus intervals with actual quantities. The results 

are shown in Fig. 4 and show good agreement between experimental and model-predicted 

mean RMS gamma power levels for both stimulation and non-stimulation conditions.

Another goal was that our model should closely match the power spectral density (PSD) 

of instantaneous RMS gamma power. For each subject, we computed the periodogram of 

each of the 10 trials (using a N = 2000-sample Hanning window) and averaged them. The 

averaged periodograms were then compared to the theoretical power spectral density for the 

identified ARX model (see (6)). Typical results for several subjects are shown in Figure 6. 

From around 0–100 Hz, there is a fairly close match between the periodogram estimate of 

instantaneous RMS gamma power PSD and the theoretical PSD for the ARX model.

B. Aggregate Impact of Stimulation on RMS Gamma Power

For each of the 17 subjects, ten 4-second trials were collected using a sampling interval of 

0.002 seconds. Henceforth, we will use actual time samples in seconds rather than integers 

to represent discrete time. Each trial can be represented as xk(t) where t = −2, −1.998, . . ., 

1.998 are time samples corresponding to a sampling interval of Δt = 0.002 seconds and k 
= 1, . . ., 10. Stimulation was applied at t = 0. The ensemble average of the trials was then 

computed as

x(t) = 1
10 ∑

k = 1

10
xk(t)
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An example of the data collected from a single subject is shown in Fig. 5. We compared 

RMS gamma power levels over a 2-second interval prior to stimulation onset with RMS 

gamma power over the 2-second interval immediately after stimulation onset. This reduced 

the possibility that long-term baseline drift in mean RMS gamma power levels affected our 

results. No-stimulation and stimulation RMS gamma power was compared two different 

ways. First, for each trial, we tested the null hypothesis that the mean of the no-stimulation 

data xk(t), t = −2, . . ., −0.002 was equal to that of the stimulation data, xk(t), t = 0, . . ., 

1.998, k = 1, . . ., 10. A single-tailed t-test was used to test the null hypothesis for each 

of the 10 trials. The percentage of trials for which the null hypothesis was rejected at the 

0.05 significance level (implying stimulation RMS gamma power levels are greater than 

no-stimulation levels) is shown in Fig. 7a. The second comparison was similar but rather 

than testing individual trials, we compared the mean of the no-stimulation ensemble average 

data, x(t), t = −2, . . ., −0.002 with the mean of the stimulation ensemble average data, x(t), 
t = 0, . . ., 1.998 using a single-tailed t-test. Fourteen of 17 subjects showed significant 

increases in mean RMS gamma power. Figure 7b shows the normalized increase in mean 

RMS gamma power levels,

Δγ% =
xs − xns

xns
× 100%

where

xns ≡ 1
1000 ∑

t = − 2

−0.002
x(t), xs ≡ 1

1000 ∑
t = 0

1.998
x(t)

In comparable no-stimulus experiments with the same subjects, only 8 of the 14 subjects 

showed significant RMS gamma power increases. The mean of Δγ% was 7.8% during 

stimulation versus 2.8% during comparable no-stimulation trials, a significant difference 

(2-sided t-test, p = 0.05). This suggests that stimulation is likely to increase gamma power 

beyond the levels that would be expected from performing free-recall memory tasks alone.

C. Controller Performance in Simulated System

We implemented an LQI servo-controller in Simulink using a sampling interval of 2 ms and 

a simulation time of 4 seconds ranging from t = −2 s to +2 s [35]. The parameters in the LQI 

cost function (15) were set to

Q =
0.005I6 06

06
T 100

, R = 1 (17)

where I6 is the 6 × 6 identity matrix and 06 is a 6 × 1 zero vector. The controller was 

started at t = 0 seconds. For each subject, the parameters for the LQI controller were dervied 

from the mean ARX parameters over all ten trials. The RMS gamma power setpoint was 

adjusted in order to keep the stimulation amplitudes under 9 mA, which, as discussed above, 

is within the safety limits for intracranial SEEG electrodes. Figure 8 shows the mean and 
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standard deviation of RMS gamma power over 100 independent trials for two subjects. 

Figure 9 shows the normalized RMS gamma power increase for closed-loop and open 

loop-conditions for the 15 subjects who exhibited open-loop gamma power increases. The 

mean open-loop RMS gamma power increase for these subjects was 10.5%, as determined 

directly from iEEG, whereas for the closed loop LQI control simulations, the mean RMS 

gamma power increase was 20.8%. Figure 10 shows the simulated closed-loop RMS gamma 

power for each subject versus the desired setpoint. The normalized error was around −3% 

averaged over all subjects and was likely the result of stimulation being limited to 9 mA 

while the controller needed additional current to reach the setpoint.

IV. Discussion

We created an LQI servo-control system developed from open-loop human brain 

stimulation data targeting the posterior cingulate cortex [8] with measured responses in 

the hippocampus. The larger goal of such a system is to improve memory performance in 

humans. The use of the PCC as a target region for neuromodulation rests in part on the 

ability to see predictable effects on RMS gamma power in the presence of stimulation, 

as suggested in Figure 7, as well as established anatomical connectivity in humans [36]. 

