
Vol.:(0123456789)1 3

Oecologia (2021) 196:53–63 
https://doi.org/10.1007/s00442-021-04913-y

PHYSIOLOGICAL ECOLOGY – ORIGINAL RESEARCH

Fatty acid accumulation in feeding types of a natural freshwater fish 
population

Kristin Scharnweber1,2   · Fernando Chaguaceda1,3 · Peter Eklöv1

Received: 7 May 2020 / Accepted: 30 March 2021 / Published online: 25 April 2021 
© The Author(s) 2021

Abstract
Fatty acids are widely used to study trophic interactions in food web assemblages. Generally, it is assumed that there is a 
very small modification of fatty acids from one trophic step to another, making them suitable as trophic biomarkers. How-
ever, recent literature provides evidence that many fishes possess genes encoding enzymes with a role in bioconversion, 
thus the capability for bioconversion might be more widespread than previously assumed. Nonetheless, empirical evidence 
for biosynthesis occurring in natural populations remains scarce. In this study, we investigated different feeding types of 
perch (Perca fluviatilis) that are specialized on specific resources with different levels of highly unsaturated fatty acids 
(HUFAs), and analyzed the change between HUFA proportions in perch muscle tissue compared to their resources. Perch 
showed matching levels to their resources for EPA, but ARA and especially DHA were accumulated. Compound-specific 
stable isotope analyses helped us to identify the origin of HUFA carbon. Our results suggest that perch obtain a substantial 
amount of DHA via bioconversion when feeding on DHA-poor benthic resources. Thus, our data indicate the capability of 
bioconversion of HUFAs in a natural freshwater fish population.

Keywords  Fatty acid conversion · Compound-specific stable isotope analysis · Docosahexaenoic acid · Bioconversion · 
Trophic upgrading

Introduction

Besides the important macronutrients (i.e. carbon, nitrogen, 
and phosphorus), consumers are highly reliant on complex 
organic compounds, such as polyunsaturated fatty acids 
(PUFAs). These biochemical compounds are parts of lipids 
and play major functional and structural roles in cell mem-
branes, and many other physiological processes, for instance, 
in hormone release, disease susceptibility and immune 
responses (Parrish 2009). Highly unsaturated fatty acids 

(HUFAs) with 20 or more carbon atoms from the n-3 or 
n-6 family [for example, arachidonic acid (ARA), 20:4n-6; 
eicosapentaenoic acid (EPA), 20:5n-3; or docosahexaenoic 
acid (DHA), 22:6n-3] are especially important in organism 
physiology. They have been linked to increased production 
in consumers (Kainz et al. 2004; Twining et al. 2016). Fur-
thermore, evidence is accumulating that individuals feeding 
on a HUFA-rich diet have an increased fitness, for instance, a 
higher reproductive output (Twining et al. 2018) or an incre-
ment of immune functions (Fritz et al. 2017), compared to 
their conspecifics feeding on a HUFA-poor diet. In contrast, 
dietary HUFA limitation can result in severe detrimental 
effects, including decreased growth rate and impaired sen-
sory abilities (Brenna et al. 2014; Twining et al. 2016).

Generally, we find that dietary fatty acid composition 
is reflected in the consumer’s tissue (Iverson 2009; Tocher 
2003). This has led to the development of fatty acids being 
used as trophic biomarkers to illustrate trophic relation-
ships (Napolitano 1999; Scharnweber et al. 2016). There-
fore, many ecological studies of fatty acids assume that the 
PUFA content in consumers remains unchanged compared 
to the one of their resources. However, this view ignores 
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the ability of consumer to modify fatty acids via internal 
transformation, such as selective retention or mobilization, 
and bioconversion, by elongating and/or desaturating shorter 
chained fatty acid precursors into HUFAs (Bell et al. 2009; 
Twining et al. 2016). To understand the ability and the extent 
of consumers to modify the dietary fatty acids is of critical 
importance for quantitative and qualitative approaches of 
fatty acids in ecological research (Galloway et al. 2020). 
The major pathways for the conversion of HUFAs (i.e. the 
derivation of these compounds from shorter chain precur-
sors) occur either from α-linolenic acid (ALA; 18:3n-3) via 
EPA to DHA or from Linoleic acid (LIN; 18:2n-6) to ARA 
(Bell et al. 2009; Monroig et al. 2013). Such trophic upgrad-
ing was shown for several fish species (Monroig et al. 2013). 
Generally, freshwater fish species have a higher ability to 
transform dietary precursors to HUFAs compared to marine 
species to compensate for the low availability and abundance 
of n-3 HUFAs, especially DHA in freshwater habitats (Sar-
gent et al. 1999). For example, Ishikawa et al. (2019) showed 
a relationship between the duplication of the key enzyme 
Fads2 catalyzing the desaturation in DHA biosynthesis 
and the colonization of freshwater habitats in several ray-
finned fish species. This study reported the molecular basis 
of the enzyme activities, thus, the presence and expression 
of candidate genes responsible for the syntheses of the key 
enzymes necessary for trophic upgrading of HUFAs. How-
ever, the efficiency and the extent of these routes in a natural 
population is unknown. Evidence of HUFA bioconversion in 
fish exist primarily from feeding trials in aquaculture (e.g. 
Katan et al. 2019; Murray et al. 2014; Xu et al. 2002), while 
studies on the capability and ubiquity of bioconversion under 
natural conditions are scarce.

