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Abstract: Iron is an essential element required to support the health of organisms. This element
is critical for regulating the activities of cellular enzymes including those involved in cellular
metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial
in mediating the interaction between microorganisms and their host and hence, the spread of infection.
Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization
mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways
of iron uptake are associated with promoting their growth and virulence and consequently,
their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may
prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron
chelators as a means to hinder development of infections. This review will serve to assimilate findings
regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether
treating infections mediated by such organisms via iron chelation approaches may have potential
clinical benefit.

Keywords: hepatitis C virus; human immunodeficiency virus; gram-negative bacteria; gram-positive
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1. Introduction

1.1. Iron, an Essential Element for Survival of Both Hosts and Microorganisms

Iron is a key element needed to support fundamental cellular processes including oxygen transport,
DNA replication, transcription, and metabolic processes in many living organisms [1,2]. It is also
essential to support the growth, virulence, and pathogenicity of microorganisms such as viruses,
microbes, and fungi [3,4], which can acquire iron from within its host environment.

Dietary iron in the host can be obtained in the form of heme from various sources including
red meat, seafood, and poultry [5]. This heme iron is absorbed into cells through a mechanism that
involves the Heme Carrier Protein (HCP1), a proton-coupled folate transporter (PCFT) [6]. Non-heme
iron can be obtained predominantly from plant sources [6]. Non-heme iron absorption into cells can
occur either as transferrin bound iron (TBI) or non-transferrin bound iron (NTBI) [7–9]. The absorption
of iron into the bloodstream is primarily regulated by hepcidin (HAMP), a liver secreted peptide
hormone [10].

In an adult human, hemoglobin from red blood cells (RBCs) contains approximately two-thirds of
the total iron present in the body (~3–4 g) [5]. Not only is iron stored in liver cells and macrophages
bound to ferritin, but it is also found in myoglobin of muscle cells [5]. Further, phagocytosis of
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RBCs by macrophages leads to the release of iron from hemoglobin and serves as a crucial source of
iron [11]. Heme iron degradation involves the action of heme oxygenase 1 (HO-1) or heme oxygenase-2
(HO-2) [12], whereby the released free iron becomes part of the labile iron pool (LIP), a redox-active
pool of intracellular iron [13].

The specific mechanisms that support the ability of microorganisms such as viruses, microbes,
and fungi to uptake iron from sources in the host are discussed in this review, along with the effect of
iron chelators which may potentially antagonize their growth and virulence.

1.2. Host Cell Iron Metabolic Pathway

It is well established that deregulated iron control can lead to detrimental effects on survival [1,2].
Since redox-active iron is a catalyst in electron transfer and free radical reactions, excessive amounts of
free iron can deteriorate cell health (e.g., DNA damage, lipid peroxidation, and protein oxidation) [14];
therefore, a tightly regulated system is essential to appropriately balance intracellular iron levels [15].
This mechanism of control has been deciphered and involves a large array of mediators described below.

Transferrin, a carrier glycoprotein which binds to iron (as Fe3+-bound complex (TBI)), facilitates
the transport of iron into cells via the transferrin receptor (CD71) [16]. Cellular entry of TBI occurs
via an endocytic process which is followed by the release of iron from transferrin due to the reduced
pH of the endosomal compartment. Subsequently, STEAP3 (Six Transmembrane Epithelial Antigen
of Prostate 3) mediates reduction of the Fe3+ (ferric) to the Fe2+ (ferrous) form [17]. Once reduced,
the iron is released from the endosomal compartment to the cytosol via endosomal DMT1 (Divalent
Metal Transporter 1) [18].

The divalent metal transporter ZIP8 (Solute carrier family 39 member 8 (SLC39A8)) is one way
through which NTBI can enter cells [19]. Another mechanism underlying NTBI uptake, specifically
into small intestinal cells, involves the reduction of ferric iron via duodenal cytochrome b (DCYTB) [20]
followed by its transport via cell surface localized DMT1 [21,22].

The imported iron (from either NTBI or TBI) can either (1) be stored in a complex with ferritin
(FTN), (2) be added to the labile iron pool (LIP), (3) be exported extracellularly via ferroportin (FPN),
or (4) be integrated within key enzymes involved in regulating cellular metabolic processes [23].
Extracellular export involving FPN is the only means of exporting iron out of cells and its levels are
regulated by HAMP [1,2,23,24].

Iron-binding proteins in the host plasma (e.g., transferrin, haptoglobin, hemopexin, lactoferrin,
lipocalin-1, and lipocalin-2) have the ability to sequester iron from various sources; their iron binding
capacity can contribute to reducing the availability of extracellular iron that may support the growth
and virulence of microorganisms within this environment [25]. Withholding of intracellular host iron
(e.g., reduced iron uptake, increased storage of iron in ferritin, increased export of iron via FPN) may
also contribute to reducing intracellular microorganismal growth [25]. Hence, tight regulation of the
above described iron metabolic pathways is critical in mediating the balance between microorganisms
and the host.

1.3. Iron Chelation and Associated Risks

In multiple diseases, iron chelation has been explored as a therapeutic regimen to reduce iron
levels to promote health [26]. Efficacy of iron chelators depends on high membrane permeability and
effectiveness of oral administration [27]. There are two major classes of iron chelators: (1) naturally
occurring, e.g., Epigallocatechin-3-gallate (EGCG, found in green tea), phytic acid, curcuminoids, and
(2) synthetic, e.g., Deferiprone (DFP or L1), Deferasirox (DFRA or DFX), 8-hydroxyquinoline derivatives
such as VK-28 and M30 [28]. Some chelators are derived from bacterial sources including Desferioxamine
(also known as deferoxamine (DFO), produced by Streptomyces pilosus) and Desferrithiocin ((DFT),
a tridentate siderophore, produced by Streptomyces antibioticus) [28–30]. Moreover, phytochelators,
obtained from plant components including vegetables and fruits, elicit iron-chelating activities;
polyphenols are one such class with the ability to chelate iron with high affinity and promote
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health [31,32]. Mammalian-derived physiological iron chelators include (1) transferrin, found in blood
plasma and involved in body-wide iron transport and (2) lactoferrin, enriched in neutrophils and in
bodily secretions [32–34]. Not only do these physiological iron chelators bind iron but they also elicit
anti-microbial activities to hinder the propagation of microorganisms [32–34].