Certainly, it remains to be shown that a strategy targeting hippocampal gamma oscillations 

can improve memory performance across a large number of subjects. We intend to 

investigate the specific features of such as a system in subsequent experimentation. One 

option would be to identify narrow gamma frequency ranges that most strongly predict 

encoding success for an individual recording location, and then to model the impact of 

different stimulation frequencies on this signal. Such an approach would require varying 

the stimulation parameters used in system identification, as discussed below, but may 

represent a more efficient method for parameter identification as compared to the grid search 

approach used in existing closed loop systems for memory modulation [12]. We also note 

that we elected to focus on modulation of gamma rather than theta oscillatory activity. In 

rodents, restoration of pharmacologically or anatomically reduced theta activity is capable 

of restoring memory function [37]. However, human theta oscillations exhibit a greater 

diversity across a broad 2–10 Hz frequency range, and not all subjects exhibit persistent 

theta frequency power increases that predict successful encoding [9], [38], [39]. Targeting 

memory-relevant theta activity remains an active area of investigation; adjustment of 

PCC–applied stimulation parameters may be an effective approach given strong functional 

connectivity between the PCC and hippocampus during episodic memory processing [36], 

[40].

We based our system identification parameters on brain stimulation data across 17 

participants. In previous work, we established the safety of stimulation of the posterior 

cingulate cortex applied for a relatively long period of time (over 20 seconds), a distinct 

feature of our underlying data [8]. Moreover, focusing on hippocampal response to PCC 

stimulation permits relatively artifact-free recordings for modeling. Also, these underlying 

data are collected while individuals are engaged in memory behavior, which is a distinct 

advantage compared to approaches in which stimulation parameters are selected when the 

patients are at rest, or when stimulation is applied for a limited number of memory items 

[41]. However, our modeling suggests we can achieve reliable control of RMS gamma 
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power at physiologically safe stimulus currents in in 15 of 17 subjects although some 

subjects only experienced modest increases in RMS gamma power with stimulation. The 

increase in mean RMS gamma power under closed loop control ultimately depends on the 

increase in mean RMS gamma power achievable under open-loop stimulation. This can be 

seen in Figure 11. The goal of the LQI controller is to arrive at some desired setpoint, 

as quickly as possible while minimizing the energy delivered to the patient. Open loop 

stimulation would require extensive trial and error to reach a desired gamma power setpoint. 

The closed loop approach makes it possible to reach a setpoint with considerably less effort. 

However our controller design cannot inherently generate higher gamma power than that 

which would be available via open loop stimulation.

In our proposed system, we decided to use an ARX model to characterize the effect of brain 

stimulation on neural activity. A linear model will not replicate the quadratically nonlinear 

nature of RMS gamma power, i.e., the model output can sometimes be negative, and the 

distribution of our model will be symmetric rather than skewed as would be expected 

from a quadratically nonlinear model. On the other hand, as detailed by Yang and others, 

linear models offer several advantages for design of a controlled system [18]. A significant 

disadvantage over nonlinear models is their complexity and computational burden, which 

hinders the ability to design powerful real-time closed-loop controllers. Using a linear 

ARX model, we are able to implement a robust state-space based neuromodulator while 

eliminating the need for a state estimator. These state-space based linear models have been 

successfully applied to complex dynamical brain systems for underlying surface EEG [42], 

magnetoencephalography [43], and local field potential data [44].

Improving the generalizability of our system will require that we establish its capabilities 

across a range of frequencies and that we understand how modulation of gamma power (for 

example) impacts other frequency ranges. Predictions of impact on non-gamma oscillations 

can be achieved with additional empirical data possibly combined with an improved plant 

model. More generally, regarding the goal of improving memory, the relative merits of a 

control system built on complex, multivariate brain signals versus a single (well-established) 

biomarker such as hippocampal gamma power remain a clear target of subsequent empirical 

investigation.

V. Conclusion

The ability to achieve closed loop control of hippocampal gamma band power would 

impact the emerging field of neuromodulation to restore memory function. Our modeling 

data suggests that using the posterior cingulate cortex as a target for stimulation may 

be a propitious strategy. Our system identification schema utilizes previously obtained 

open-loop data to create a linear system model that describes the input-output relationship 

between stimulation to the PCC and neural activity in the hippocampus. Using an LQI servo 

controller designed based on our model, we were able to achieve control of hippocampal 

RMS gamma power, our biomarker for memory, in all patients on physiologically realistic 

time scales and at safe levels. We believe this strategy offers a promising approach for the 

neuromodulation of memory.
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VI. Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simulation framework for control of RMS gamma power.
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Fig. 2. 
Linear quadratic integral servo-controller.
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Fig. 3. 
Model quality metrics for all subjects.
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Fig. 4. 
Mean RMS gamma power level predictions by ARX model.
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Fig. 5. 
Instantaneous RMS gamma power trials, x1 (t), . . ., x10(t) and their ensemble average x(t). 
The stimulation signal amplitude us(t) is a 2 mA step function.
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Fig. 6. 
Comparison of averaged periodogram of instantaneous RMS gamma power (experimental) 

with theoretical power spectral density of identified ARX models, as given by (6) with p = 6.
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Fig. 7. 
Impact of stimulation on mean gamma power.

Davila et al. Page 23

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
LQI controller simulations with control signal starting at t = 0 s for several subjects, showing 

mean and standard deviations over 100 independent trials.
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Fig. 9. 
Percent increase in RMS gamma power (Δγ%, see (17)) for open-loop (based on iEEG data) 

and closed loop conditions. The closed-loop results are based on simulated LQI control and 

had a mean of 22.8% across all subjects compared to 11.8% for the open loop condition.
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Fig. 10. 
Simulated closed-loop RMS gamma power versus desired RMS gamma power setpoint.
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Fig. 11. 
Percent RMS gamma power increases (Δγ%, see Supplementary Material) for open-loop vs 

closed-loop stimulation. The dashed line has a slope of one. Larger open loop RMS gamma 

power increases predict larger increases under closed-loop stimulation.
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Fig. 12. 
Model quality metrics for identifying the ARX parameters for two different signals: an ARX 

process of order 6, xARX(t), and a moving average (MA) process of order 29, xMA(t) having 

similar spectral features.
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