In previous studies, we found that Eurasian perch (Perca 
fluviatilis) specializing on benthic invertebrates, a resource 
low in DHA, showed similar proportions of DHA in muscle 
tissue compared to perch feeding primarily on zooplankton 
of high-DHA content (Scharnweber et al. 2016). Along the 
same line, Chaguaceda et al. (2020) found that 72% of the 
fatty acid variation in perch remained unexplained by diet, 
suggesting that other factors, for example, bioconversion 
may also affect the fatty acid composition.

One major challenge is to understand the effects of vari-
able levels of HUFAs for the individual diet composition in 
natural omnivorous populations. Stable isotope analyses in 
conjunction with isotope mixing models provide an excel-
lent tool for this purpose, as the values of δ13C and δ15N 
of the consumers in comparison to their potential prey can 
help to characterize the specific composition of the diet (e.g. 
Boecklen et al. 2011).

Here, we tested the relationship between different 
resource HUFA supplies occurring on the natural scale and 
the individual specialization in the common fish predator 
perch. Individual specialization in perch is well-studied and 

in many Swedish lakes, different feeding types of perch exist 
with strong individual preferences for zooplankton, benthic 
invertebrates or fish resources, followed by morphological 
adaptions (e.g. Scharnweber et al. 2016; Svanbäck et al. 
2002, 2003; Svanbäck et al. 2015). Further, we compared the 
levels of HUFAs of the different feeding types with the ones 
of their resources by extending a previous dataset on fatty 
acid variation of specialized perch in Lake Erken, Sweden 
(Chaguaceda et al. 2020). Thus, we estimated the accumula-
tion of fatty acids from resources to consumers sensu Kainz 
et al. (2004). We focused on three specific HUFAs that are of 
high physiological importance: ARA, EPA, and DHA, and 
investigated the degree of internal bioconversion in the dif-
ferent feeding types. While perch individuals usually show a 
preference for specific dietary items, they still feed on a mix 
of resources. For example, perch assigned as benthic feed-
ers, ingesting primarily low-quality invertebrates, still have 
a variable degree of high-quality zooplankton in their diet 
(Scharnweber et al. 2016; Svanbäck et al. 2015). The ques-
tion arises whether this small amount would be sufficient 
to fulfill HUFA requirements, or whether HUFAs need to 
be converted from shorter chain PUFAs. To obtain specific 
information on the origin of HUFAs, compound-specific 
isotopic analyses (CSIA) provides a valuable tool (Twining 
et al. 2020). In previous studies, this approach helped to 
trace whether specific HUFAs have a common or distinct 
carbon sources (Chamberlain et al. 2004; Katan et al. 2019; 
Koussoroplis et al. 2010). In bulk stable isotope samples, a 
general difference between benthic and pelagic primary pro-
ducers exist, with benthic producers being enriched in 13C, 
leading to more positive values (France 1995). Potentially, 
this pattern will also be visible in the δ13C of HUFAs, and 
could help to identify the carbon habitat of origin as well as 
giving indications of bioconversion.