A subset of FDA-approved iron chelators includes DFO, DFRA, and DFP [26] and these have
different means of patient administration (e.g., oral versus intravenous) with divergent efficacies and
blood brain barrier accessibilities [32]. Some of the above described iron chelators have shown success in
combinatorial treatment strategies with antibiotics, anti-virals, and anti-fungals. However, the clinical
applications of these iron chelators are noted to be associated with health risks. DFO, the first clinically
applied iron chelator which is administered intravenously, is associated with side effects affecting
vision, hearing, and kidney function; further, in some cases, Yersinia and Klebsiella infections may
develop [35]. DFP, administered orally, is also associated with some health risks including alterations
within the immune system (e.g., neutropenia, agranulocytosis, thrombocytopenia) in addition to
arthropathy and adverse effects on liver function [35]. DFRA, also administered orally, is associated
with adverse effects on the liver, digestive system, and skin [35]. Furthermore, the application of these
iron chelators may result in anemia [35].

In this review, we summarize findings involving the application of iron chelators primarily in the
context of infectious diseases (see Figure 1 for an overview of iron acquisition pathways).
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Figure 1. Mechanisms of Iron Acquisition in Bacteria and Fungi as well as Mechanisms of Iron
Utilization in Viruses. (A) In Gram-negative bacteria, the iron acquisition involves uptake of free iron
from the extracellular environment. Specific proteins that bind heme or hemoglobin (e.g., hemopexin
or haptoglobin) are secreted from the bacteria, to then bind to free iron or heme [36]. These complexes
then interact with outer membrane protein (OMP) receptors on the surface of the outer membrane (OM)
of the bacterial cell wall [37]. The iron is then moved to the TonB–dependent receptor complex [36];
after the iron reaches the ABC transporter, it finally passes the inner membrane into the bacterial
cytoplasm [37]. (B) In Gram-positive bacteria, secreted specific iron/heme binding proteins interact with
heme [37], following which, the iron binding protein localizes to the surface of the bacterial cell wall to
bind to a specialized cell surface receptor [38]. Next, specific permeases enable the translocation of this
complex across the bacterial cell wall [39]. The iron-bound molecule is subsequently transferred to a
shuttle protein that then guides the iron into the ABC transporter, an integral membrane protein [39].
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The ABC transporter translocates the iron-bound molecule into the bacterial cytoplasm [39]. (C) In fungi,
the iron uptake system involves reductive and/or non-reductive mechanisms [40]. In the reductive iron
assimilation pathway, iron acquisition is initiated via siderophores which bind to ferric iron; the iron is
subsequently reduced via ferrireductases and released from the siderophores as the ferrous form [40].
The iron is then translocated to glycoproteins on the surface of the fungal cell wall and the uptake
of iron is mediated by permeases followed by oxidation of ferrous to ferric iron via ferroxidase [41].
(D) HIV replication is shown herein, as an example. There exists multiple pathways for viral-host
cell entry; specifically, HIV entry into a host cell requires interaction of the HIV gp120 with the CD4
receptor (associated with CCR5 or CXCR4 co-receptors) [42]; this is followed by the pH-independent
fusion of the virus with the host cell membrane. Subsequently, the viral RNA is released into the
cell and reverse transcribed into DNA via ribonucleotide reductase (RNR) and then imported into
the nucleus [43]. Iron can increase NF-kB activation leading to upregulation of HIV gene expression.
Finally, the iron-dependent ATPase transporter ABCE1 promotes HIV-1 capsid maturation [4].

2. RNA-Based Viral Infections

Overview—Viruses have adapted themselves to use host cell components to propagate. In contrast
to Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV) which utilize SR-B1 and
CD4 receptor, respectively, for host cell entry, New World Arenaviruses enter host cells by binding
to transferrin receptors, a host cell receptor also responsible for iron uptake [42,44]. To support
viral replication, ribonucleotide reductase (RNR), responsible for generating deoxyribonucleotides
from ribonucleotides, is essential and requires iron to support its activity [45]. Host cell signaling
pathways may also respond to altered iron availability (e.g., increased NF-kB activation) to support
viral infections [46]. Likewise, the maturation of viral particles requires the iron-binding ATP binding
cassette subfamily E member 1 (ATPase ABCE1) [4,47]. Therefore, iron appears to be a critical
element to support multiple elements supporting propagation of a virus including its entry, replication,
and maturation. Evidence supporting the use of iron chelators to antagonize viral propagation is
presented herein.

2.1. Hepatitis C Virus (HCV)

Viral Genome and Structure—Hepatitis C Virus is a member of the Flaviviridae family and is a
single-stranded positive sense virus with a diameter of 50–80 nm [48]. Its genome is comprised of
10 elements and codes for structural and non-structural components: (1) Core, capsid, (2) E1 and
E2, envelope glycoproteins, (3) p7, viroporin (this protein forms pores in the host cell membrane to
enable viral propagation) [49] and assembly factor, (4) NS2, autoprotease and assembly factor, (5) NS3,
serine protease and helicase, assembly factor, (6) NS4A, NS3 protease co-factor, (7) NS4B, scaffold
protein of the replication complex, (8) NS5A, regulator of replication and viral assembly, and (9) NS5B,
DNA-dependent RNA polymerase [50]. Its entry into host cells is a complex process and involves
a multitude of host cell factors such as CLDN1 (Claudin 1), OCLN (Occludin), CD81 (Cluster of
Differentiation 81), and SRB1 (Scavenger receptor class B type 1) [48].