The objectives of our study were twofold. First, we inves-
tigated the accumulation of different physiologically impor-
tant HUFAs in perch feeding types, i.e. we compared the 
realized HUFA levels in perch muscle tissue to the ones that 
are theoretically assumed from diet. We did this by obtain-
ing diet contributions from stable isotope mixing models to 
detect whether there is a match or mismatch in the propor-
tions of HUFAs between resources and consumers. Second, 
we applied CSIA to find indications for bioconversion in 
perch. We hypothesize that feeding types with a low-HUFA 
diet would exceed the theoretically assumed HUFA levels 
from diet, but δ13C of the HUFA carbon would still reflect 
the carbon in resources from the specific feeding habitat.
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Methods

In August 2015, we sampled perch from Lake Erken 
(59°50′09.6″N, 18°37′52.3″E) in Central Sweden which has 
been extensively studied with respect to dietary specializa-
tion (e.g. Chaguaceda et al. 2020; Marklund et al. 2019; 
Svanbäck et al. 2003). Perch and potential prey fish (ruffe, 
Gymnocephalus cernua and roach, Rutilus rutilus) were 
caught using multimesh gill nets (littoral nets: 30 × 1.5 m; 
pelagic nets: 27.5 × 6 m) that were set overnight, either in the 
shallow near-shore littoral zone, or the open-water pelagic 
zone. After measuring and weighing, the fish were frozen 
to − 20 °C. In the lab at Uppsala University, they were par-
tially thawed and fish muscle tissue samples were taken for 
stable isotope analyses (δ13C and δ15N), fatty acid analyses, 
and compound-specific stable isotope analyses of fatty acids.

Zooplankton and macroinvertebrate resource samples 
were collected during the fishing campaign to be used for 
stable isotope analysis. Zooplankton samples were obtained 
by hauling a 100 µm net through the whole water column 
to obtain sufficient biomass, whereas macroinvertebrates 
were caught with a sweep net and picked from stones and 
plants in the littoral zone. After allowing for gut clearance 
and separation into the major taxonomic groups, they were, 
together with the fish stable isotope samples, dried in an 
oven for 24 h at 60 °C.

Values for proportions of HUFAs in perch invertebrate 
resources (i.e. Cladocera, Copepoda, and benthic macroin-
vertebrates, consisting of Chironomidae, Trichoptera, Isop-
oda, and Ephemeroptera) were taken from a previous study 
that collected perch resources in Lake Erken and two other 
similar lakes in Central Sweden (Scharnweber et al. 2016). 
We assume that these samples reflect the quality of food 
sources for the fishes in this study.

Sample analyses

Stable isotope, mixing model, and clustering analyses

Stable isotope analyses were conducted as described in 
Chaguaceda et al. (2020). Samples were ground using a 
mortar and pestle and approximately 1 mg was weighed 
and transferred into tin capsules that were sent to the Sta-
ble Isotope Facility at the University of California, Davis, 
California, USA for analyses of δ13C and δ15N using a PDZ 
Europa ANCA-GSL elemental analyzer coupled to a PDZ 
Europa 20–20 isotope ratio mass spectrometer (Sercon, 
Cheshire, UK).

Feeding types of perch were assigned based on the dietary 
contributions from Bayesian mixing models conducted in 
MixSIAR (version 3.1.10) (Stock et al. 2018) in R (R Core 
Team 2018). Prior to conducting mixing models, the isotope 

dataset was divided into perch relying on pelagic and benthic 
pathways, respectively, using k-means clustering (Clarke 
et al. 2014). Mixing models were calculated separately for 
each of the clusters and the structure was hierarchical with 
perch individual nested within age, a general prior distri-
bution and process error structure. Age data were obtained 
from opercular bones (Le Cren 1947) and length-at-age 
was assessed from regressions of total length and opercular 
diameter for littoral and pelagic perch separately (Francis 
1990).

Copepoda, Cladocera, benthic macroinvertebrates (con-
sisting of Chironomidae, Gastropoda, and Isopoda), and prey 
fish (ruffe and roach) were used as endmembers in the mix-
ing models for all 113 perch individuals and trophic fraction-
ation factor was set at 0.4 ± 1.3‰ for δ13C and 3.4 ± 1.0‰ 
for δ15N (Post 2002). Pelagic contribution was calculated 
by summing the contributions of Copepoda and Cladocera.

For obtaining feeding types based on diet and habitat, 
k-means clustering was conducted on mixing model outputs, 
resulting in five feeding types of perch: littoral benthivorous, 
littoral planktivorous, pelagic benthivorous, pelagic plank-
tivorous, and littoral piscivorous perch (Online Resource 1).