Health Implications and Current Treatments—HCV infections are associated with inflammation
potentially leading to liver fibrosis, cirrhosis, and hepatocellular carcinoma [51]. Although HCV is
considered curable, the health implications and risk of hepatocellular carcinoma remain a concern [51].
Interferon (IFN) has been the sole treatment regimen for HCV infected patients with only 15–20%
eliciting a sustained virological response following 11 months of treatment [52]. However, ribavirin,
an immunomodulating agent described as a synthetic guanosine analogue, not only directly inhibits
viral replication but also promotes efficacy of IFN, relapse response in patients infected with HCV, and a
sustained virological response [53,54]. Specifically, recent data demonstrate that ribavirin promotes the
JAK-STAT signaling cascade to enhance anti-viral responses against HCV [53]. Additional pathways
that are activated in response to HCV include EGFR and TGF-β activation, which may contribute to
disease progression and potentially offer additional targets for therapy [55]. Identification of further
therapeutic regimens to combat the health complications of HCV are needed.
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Iron Contribution to HCV Infections—In liver-biopsy specimens from infected HCV patients, a
positive correlation between hepatic iron content and HCV was reported [56]. Efforts were also made to
reduce iron levels by phlebotomy in infected HCV patients to improve outcomes. For example, in male
patients in whom anti-viral therapy was ineffective, phlebotomy (administered every 1 to 3 months
over a 2 year period) improved the liver histology [57]. In HCV patients characterized by elevated
levels of serum alanine aminotransferase (ALT, a marker of liver damage [58]) and iron deposits in their
livers, phlebotomy (performed every week or monthly over a 9 month period) improved their liver
function [59]. This is supported by an independent study in which patients (resistant to IFN-α with
no abnormal profile of liver iron content) responded positively to phlebotomy (over a 2 week period)
with improved ALT activity [52]. However, it remains unclear whether phlebotomy can reduce HCV
viral load since it was either not reported or not determined in the above described studies [52,57,59].

In in vitro studies, supplementation with FeSO4 for two days was found to increase the replicative
capacity of HIV (as measured by quantification of the viral RNA) in hepatocytes [60]. Further, the
iron-induced translation of HCV was mediated by factors involved in the initiation of translation
including eIF3 (translation initiation factor 3) in HepG2 cells [56] and La proteins (which bind to
the internal ribosome entry site (IRES) to regulate initiation of translation of HCV RNA) [61–63].
With respect to iron chelators, DFRA was reported to antagonize HCV-induced upregulation
of these translation initiation factors in Huh-7 cells [63]; further, antisense phosphorothioate
oligodeoxynucleotides targeting these initiation factors reduced iron-induced HCV translation in
Huh-7 cells [63]. In contrast, iron, presented as a complex with salicylaldehyde isonicotinoyl hydrazine
(lipophilic tridentate iron chelator, Fe-SIH), could mediate anti-viral effects by reducing expression of
viral proteins (NS3 and Core) in Huh7.5.1 cells [64].

Although it has been suggested that therapies that reduce iron levels could be utilized as adjuvant
to existing HCV therapies [60], additional studies are needed to provide support for the use of iron
chelators as an adjuvant therapeutic regimen in HCV-infected patients.

2.2. Human Immunodeficiency Virus (HIV)

Viral Genome and Structure—Human immunodeficiency virus is a member of the Retroviridae
family and is a single stranded RNA virus with a diameter of 100 nm [43]. HIV contains 9 elements
in its genome: (1) Gag, codes for the core structural proteins (p24, p7, and p6) and the matrix (p17),
(2) Pol, codes for viral replication enzymes including reverse transcriptase, integrase, and protease,
(3) Vif, encodes a protein that promotes infectivity of viral progeny, (4) Vpr, codes for a protein that
causes cell cycle arrest, (5) Vpu, codes for a protein involved in the release of the viral particle, (6) Tat,
codes for a protein which is involved in HIV gene expression, (7) Rev, codes for a protein that allows
the export of the RNA from the nucleus into the cytoplasm, (8) Env, encodes the glycoproteins in the
envelope (gp120 and gp41), and (9) Nef, codes for a protein that can modulate signaling and promote
viral budding [43]. The viral budding process leads to host cell lysis; however, during latency, the viral
DNA lies dormant in the nucleus of specific host cells including CD4+ T Cells, which is referred to as a
cellular reservoir [65,66].

Health Implications and Current Treatments—HIV can lead to acquired immunodeficiency
syndrome (AIDS), a terminal stage of HIV-infections, in which patients are afflicted by opportunistic
infections and cancer [67]. There is presently no cure for these patients, who are characterized
by a progressive reduction of white blood cells (CD4+ T cells) as a result of the deterioration
of tissues that generate lymphocytes (e.g., bone marrow and thymus) [68] and opportunistic
infections (e.g., Candidiasis, Cryptococcosis, amongst others) [69] which eventually lead to mortality,
if left untreated [70]. Current treatment regimens include anti-retroviral therapy (ART) which
integrates three drugs including two nucleoside reverse transcriptase inhibitors, which compete with
deoxynucleotides incorporated into DNA that is being replicated (e.g., emtricitabine and tenofovir),
and one non-nucleoside reverse transcriptase inhibitor, integrase inhibitor, or protease inhibitor (e.g.,
raltegravir) [71]. Regrettably, the persistence of the virus in a cellular reservoir in latent form hinders
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its complete elimination even with ART treatment regimens [70]. Thus, identification of other targets
to effectively deplete these reservoir holding cells are direly needed for an effective cure.

Iron Contribution to HIV Infections—In patients with HIV infections, excessive iron content in
their serum [72], tissues (e.g., bone marrow [73,74], brain white matter [75,76], muscle [77]), and their
cells (macrophages and microglia) [75] is suggested to contribute to the pathogenesis of the disease [78].
Further, a link between iron and HIV disease progression was identified in a male HIV patient affected
by the iron overload condition, hereditary haemochromatosis (characterized by a mutation at C282Y
in the HFE gene); specifically, a major reduction in viral particles was noted following an extensive
18-month phlebotomy period [79].

At a cellular level as determined from in vitro studies, the addition of exogenous iron or modulation
of key modulators of host iron metabolic pathways could alter HIV-1 replication and transcription.
Specifically, overexpression of FPN1, the iron export receptor, decreased transcription of HIV-1 in
HEK293 cells [80]. In contrast, the addition of HAMP, which downregulates FPN1 and increases LIP,
antagonized viral transcription in promonocytic cells as well as macrophages and CD4+ T cells [80,81].
Under conditions of excess ferrous sulfate heptahydrate, the survival of HIV-infected T-lymphoid
CEM-syncytial sensitive cells was reduced and correlated with elevated viral replication (p24, which is
a core protein of HIV encoded by gag) and reverse transcriptase activity in the cell supernatants [82];
these cellular responses were opposed by the iron chelator, DFO [82].

The mechanisms underlying these iron-associated cellular effects on HIV-1 transcription were
elucidated to be mediated through NF-kB (a transcription factor that plays a role in regulating multiple
cellular activities), which binds to the long-terminal repeat sequence of HIV (the control center for
regulation of HIV gene expression with binding sequences for both host and viral proteins) on NF-kB
response elements [83]. This pathway could be opposed by the iron chelator, DFO, in specific cell
types (namely, U1 (an HIV-infected U937, a pro-monocytic myeloid leukemia cell line) and ACH-2
cells (HIV-infected acute lymphoblastic leukemia T cell line)); this was demonstrated via a gel shift
assay in which DFO led to a marked reduction in NF-kB retardation complex [46].