Fatty acid analyses

We analyzed fatty acids following the approach described 
in Scharnweber et al. (2016) and Chaguaceda et al. (2020). 
At Uppsala University, lipids were extracted from muscle 
tissue of fish in a solution of chloroform/methanol (2:1 by 
volume), and 0.88% potassium chloride in water was added 
to remove the non-lipids. Extraction procedure was repeated 
and sonification (10 min) was used to enhance extraction. 
Extracts were concentrated under a nitrogen stream, dis-
solved in hexane and transmethylated at 90 °C for 90 min. 
using 1% H2SO4 in methanol as a catalyst. Fatty acid methyl 
esters (FAMEs) were analyzed using an Agilent 6890N 
Gas Chromatographer with a Agilent MSD 5977A single 
quadrupole mass selective detector (Agilent Technologies, 
Santa Clara, USA) equipped with a DB-23 column (length 
30 m, ID 0.25 mm, film thickness 0.25 μm; Agilent). Sam-
ples were injected in split mode with helium as a carrier gas 
with an average flow rate of 0.8 ml min−1 (initial tempera-
ture 180 °C, increase by 2 °C min–1 until 210 °C with 2 min 
hold). FAME peaks were identified using retention times 
and mass spectra, and a heneicosanoic acid (Nu‐Chek Prep, 
Elysian, Minnesota, USA) was used as an internal standard. 
Fatty acid concentrations were calculated using the calibra-
tion curves based on the standard solutions of known lipid 
mixtures (Nu‐Chek Prep). We identified 38 fatty acids but in 
this study focused on ARA, EPA, and DHA only.
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CSIA

δ13C of perch fatty acid methyl esters (FAMEs) were ana-
lyzed using a Trace 1310 GC gas chromatograph, equipped 
with a BPX-70 column (60 m, ID 0.25 mm, film thickness 
0.25 μm) (Trajan Scientific Australia, Ringwood, Australia) 
coupled to a Thermo MAT 253 IRMS through a GC IsoLink 
II combustion interface (Thermo Fisher Scientific, Waltham, 
MA, USA).

The samples were introduced with a splitless injection 
at an initial temperature of 250 °C for 1 min (constant flow 
rate 1.4 mL min−1), and the program was set for 80 °C (hold 
1 min), then increasing by 3 °C min−1 until reaching 210 °C 
(hold 5 min), finally increasing by 3 °C min−1 until reaching 
245 °C (hold 5 min). δ13C values were corrected using refer-
ence mixtures, composed of pure FAMEs of calibrated δ13C. 
The δ13C of individual HUFAs were calculated by correcting 
for methyl C atoms added during derivatization according 
to the formula:

where n is the number of C atoms in the HUFA, �13CFAME 
is the isotope ratio of the measured FAME and �13CMethanol 
is the isotopic ratio of the used methanol.

Statistical analyses

HUFA proportions of perch resources were compared. Thus, 
roach and ruffe collected in this study were taken as a proxy 
for resource quality of fish prey, while proportions of Clad-
ocera, Copepoda, and benthic invertebrates (Chironomidae, 
Trichoptera, Isopoda, and Ephemeroptera) were taken from 
Scharnweber et al. (2016). Differences in proportions of 
ARA, EPA, and DHA between the different resources were 
tested using a Kruskal–Wallis test with Bonferroni-adjusted 
Dunn’s pairwise comparisons.

Similar to the approach described by Hessen et al. (2006), 
we calculated accumulation factors for the perch individu-
als to compare the theoretical expected HUFA proportions 
(based on diet) with the realized proportions in perch muscle 
tissue. To obtain a proxy for the amount of HUFAs perch 
will receive by feeding on specific resources, we standard-
ized the average concentrations (measured as µg fatty acids 
mg DW−1) of ARA, EPA, and DHA in the perch resources 
to the total mass of fatty acids quantified, as recommended 
by Happel et al. (2017). Then we multiplied these obtained 
PUFA proportions by the average dietary proportions 
obtained from the MixSIAR models. Pelagic contributions 
consisted of a mixed diet of Cladocera and Copepoda. As 
these resources have very different HUFA contents, we 
weighted the contribution from both resources according to 

�
13CHUFA =

(n + 1 × �
13CFAME − 1 × �

13CMethanol)

n

,

average resource use values obtained from stomach content 
in Erken perch (Marklund et al. 2019). By comparing the 
accumulation factors in the different feeding types of perch, 
we were able to test if muscle tissue in perch would simply 
reflect the HUFA content of their resources. Any significant 
divergence from this hypothesized relationship would indi-
cate selective retention. If the accumulation factor would 
be 1, the HUFA proportions between resources and perch 
muscle tissue would match. Values above 1 would translate 
into higher proportions of HUFAs in perch muscle tissue 
than expected by the proportions found in their food, and 
would indicate accumulation and potentially bioconversion.

We tested if the accumulation factor for ARA, EPA, 
and DHA differs between the feeding types by applying a 
Kruskal–Wallis test with Bonferroni-adjusted Dunn’s pair-
wise comparisons.

Differences in HUFA δ13C between the feeding types 
were explored using a Kruskal–Wallis test with Bonferroni-
adjusted Dunn’s pairwise comparisons.

We used IBM SPSS (version 25) for frequentist statistics. 
The study was approved by the Uppsala Animal Ethic Com-
mittee with permit number: 267 C59/15.

Results

We base our study on 113 individuals of perch, of which 12 
were assigned as littoral benthivorous, 28 as littoral plank-
tivorous, 2 as pelagic benthivorous, 55 as pelagic plank-
tivorous, and 16 perch individuals were assigned as littoral 
piscivorous perch (Online Resource 1).

HUFA content of resources

In general, perch resources varied significantly in pro-
portions of ARA, (Kruskal–Wallis: H = 12.200, df = 3, 
P = 0.007), EPA (Kruskal–Wallis: H = 7.806, df = 3, 
P = 0.050), and DHA (Kruskal–Wallis: H = 40.878, df = 3, 
P > 0.001). Cladocera (average 7.1% ± 3.5% standard devi-
ation, SD) and fish resources (6.9% ± 0.7 SD) contained 
high proportions of ARA, whereas Copopoda (2.6% ± 0.8 
SD) were lower and invertebrates (5.5% ± 3.0 SD) showed 
a high variation in ARA (Fig. 1a). Pairwise comparisons 
depicted significant differences between ARA proportions 
of Copepoda and fish (Fig. 1a). Cladocera showed high-
est proportions of EPA (17.9% ± 6.9 SD), followed by fish 
(14.2% ± 1.0 SD), whereas invertebrate resources were char-
acterized by lower proportions (11.5% ± 3.8 SD) (Fig. 1b). 
However, Bonferroni-adjusted Dunn’s pairwise compari-
sons did not depict any significant difference. DHA pro-
portions were found highest in fish (22.2 ± 2.0% SD) and 
Copepoda (21.0 ± 7.3% SD), whereas Cladocera showed 
lower proportions (4.4 ± 4.1% SD), and invertebrates even 
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lower proportions 1% (0.2 ± 0.5% SD) (Fig. 1c). Pairwise 
comparisons in DHA proportions were significantly differ-
ent between invertebrates and fish, and invertebrates and 
Copepoda (Fig. 1c). These results are in-line with previous 
studies comparing differences between these taxa in natural 

populations (Lau et  al. 2012; Persson and Vrede 2006; 
Strandberg et al. 2015).

Fig. 1   Proportions of HUFAs 
in perch resources. Boxplots 
depict resource proportions for 
a ARA; b EPA; and c DHA of 
zooplankton [Cladocera (N = 3) 
and Copepoda (N = 3)), fish 
(N = 4), and benthic inverte-
brates (N = 14)]. Feeding types 
with the same letter are not 
significantly different (Bonfer-
roni-adjusted Dunn’s pairwise 
comparisons). Boxplots depict 
median, 25th and 75th percen-
tile, and whiskers extend to 
maximum and minimum values, 
except for outliers (> 1.5 times 
box height, represented by dots)
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Relationships between realized and theoretical 
HUFA proportions in perch

The accumulation factor of ARA showed significant dif-
ferences between the feeding types (Kruskal–Wallis: 
H = 34.16, df = 4, P < 0.001) and varied around an aver-
age of 1.48 (± 0.25 SD) (Fig. 2a). Factors were lowest in 

littoral planktivorous perch (1.30 ± 0.11 SD, significant 
differences to factors of pelagic planktivorous and piscivo-
rous perch) and highest in piscivorous (1.51 ± 0.28 SD) 
and pelagic planktivorous perch (1.60 ± 0.25 SD) (Fig. 2a).