Inhibition of the iron-dependent DNA replication enzyme, RNR, with iron chelators (DFRA and
DFP) in lymphocytes could also alter HIV viral replication [84,85]. Bleomycin (BLM, an antibiotic
isolated from Streptomyces verticillus which forms iron complexes generating ROS that leads to base
modifications in the viral DNA) could also reduce the replicative capacity of HIV without affecting
cellular viability in PBL (peripheral blood lymphocytes); whether the effects of BLM is due to
iron-chelation activity is unclear [85]. Furthermore, BLM and the commonly used iron chelators
DFO and DFP were capable of reducing the expression of the viral capsid core protein (p24) in
macrophages and PBL [85]. Iron chelators with comparatively higher affinity for iron, CP502 and
CP511 (bidentate chelators of the 3-hydroxypyridin-4-one family) were also effective in reducing viral
replication (viral capsid core protein p24) by altering cellular viability (3H-thymidine) of peripheral
blood lymphocytes [86].

In vitro cell studies were performed to identify changes in the expression and activities of cell
cycle mediators by iron chelators in HIV-1 infected cells. Specifically, the iron chelators DFO and
311 (2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone) reduced HIV-1 viral transcription by
modulating protein expression of cyclin-dependent kinases (e.g., CDK2, a mediator in cell cycle
progression) in human lymphoid CEM cells [87]. Moreover, 311 and yet another iron chelator, ICL670
(4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid), hindered HIV-1 transcription of the Tat
gene by reducing CDK2 and CDK9 kinase activity on specific target proteins including cyclin T1 and
the C-terminal domain of RNA polymerase II in multiple cell types including HeLa-CD4-LTR-β-gal
cells, 293T cells, and CEM cells [87]. This finding is of particular importance since the Tat protein plays
a key role in activating the latent virus by physically binding to CDK2 and CDK9 complexes [87].
Other novel iron chelators, including Phenyl-1-Pyridin-2yl-Ethanone-Based, inhibited CDK2 activity,
reduced CDK9 levels, and increased IkBα and cytoplasmic NF-kB to mediate reduction in HIV-1
transcription of the B subtype in infected T cells [88].
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Although there appears to be an abundance of data supporting the use of iron chelators in
HIV-1 infected cell lines, additional research is needed to enable the use of iron chelators in clinical
treatment strategies.

3. Bacterial Infections

Physical Characteristics of Gram-negative and Gram-positive Bacteria with Relevance to Iron
Uptake—It is well established that iron acquisition is critical in promoting the growth and virulence of
numerous pathogenic bacteria [32]. Since antibiotic resistance is of major concern in the treatment of
pathogenic bacterial-induced infections, novel treatment agents are direly needed. Both Gram-negative
and Gram-positive bacteria have well adapted strategies for iron uptake including specific surface
chaperone proteins for acquiring heme, receptors, and ABC (ATP-binding cassette) transporters for
membrane translocation, as described in detail in [89–91]. The iron uptake mechanisms differ between
Gram-negative and Gram-positive bacteria and these differences are contributed by their physical
characteristics of the outer cell membrane [92]. Specifically, Gram-positive microbes are characterized
by a thick layer of peptidoglycan incorporated within the cell wall along with the extracellular
exposure of teichoic acids and lipoteichoic acids as well as a diminished periplasmic space volume [90].
In contrast, Gram-negative microbes contain both an outer and inner membrane along with a larger
periplasmic space volume [92]. Iron uptake mechanisms that are common across both Gram-negative
and Gram-positive microbes include the involvement of ABC transporters [93].

Iron Uptake Pathway in Gram-negative Bacteria—Greater than 30 outer membrane protein
(OMP) heme receptors (involved in transporting heme intracellularly) have been characterized across
a wide variety of Gram-negative microbes [94]. Some specific molecules that are engaged in this
process include those involved in the direct binding of heme (e.g., hemopexin) or hemoglobin (e.g.,
haptoglobin) to OMP receptors on the bacterial cell wall [36,37]. After delivery of the heme to the
periplasmic membrane, the heme is then transferred via the ABC transporters to the cytoplasmic
compartment [37]. Another acquisition mechanism involves hemophores, which interacts with free
heme in the external environment and transports it to the surface of the bacterial cell membrane [37].
When the heme is transported to the bacterial cell surface, it then interacts with the TonB dependent
transport pathway [37,95,96]. As a specific example, the heme acquisition system A (HasA) participates
in the heme-uptake process in the pathogenic microbe, Pseudomonas aeruginosa, which we discuss in
greater detail below [97]. Another example includes the heme/hemopexin utilization (HxuA) pathway
which is involved in pathogenic microbes that are deficient in heme production [98]. The ferric uptake
regulator (Fur) protein, a transcriptional regulator of iron uptake genes, is a key mediator of iron
regulation in Gram-negative microbes as well [99].

Iron Uptake Pathway in Gram-positive Bacteria—In contrast to Gram-negative microbes, far
fewer details have been uncovered with respect to the mechanisms underlying heme uptake in
Gram-positive microbes. However, the HemT-like lipoprotein, HmuT, has been identified to participate
in this process, specifically in Corynebacterium diphtheriae, a well-studied Gram-negative microbe [100].
The components of the ABC transporter pathway in Streptococcus pyogenes, another well-studied
Gram-negative microbe, involves the Shr protein (which binds heme), the streptococcal heme-binding
protein Shp (which relays the heme for transport across the bacterial envelope), SiaA (which is the
heme-binding lipoprotein), SiaB (membrane permease), and SiaC (ATPase) [38,39]. A more well
understood mechanism of the pathogenic bacterium, Staphylococcus Aureus, has been identified which
uses hemolysins in its pursuit to acquire bound heme [101].

3.1. Pseudomonas Aeruginosa: A Gram-Negative Microbe Associated with Wound Infections and
Cystic Fibrosis

Bacterial Features—Pseudomonas aeruginosa, a multi-drug resistant pathogen, has a genome size of
5.5–7 Mbp with the capacity to express genes underlying resistant phenotypes [102]. Together with
complex metabolic processes, these features support its propagation in unfavorable environments [103].
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The pathogenicity of P. aeruginosa is mediated by structural components including flagellum and pili
as well as cell surface glycolipids and lectins that are involved in bacterial movement and adhesion
to host cells [104]. Further, secretion of virulence factors is mediated by quorum sensing pathways
leading to secretion of elastases (proteases) into the host environment [104]. In addition, P. aeruginosa is
capable of injecting cytotoxins into host cells [104].

Contribution of Iron—Several iron uptake mechanisms are involved in mediating P. aeruginosa
growth properties [105]. The pyoverdine (Pvd) and pyochelin (Pch) siderophores (of which
pyoverdine has a higher iron affinity) are involved in the movement of extracellular iron into
P. aeruginosa [106,107] using FptA and FpvA (outer membrane proteins) [108]. The addition of Pch with
P. aeruginosa injected intraperitoneally in Swiss–Webster mice resulted in increased virulence [109].
Using immunosuppressed mice, mutant strains of P. aeruginosa deficient in Pvd or Pch/Pvd inoculated
intranasally, elicited reduced growth in the pulmonary tissue coinciding with decreased virulence [110].

In wounds infected with P. aeruginosa, the rate of repair is diminished in multiple animal models
(e.g., rabbit, murine, pig in vivo models) [104]. Specifically, in a murine wound model (in which a muscle
was injured in the right rectus abdominus to which P. aeruginosa was applied), transcriptional profiling
identified 7 out of 136 differentially expressed genes that were involved in pyochelin biosynthesis,
including the pyochelin receptor fptA, pchH, pchG, pchE, pchD, pchB, and pchC (the biosynthesis of
Pch requires the iron-regulated pchDCBA operon) [106]. In addition, the iron-sulfur cluster genes were
upregulated [111]. These findings suggest that iron uptake in this bacteria contributes to its pathogenic
activity within infected wounds [111]. Other pathways that are involved in iron uptake in P. aeruginosa
include the citrate-mediated Fe3+ uptake pathways that engages FecA, an outer membrane ferric citrate
receptor, the FeoB transporter, and the PcoA, periplasmic ferroxidase [112]. The process of iron uptake
from heme involves the TonB system which involves HasA, an extracellular heme-binding protein,
HasR, and PhuR encoded on the phuSTUVW operon (a gene cluster encoding an outer membrane
receptor and specific ABC transporters for heme and hemoglobin uptake) [113].

In addition to wound infections, P. aeruginosa infections in lungs are frequent in patients afflicted
with cystic fibrosis [114]. In an effort to determine whether iron chelation may hinder the development
of such infections in cystic fibrosis, administration of aerosolized bovine lactoferrin (bLF) was performed
in a mouse model of cystic fibrosis with P. aeruginosa infection. Neutrophil numbers, pro-inflammatory
cytokines, and microbial numbers were reduced with bLF treatment [115]. Although lactoferrin is
considered a natural anti-microbial agent present in secretions of the airways, which also has the
ability to bind iron [115], it is unclear whether its iron binding potential is responsible for the observed
outcomes. Nonetheless, bLF may have potential as a clinical agent to alleviate pathogenic infections
and inflammation in cystic fibrosis patients.

Manuka honey, produced from the nectar of Leptospermum scoparium (manuka bush), was
discovered to elicit anti-microbial activity against multiple pathogens [116]. Specifically, the honey
could hinder the growth of several pathogenic microbes including P. aeruginosa, Escherichia coli, and
S. aureus [116]. Although the ferrozine-based iron chelation assay was utilized to determine that the
honey mediates iron chelating activity [116] and the honey simulated an environment of limiting iron
availability [116], it remains unclear whether the anti-microbial effect of the Manuka honey is due to its
iron chelation ability. Further investigation is needed to not only identify the potential iron chelating
component in the honey but to also further investigate whether mimicking an environment with low
iron content may potentially diminish the growth of P. aeruginosa, which could potentially be utilized
as a strategy to overcome antibiotic resistance.

3.2. Porphyromonas Gingivalis, Prevotella Intermedia, and Fusobacterium Nucleatum: Bacteria Associated
with Periodontitis

Bacterial features—The oral microbiome can be composed of up to 700 species; an imbalance
of these species could lead to the development of periodontitis [117]. Specifically, Porphyromonas
gingivalis and Fusobacterium nucleatum are critically important in the amalgation of late and early
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colonizers within the oral cavity [117]. Furthermore, P. gingivalis and Prevotella intermedia are
mutualistic in terms of heme acquisition, as described in detail below. P. gingivalis (Strain W83) is
a Gram-negative oral bacteria with a genome size of 2,343,479 bp. P. intermedia is described as a
anaerobe that is Gram-negative with a genome size (OMA14 strain) which is represented by two
circular chromosomes of 2,280,262 and 867,855 bp, respectively [118]. Genome sequencing of five
subspecies of F. nucleatum, a Gram-negative anaerobic microbe, has identified a range of genome sizes,
namely 1.84–2.7 Mbp [119,120]. Within the periodontal pocket, in response to an altered microbiome,
an inflammatory fluid is generated, called gingival crevicular fluid [121]; this exudate contains iron
containing proteins such as hemoglobin, lactoferrin, and transferrin, which may contribute to the
outgrowth of pathogenic oral bacteria [122].

Contribution of iron—Since P. gingivalis is deficient in siderophores [123,124] as well as specific
heme precursor enzymes [125–127], it acquires heme from exogenous sources [128]. This bacteria
acquires iron using (1) specific outer membrane receptors, (2) proteases, and (3) lipoproteins [128].
With respect to outer membrane receptors, P. gingivalis contains proteins that physically interact with
hemoglobin (e.g., haptoglobin) and heme (e.g., hemopexin) in gingival crevicular fluid [129–131].
For proteases, specific genes identified in this bacteria include rgpA (which codes for gingipain that
cleaves arginyl peptide bonds), hagA (which codes for hemagglutinin A), and kgp (which codes for
gingipain that cleaves lysyl peptide bonds) [130,132]. One mutualistic behavior between P. gingivalis
and P. intermedia involves the process of heme acquisition; specifically, this involves the HmuY protein
in P. gingivalis and the proteolytic activity of P. intermedia [133]. The hemolytic activity of P. intermedia,
which increases free hemoglobin, is thus proposed to provide an optimal growth environment for
P. gingivalis [133,134]. In addition, mutualism via InpA (proteolytically oxidizing hemoglobin in
P. intermedia), supports iron (III) protoporphyrin IX generation via hmuY from P. gingivalis [133,135].