Similarly, the accumulation factor of EPA differed 
significantly between the feeding types (Kruskal–Wal-
lis: H = 40.22, df = 4, P < 0.001) and varied closer to 1 

Fig. 2   Accumulation factors 
for the different feeding types 
in perch. Boxplot are depicted 
for a ARA; b EPA; c DHA 
in littoral benthivorous (LB), 
littoral planktivorous (LP), 
pelagic benthivorous (PB), 
pelagic planktivorous (PP), and 
littoral piscivorous perch (Pisc). 
Factors close to 1 (depicted by 
dashed line) indicate a match 
between the proportions of 
resources and perch muscle 
tissue, whereas factors above 1 
would be translated to higher 
proportions of HUFAs in perch 
muscle tissue than expected by 
the proportions found in their 
food, indicating accumula-
tion. Feeding types with the 
same letter are not significantly 
different (Bonferroni-adjusted 
Dunn’s pairwise comparisons). 
Boxplots depict median, 25th 
and 75th percentile, and whisk-
ers extend to maximum and 
minimum values, except for 
outliers (> 1.5 times box height, 
represented by dots)
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(1.18 ± 0.14 SD), indicating matching proportions between 
resources and perch. Factors were lowest in littoral plank-
tivorous perch (1.08 ± 0.06 SD) and piscivorous perch 
(1.12 ± 0.24 SD), and highest in littoral benthivorous perch 
(1.37 ± 0.14 SD) (Fig. 2b). Post hoc comparisons revealed 
significant differences of littoral benthivorous perch to all 
other feeding types.

Furthermore, the accumulation factors of DHA dif-
fered significantly between feeding types (Kruskal–Wallis: 

H = 53.62, df = 4, P < 0.001). However, for this HUFA, 
factors were greater than 1 (average 4.67 ± 1.20 SD), indi-
cating almost five times higher DHA proportions in mus-
cle tissue compared to the assumed proportions based on 
dietary contribution (Fig. 2c). Significant differences were 
found between the lowest factors of piscivorous perch 
(3.70 ± 0.57 SD) and the highest in littoral benthivorous 
perch (7.15 ± 1.56 SD) (Fig. 2c).

Fig. 3   HUFA δ13C of the dif-
ferent feeding types of perch. 
Boxplot are depicted for δ13C 
in a ARA; b EPA; c DHA in 
littoral benthivorous (LB), 
littoral planktivorous (LP), 
pelagic benthivorous (PB), 
pelagic planktivorous (PP), 
and littoral piscivorous perch 
(Pisc). Feeding types with the 
same letter are not significantly 
different (Bonferroni-adjusted 
Dunn’s pairwise comparisons). 
Boxplots depict median, 25th 
and 75th percentile, and whisk-
ers extend to maximum and 
minimum values, except for 
outliers (> 1.5 times box height, 
represented by dots)
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Bulk SIA of resources and CSIA of perch fatty acids

Bulk δ13C of pelagic zooplankton, consisting of Clad-
ocera and Copepoda was on average − 29.51 ± 1.63‰ SD. 
In contrast, δ13C of benthic invertebrates, consisting of 
Chironomidae, Gastropoda, and Isopoda, was on average 
− 22.35 ± 0.90‰ SD (Online Resource 1).

Kruskal–Wallis test of δ13C of all three HUFAs 
explored indicated significant differences between the 
feeding types (ARA: H = 47.238, df = 4, P < 0.001; EPA: 
H = 67.552, df = 4, P < 0.001; DHA: H = 57.653, df = 4, 
P < 0.001). For all three HUFAs, littoral planktivorous and 
pelagic planktivorous perch were significantly depleted in 
13C, whereas the other three feeding types showed similar 
signatures (Fig. 3).

Discussion

Our study suggests that HUFA levels in perch muscle 
reflected their composition in their diet with respect to 
EPA, but there was a mismatch between diet and consumer 
levels with respect to ARA and DHA. This pattern was 
particularly pronounced in DHA, where realized values 
of DHA in perch muscle tissue exceeded the theoretical 
values on average by a factor of five. Thus, our results 
are in-line with a recent meta-analysis of feeding stud-
ies in fish and aquatic invertebrates suggesting that DHA 
is  retained even when supplied in high levels (Jardine 
et al. 2020). Due to the important role of DHA in fish 
metabolism (e.g. Parrish 2009), this may not come as a 
surprise. DHA has very specific molecular functions and 
is particularly involved in fish reproduction (Izquierdo 
et al. 2001; Scharnweber et al. 2020; Tocher 2003). DHA 
may be obtained directly through resource consumption, 
but our study suggests that bioconversion might also be a 
relevant route to obtain sufficient amounts of this HUFA 
in freshwater fish.