Subgingival plaque P. gingivalis could be effectively inhibited in its growth rate and adhesiveness
by the iron chelator, DFO, by reducing its ability to accumulate hemin, Fe3+-protoporphyrin IX,
a virulence factor [136]. The effect of iron chelating agents were also investigated on P. intermedia,
another Gram-negative microbe present in periodontal lesions [137]. DFRA could effectively inhibit its
growth and biofilm-forming activities [137]. A blueberry extract, containing high levels of flavonoids
which has potential to elicit iron chelating activity, was able to antagonize the growth, biofilm
formation, and proteolytic activity (decreased matrix metalloproteinase secretion) of F. nucleatum [138].
The microbial activity of this microbe could also be opposed by bioactive components present in green
and black tea (e.g., EGCG and theaflavins) which also appear to be associated with iron chelating
activities [139].

Over the past two decades, there has been a rise in antibiotic-resistant infections, which could be
attributed to the overuse of antibiotics (with evidence of country dependency [140]) and antibiotic
resistance gene transfer to the bacteria present within the oral cavity [141,142]. Although the above
described natural agents appear to elicit anti-microbial activities which may offer some protective health
benefits against periodontitis, it remains unclear whether their effects are due to their iron-chelation
ability. Thus, further investigation is needed to identify the iron chelating components in the blueberry
extract and the tea as well as address their potential in mediating anti-microbial activities in these
pathogenic microbes.

3.3. Streptococcus Pneumoniae: A Gram-Positive Bacteria

Bacterial Features—Infections that are due to Streptococcus pneumoniae, a pathogen with a core
genome size of 1,536,569 bp [143], that causes pneumonia, meningitis, and bacteremia, is associated
with multiple serotypes and thus a search for candidates to target as a treatment approach remains an
ongoing effort [144].

Contribution of Iron—S. pneumoniae does not express siderophores, which is unlike other
microbes [144,145]. To overcome this limitation, pneumolysin is released from S. pneumoniae (as a
result of autolysin (a cell wall degrading enzyme activity [146])) to elicit hemolytic activity; this
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activity is responsible for the lysis of erythrocytes leading to the release of heme [147]. S. pneumoniae
can acquire iron from hemoglobin and heme-binding proteins; specifically, receptors present on the
surface of S. pneumoniae including pit1, pit2, and ABC transporters, are involved in the uptake of
released iron from heme [148]. A mutant strain of S. pneumoniae that was defective in hemin uptake
was found to diminish virulence in an intraperitoneally injected mouse model [145]. S. pneumoniae
contains two operons, namely piuBCDA and piaABCD (prior naming system, pit1BCDA and pit2ABCD),
which code for proteins involved in iron uptake [149]. Pit1 and pit2, which are S. Pneumoniae
loci which code for an ABC transporter, enables the Gram-positive bacteria to acquire iron from
hemoglobin [148]. Using two different mouse models (pneumonia model in which S. pneumoniae
was inoculated intranasally and a systemic model in which S. pneumoniae was inoculated via the
intraperitoneal cavity), double knockouts of pit and pit2 led to a marked reduction in S. pneumoniae
virulence [148]. A proteomic study, using parallel metabolic pulse labeling in S. pneumoniae, was
performed in the presence of the iron chelator, 2,2′-bipyridine, to limit iron content within the
environment of the pathogen [144]. Under this condition, transport and binding proteins involved
in S. pneumoniae pathogenesis as well as those involved in cell division (FtsA, FtsZ, and StkP) were
downregulated [144]; in contrast, molecules involved in iron uptake were increased including PiuA
(the lipoprotein component of ABC transporters) [81].

Altogether, these studies suggest that targeting the iron uptake pathways and/or use of iron
chelators could antagonize the growth and virulence of S. pneumoniae.

3.4. Mycobacterium Tuberculosis

Bacterial Features—Mycobacterium tuberculosis is a pathogen with a genome size (H37Rv strain) of
44.1 Mbp [150]. This bacterium is predominantly intracellular and is the causative factor in tuberculosis,
a highly contagious disease [151]. However, M. tuberculosis can also be disseminated extracellularly
into the blood to secondary locations (e.g., central nervous and lymphatic systems) [151]. Current
treatment regimens include a cocktail containing isoniazid, rifampicin, pyrazinamide, ethambutol,
and streptomycin; regrettably, these agents can lead to adverse effects including liver damage and the
development of M. tuberculosis resistant strains [151].

Contribution of Iron—Infections mediated by M. tuberculosis activate a host defense pathway
that limits serum iron availability causing “anemia of chronic disease” [152]. To overcome this
host limitation, M. tuberculosis has evolved mechanisms to acquire intracellular iron within host
macrophages and myeloid dendritic cells via a siderophore-mediated process involving mycobactin
and carboxymycobactin [152,153]. An endosome/lysosome metal ion transporter, NRAMP1 or natural
resistance-associated macrophage protein 1, contributes to iron uptake in the bacterium that is located
in phagosomes [152]. Thus, it has been suggested that this pathway could be a potential target
for drug treatment against tuberculosis, a disease associated with increased resistance to current
treatment strategies. A novel pyrazolopyridinone, PZP, which elicits intracellular iron chelator activity,
could hinder the growth of M. tuberculosis [153]. Using in vivo guinea pig and mouse models with
M. tuberculosis strains harboring loss of iron acquisition and uptake systems (located within the ESX-3
type VII secretion system) to restrict iron accessibility, the bacterial burden was markedly reduced [153].

Further work is needed to determine clinical efficacy of targeting the above described pathway in
patients infected with M. tuberculosis.

4. Fungal Infections

Fungal Cell Structure—Since the fungal cell wall is the primary barrier that is encountered in
response to anti-fungals, its characteristics have been investigated in an effort to understand its role in
mediating anti-fungal resistance [154]. It is important to note that the fungal cell wall is comprised of
two membrane components. The inner membrane is composed of glucans and chitin and provides not
only structure but is tolerant of the immense internal forces arising from the fungal cytoplasm [154].
The outer membrane is composed of glycoproteins with both N and O-linked carbohydrates [154]
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and its composition may be altered under variable environmental conditions altering the ability of
nutrients (including iron) to pass through to the plasma membrane [40].