Using CSIA to identify the origin of the carbon atoms 
used to build up HUFAs, we found indications that perch 
are capable of bioconverting fatty acids. Generally, perch 
individuals that were assigned to feeding on benthic 
resources were characterized by higher values of δ13C 
in their HUFAs (i.e. being enriched in 13C). In contrast, 
perch individuals assigned to feeding on pelagic resources 
showed lower values of δ13C in their HUFAs (i.e. being 
depleted in 13C). Thus, δ13C values of HUFAs in perch 
reflected the signatures of their respective resources. For 
example, DHA signatures of littoral benthivorous perch 
that feed on 13C-enriched benthic invertebrates were 
enriched in 13C, indicating littoral origin of the DHA 
carbon. Although benthic invertebrates show very low 
proportions of DHA, perch consumers have nonetheless 

DHA proportions similar to perch feeding on DHA-rich 
resources (Online Resource 2). Thus, our results suggest 
that perch can alter their HUFA levels by transforming 
from shorter chain precursors. This would be accom-
plished via bioconversion during internal transformations, 
where LIN serves as a precursor for ARA, while ALA 
serves as precursor for EPA that can further be trans-
formed into DHA (Bell et al. 2009).

When comparing the isotopic signatures of EPA and 
DHA, a general pattern of lower values in DHA becomes 
apparent. Irrespective of diet or habitat of perch, DHA sig-
natures were significantly more depleted compared to EPA 
signatures (Mann–Whitney U Test; P ≤ 0.001, average 
across all feeding types ± SD: EPA − 33.6 ± 2.2‰; DHA: 
− 34.6 ± 1.5‰). This can be explained by the preferential 
addition of the lighter 12C during biosynthesis (DeNiro 
et al. 1977, 1978). Little is known about fractionation fac-
tors of these processes. Fujibayashi et al. (2016) reported 
a trophic discrimination of -2.6 ‰ between dietary ALA 
and observed DHA signatures in the zebrafish (Danio 
rerio) during feeding trials, but variation might occur for 
different diets (Bec et al. 2011; Gladyshev et al. 2016). 
Nonetheless, modeling results from Bec et al. (2011) sug-
gested that if endmembers are substantially isotopically 
distinct (i.e. in the range of 10 ‰, which is applicable 
for our data), CSIA data are reliable to draw conclusions 
about trophic interactions and transfer pathways of biomol-
ecules. Certainly, discrimination factors for perch feeding 
types are needed to give precise estimates for the extent 
of HUFA bioconversion in this species. As an alternative 
explanation for the observed pattern of high-DHA pro-
portions in benthic perch, individuals could obtain some 
amount of their DHA from pelagic resources despite the 
minor contribution to the biomass production of the fish. 
Such process of selective retention has been described, 
e.g. for a species of mullet (Liza saliens) (Koussoroplis 
et al. 2010) and salmonids (Heissenberger et al. 2010). 
Furthermore, piscivorous perch could also obtain a sig-
nificant amount of their DHA from bioconversion occur-
ring at lower trophic levels, i.e. their fish prey. This could 
explain the rather similar signatures of benthivorous and 
piscivorous perch.

It is widely assumed that rates of trophic upgrading for 
HUFAs are low and most of the vast amount of HUFAs 
need to be acquired by dietary intake (Bell et al. 2009). 
However, the modeling attempt of Sawyer et al. (2016), 
estimated that the dominant uptake pathway for EPA in 
Yellow perch [Perca flavescens (Mitchill 1814)], a close 
relative to the Eurasian perch, would be ingestion, but up 
to 87% of the Yellow perch’s DHA would be obtained 
via internal conversion. Unfortunately, we cannot esti-
mate transformation rates from our data, and further 
experimental studies are needed to determine the specific 
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physiological processes involved to regulate HUFA levels 
in natural perch feeding types, but more generally also on 
the uptake and transfer of trophic biomarkers in organisms 
across the whole animal kingdom (Galloway et al. 2020).

In this study, we measured the proportions of HUFAs 
from muscle tissue only. However, fatty acids can be selec-
tively transferred and catabolized from different tissues 
and organs (Henderson et al. 1984; Schwalme et al. 1993; 
Tocher 2003). For example, gonadal development and 
overwintering are energy costly processes that lead to a 
mobilization from tissues, including muscles (Keva et al. 
2019; Muir et al. 2014). To fully understand the extent of 
internal regulation, fatty acid levels need to be estimated 
also from other important lipid storage tissue (e.g. gonads, 
liver, eyes, and brains), to obtain a full overview and bal-
ance of HUFA integration.

Due to the aforementioned uncertainties, our results may 
not be interpreted as direct empirical evidence of biocon-
version, but certainly, it is a strong indication for this pro-
cess. Previous studies have only considered the capability of 
freshwater fish species reared in aquaculture and when fed 
on rather artificial diet (Henrotte et al. 2011; Murray et al. 
2015; Xu et al. 2002), but to our knowledge, this study is the 
first report for this process occurring on the natural scale and 
for wild populations of fish.

Henrotte et al. (2011) showed that the bioconversion 
efficiency in perch in aquaculture depends on ontogeny, 
with juvenile fish being more efficient in transforming the 
ALA precursor into EPA and DHA. As DHA is required 
for growth, brain, and eye development (Tocher 2010), 
such high enzymatic efficiencies are especially beneficial 
to growth during early life stages. In this study, we did not 
test for age or ontogenetically linked HUFA level variations 
in perch. However, Chaguaceda et al. (2020) found ontoge-
netic processes, represented by changes in total length, to be 
responsible for about a third of the variation in overall fatty 
acid composition of 38 fatty acids analyzed. Similarly, Lane 
et al. (2011) observed a difference in fatty acid signatures 
by age in Atlantic herring [Clupea harengus (L.)]. During 
the life-history of a fish, the physiological requirements for 
a specific fatty acid change (Tocher 2010). For example, 
ARA and DHA are needed for the formation of gonads and 
a greater supply is needed at the onset of maturity (Tocher 
2003). Therefore, the predominant influence of ontogeny on 
the energetic requirement of an animal (Werner et al. 1984) 
may be highly influential also on the degree of internal trans-
formation of HUFA in natural populations of freshwater fish.

The different feeding types responded differently to the 
specific HUFA levels of the respective resource. For exam-
ple, perch individuals specialized on benthic resources 
that are generally low in DHA did not show corresponding 
lower proportions of DHA in their muscle tissue (Online 
Resource 2). Instead, they had the highest accumulation 

factor indicating higher proportions in muscle tissues than 
the ones found in their resources. This result contrasts to the 
findings of Happel et al. (2015) and Chavarie et al. (2016), 
who reported a clear association of higher DHA levels and 
pelagic feeding in Yellow Perch and Lake Trout, respec-
tively. Furthermore, while factors of ARA and DHA were 
larger than 1, factors of EPA were close to 1, indicating a 
close match between realized and theoretical assumed pro-
portions. Nonetheless, when investigating the factors of the 
specific feeding types, a striking mismatch became again 
apparent. While the factor for individuals feeding on benthic 
resources was well above 1, it was substantially lower for 
planktivorous and piscivorous perch. The general difference 
between feeding types of perch in this mismatch between 
HUFA levels and resources as well as the degree of homeo-
stasis is interesting. For example, individual specialization 
in freshwater perch is not based on assortative mating, and 
differences between the perch types are not genetically fixed, 
but mainly due to phenotypic plasticity (Faulks et al. 2015; 
Marklund et al. 2019; Olsson et al. 2005; Svanbäck et al. 
2006). Therefore, we can assume that physiological adapta-
tions to cope with resources that have different HUFA levels 
are also rather flexible and plastic. So far, we know little 
about the potential costs for consumers and the trade-offs 
involved in dealing with qualitatively different resources. 
Stream macroinvertebrates are considered as ‘selective 
retainers’ instead of simple ‘collectors’ of dietary fatty acids 
(Guo et al. 2016). Furthermore, genes that are responsible 
for fatty acid bioconversion and even de novo synthesis of 
HUFA were recently found to be widespread across the ani-
mal kingdom (Kabeya et al. 2018; Monroig et al. 2018). 
To understand the degree of selective retention but also the 
immediate ecological and even evolutionary consequences 
of keeping up the enzymatic machinery involved in the bio-
conversion of HUFAs opens a new and exciting avenue for 
future research.
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