Fungal Iron Uptake Pathways—The virulence and growth potential of fungi depend on
specific metal ions, such as copper, zinc, manganese, nickel, and of relevance to this review,
iron [155]. Although the iron metabolic pathway has been well delineated in Saccharomyces cerevisiae,
a model organism [156], greater attention has been placed in understanding the iron pathways in
pathogenic fungi including Cryptococcus neoformans and Aspergillus fumigatus with the past decade [40].
The mechanisms of iron uptake vary in different pathogenic fungi under divergent environmental iron
conditions [157].

The most commonly described mechanisms across fungal species include the (1) reductive iron
assimilation (RIA) and (2) non-reductive (siderophore-mediated) iron uptake [158]. The RIA process
involves reduction of ferric iron to the ferrous form via ferrireductases (e.g., FRE genes); this is then
followed by its uptake into the cells by the permease FTR1 along with the oxidation of the iron via the
activity of a ferroxidase (Fet3) [159]. With respect to S. cerevisiae, it primarily employs both low-affinity
and high-affinity non-reductive iron transport systems in conjunction with metalloreductases
(which reduce iron) and siderophore mediated iron transport mechanisms [40,41,157]. Many fungal
species utilize siderophores in iron acquisition; such fungi transport iron-bound siderophore
complexes via transmembrane transporters and multivesicular bodies [40,159]. These siderophores are
concentrated within the fungal cell wall and within the fungal periplasmic space [40]; the presence
of cell wall glycoproteins (e.g., FIT) enables the iron uptake via a siderophore-mediated process [40].
The majority of fungal siderophores are classified into two categories: (1) hydroxamates (e.g.,
rhodotorulic acid, coprogens, ferrichromes, and fusarinines) and (2) polycarboxylates [157]. Additional
sources of fungal iron include hemin [157], heme, and hemoglobin which involve an iron uptake
pathway that differs to the ones described above [159]. Specifically, a family of proteins which contain
a cysteine-rich Common in Fungal Extracellular Membrane (CFEM) domain are involved (e.g., Rbt,
Pga7, and Csa2) in C. albicans and S. cerevisiae and components of the endosomal sorting (ESCRT-I)
complex are involved in C. neoformans [159].

Due to the vast array of iron acquisition mechanisms employed by fungi, these pathways involved
in iron accumulation contributing to fungal virulence could be potentially targeted to formulate novel
treatment strategies.

4.1. Cryptococcus Neoformans

Fungal Features—Cryptococcus neoformans, a basidiomycete fungus involved in meningitis, can lead
to a poor outcome in patients who are immunocompromised [160]. The treatments are limited to
anti-fungal agents such as amphotericin B (which binds to sterol in fungal cell membranes, leading to
pore formation and ultimately fungal death [161]) and fluconazole (which disrupts the fungal membrane
and ergosterol synthesis) [162]). However, these drugs elicit side effects including kidney damage [160]
and thus, other agents are needed to improve treatment responses.

Contribution of Iron—It is well established that the iron permease (Cft1) and ferroxidase (Cfo1)
are involved in the iron uptake pathway in C. neoformans [160]. Cft1 mutant strains of this fungi
leads to reduced growth, reduced intracellular iron, and elevated susceptibility to miconazole and
amphotericin B [163].

In a mouse model, intranasal inoculation of C. neoformans containing a mutation in cft1 markedly
reduced fungal virulence [163]. Intranasal instillation of C. neoformans with a deficiency of Cfo1 (but not
Cfo2) into mice led to a reduction in virulence but also increased the sensitivity to amphotericin B and
fluconazole [164]. The mechanism underlying this finding was suggested to be due to reduction of
the cofactor, heme, which is needed for enzymes involved in ergosterol biosynthesis such as Erg11,
an anti-fungal drug target [164]. Further, the addition of heme or ferrioxamine (a siderophore) reduced
the drug sensitivity (amphotericin B and fluconazole) in the microbe [164]. In support, decreased
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virulence of C. neoformans was noted with genetic deficits in these fungal iron uptake proteins coinciding
with reduced resistance to the anti-fungal agents [160,163,164].

Chelation of intracellular iron with bathophenanthroline disulfonate (BPS) or DFP, in combination
with fluconazole or miconazole, synergistically altered the growth capacity of C. neoformans in vitro [160].
Based on these findings, the use of iron chelators or targeting the above described iron mediators may
offer alternative strategies of treatment as adjuvant drugs along with the anti-fungals [160].

4.2. Aspergillus Fumigatus

Fungal Features—Aspergillus fumigatus, an airborne saprophytic fungus that is responsible for
the development of invasive pulmonary aspergillosis, is common in patients characterized by iron
overload and with blood cancers [165]. First-line treatment regimens include the application of systemic
antifungals such as voriconazole and isavuconazole; however, resistance to these agents has been
reported [166].

Contribution of Iron—Since A. fumigatus is unable to acquire host iron directly, specifically from
transferrin, ferritin, or heme, it has developed efficient iron uptake mechanisms including (1) RIA and
(2) siderophore-mediated processes [167]. As described earlier, RIA involves reducing Fe3+ to Fe2+ via
ferrireductases that are present within the fungal cell membrane; the imported iron is then oxidized by a
ferroxidase and a permease, FetC and FtrA, respectively [168]. A. fumigatus is also capable of acquiring
iron via extracellular siderophores, fusarinine C (FsC) and triacetylfusarinine C (TAFC), which are then
imported into the fungus via transporters in the membrane (SIT, siderophore iron transporter) [169].
Although genetic inactivation of RIA does not alter fungal virulence, SidA, which is a critical enzyme in
the biosynthesis of siderophores, was necessary for mediating virulence in a murine model involving
intranasal instillation [169]. The biosynthesis of siderophores in A. fumigatus is regulated by the GATA
transcriptional regulator, SreA [170]; however, A. fumigatus deficient in SreA does not differ to the
wild type strain in terms of virulence [170]. Using two pulmonary invasive aspergillosis murine
models (leucopenic mice that are immunosuppressed with cortisone acetate and cyclophosphamide
as well as a non-leucopenic model that is immunosuppressed with cortisone acetate), the deficiency
of HapX in A. fumigatus led to a reduction in the spread of the fungal infection [171]. HapX is a
bZip (basic leucine zipper containing domain) transcriptional regulator involved in downregulating
iron-dependent metabolic pathways and the biosynthesis of heme [171].

The combination of the iron chelator DFRA, with a liposomal preparation of Amphotericin
B, was effective in reducing fungal infections in murine models of pulmonary Aspergillosis which
supported murine survival [165]. Although this study, which utilizes an iron chelating treatment
strategy for this disease, shows promise in an in vivo mouse model, further work is needed to determine
clinical feasibility of using such iron chelators in patients infected with A. fumigatus.

4.3. Rhizopus Oryzae

Fungal Features—Rhizopus oryzae is a filamentous fungus involved in the development of
mucormycosis, a common infection in (a) patients with diabetic ketoacidosis [172], (b) those who
are immunocompromised as a result of cytotoxic chemotherapy [173], or (c) those undergoing organ
transplantation [174,175]. Current treatments include Amphotericin B, as described above, which often
leads to kidney damage [176]. Unfortunately, due to surgical disfigurement and the high mortality
index, the development of improved treatment regimens remain essential [177].

Contribution of Iron—The genome sequencing project for R. oryzae has identified several genes
involved in iron uptake including three ferric reductases, six copper oxidases, a high-affinity iron
permease, siderophore permeases, SreA, and genes involved in the uptake of iron from heme [178,179].
The fungal receptors, FOB1 and FOB2 (ferrioxamine binding plasma membrane proteins) are involved
in promoting the binding of ferrioxamine, a siderophore, [180] in order to promote iron uptake via the
FTR1 permease mechanism [181]. Loss of FTR1 via genetic manipulation (via RNAi and reduction in
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DNA copy number) decreases iron acquisition in R. oryzae as well as fungal infections in a murine
model of diabetic ketoacidosis infected with spores via the tail vein or intranasal instillation [181].

In a diabetic ketoacidosis mouse model and a DFO-treated mouse model injected with R. oryzae
spores into the tail vein, FOB1 and FOB2 deficient fungi were essential for mediating virulence in
the DFO-model only [180]. Furthermore, these genes were critical for mediating iron uptake into
R. oryzae [180]. However, other iron chelators, such as DFP and DFRA, were successful in reducing
virulence and improved survival in an in vivo diabetic ketoacidotic mouse model [182,183]. It is
suggested that the acidotic condition of the diabetics may contribute to decreased binding capacity of
iron to transferrin [177], increasing free iron levels to promote mucormycosis infections [172]. Treatment
with DFO increased the infectivity of R. oryzae in immunocompetent guinea pigs [184] and albino
guinea pigs [185].

The oral administration of DFRA, an iron chelator, resulted in clinical improvement in a 40-year
old patient infected with Rhinocerebral mucormycosis (an opportunistic invasive fungal infection) in
combination with liposomal amphotericin B [186]. This one clinical study warrants further clinical
application of DFRA or other iron chelators in the treatment of patients infected with R. oryzae.
Collectively, targeting these fungal iron pathway holds promise to improving existing therapeutic
modalities for overcoming the detrimental health consequences of R. oryzae fungal infections.

5. Concluding Perspectives

Although limited applications for iron chelation therapeutic approaches are noted in clinical
practice for the topics presented herein, evidence from in vitro and in vivo animal models, which cover
a wide range of diseases, provides a strong positive foundation for future clinical applications.
With respect to iron availability, it is essential that iron levels in the host be tightly controlled to
hinder the development of microorganismal infections within the host by (1) supporting the capacity
of iron-binding proteins in the host plasma to limit iron availability to hinder the growth and
virulence of microorganisms and (2) diminishing the intracellular host iron by targeting TBI or NTBI
uptake processes, increasing ferritin-bound iron/reducing ferritinophagic processes, and increasing
FPN-mediated iron export. Although there is evidence for iron chelators in hindering microorganismal
virulence, this is an area that would benefit from further research investigation. Furthermore,
the identification of the iron chelating components in the natural compounds derived from plants
(e.g., blueberry extract, tea, as well as honey) would also be beneficial in the identification of naturally
occurring iron chelators.
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Abbreviations

ABC ATP-binding cassette
AIDS acquired immune deficiency syndrome
ALT alanine aminotransferase
ART anti-retroviral therapy
ATPase ABCE1 ATP binding cassette subfamily E member 1
bLF bovine lactoferrin
NRAMP1 natural resistance-associated macrophage protein 1
BLM bleomycin
BPS bathophenanthroline disulfonate
bZIP basic leucine zipper containing domain
CD81 Cluster of Differentiation 81
CDK cyclin dependent kinases
CFEM Common in Fungal Extracellular Membrane
CLDN1 Claudin 1
DCYTB duodenal cytochrome b
DFO Desferioxamine or deferoxamine
DFP or L1 Deferiprone
DFRA or DFX Deferasirox
DFT Desferrithiocin
DMT1 Divalent Metal Transporter 1
DNA deoxyribonucleic acid
EGCG Epigallocatechin-3-gallate
EGFR epidermal growth factor receptor
eIF3 Eukaryotic initiation factor 3
FDA Food and Drug Administration
Fe-SIH iron-salicylaldehyde isonicotinoyl hydrazine
FeSO4 iron (II) sulfate
FPN1 ferroportin
FsC fusarinine C
FTN ferritin
Fur ferric uptake regulator
GATA Globin Transcription Factor
HAMP hepcidin
HasA heme acquisition system A
HCP1 Heme Carrier Protein
HCV Hepatitis C Virus
HIV Human Immunodeficiency Virus
HO-1 heme oxygenase 1
HO-2 heme oxygenase 2
IFN Interferon
IRES internal ribosome entry site
JAK Janus Kinase
LIP labile iron pool
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
NS3 non-structural protein 3
NTBI non-transferring bound iron
OCLN Occludin
OMP outer membrane protein
PBL peripheral blood lymphocytes
PCFT proton-coupled folate transporter
Pch pyochelin
Pvd pyoverdine
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PZP pyrazolopyridinone
RBC red blood cells
RIA reductive iron assimilation
RNA ribonucleic acid
RNR ribonucleotide reductase
ROS reactive oxygen species
SIT siderophore iron transporter
SLC39A8 Solute carrier family 39 member 8
SRB1 Scavenger receptor class B type 1
STAT Signal Transducer and Activator of Transcription
STEAP3 Six Transmembrane Epithelial Antigen of Prostate 3
TAFC triacetylfusarinine C
TBI transferrin-bound iron
TGF-β transforming growth factor beta
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