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Abstract: Iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) contrast agents
have received considerable interest due to their superior magnetic properties. To increase the biocom-
patibility and blood circulation time, polyethylene glycol (PEG) is usually chosen to decorate IONPs.
Although the surface effect induced by the PEGylation has an impact on the relaxometric properties
of IONPs and can subsequently affect the imaging results, the occurrence of particle aggregation
has troubled researchers to deeply explore this correlation. To shed light on this relationship, three
diphosphonate PEGs with molecular weights of 1000, 2000, and 5000 Da were used to replace the
hydrophobic oleate ligands of 3.6 nm and 10.9 nm IONPs. Then, the contrast enhancement properties
of the resultant “aggregation-free” nanoparticles were carefully evaluated. Moreover, related theories
were adopted to predict certain properties of IONPs and to compare with the experimental data,
as well as obtain profound knowledge about the impacts of the PEG chain length on transverse
relaxivity (r2) and longitudinal relaxivity (r1). It was found that r2 and the saturated magnetization of
the IONPs, independent of particle size, was closely related to the chain length of PEG. The results
unveiled the correlation between the chain length of the coated PEG and the relaxometric properties
of IONPs, providing valuable information which might hold great promise in designing optimized,
high-performance IONPs for MRI-related applications.

Keywords: iron oxide nanoparticles; relaxometric properties; PEG chain length; MRI contrast agent

1. Introduction

Owing to their superior magnetic and biocompatible properties, iron oxide nanopar-
ticles (IONPs) have been widely used for biomedical applications such as magnetic reso-
nance imaging (MRI) [1–3], drug delivery [1], cell tracking [4,5], and gene therapy [6,7].
In particular, IONPs serve as contrast agents for the MRI, offering noninvasive and real-
time manners to visualize the anatomical structure of the body. Therefore, they have
received remarkable interest in single-mode MRI [8–10], multimodality imaging such as
PET/SPECT-MRI [11,12], MRI-CT [13,14], and MRI-optical imaging [15,16], as well as MRI-
guided therapy such as MRI-PTT/PDT [17,18] and MRI-chemotherapy [19]. To achieve
better MRI diagnosis accuracy, a great number of efforts have been devoted to improve the
contrast enhancement effect of IONPs in the last two decades.

As one of the most important parameters of contrast agents, relaxivity provides a
valuable measure for evaluating the degree with which the material can highlight the
contrast between the tissue of interest and its surrounding areas. Since a higher relaxivity
corresponds to a better contrasting capability, a large number of studies were carried out to
obtain contrast agents with enhanced relaxivity through tailoring different characteristics
of the materials. Thus far, it is well-accepted that the relaxivity of IONPs depends on
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many factors such as particle size and size distribution [20–22], surface properties [23–26],
state of aggregation [10,27–30], and shape [31,32]. Among the factors mentioned above,
the size effect is the most intensively investigated parameter, and a set of size-related
criteria was suggested for comprehensive tuning of the relaxivity and pharmacokinetics of
IONPs. Moreover, the surface modification of nanoparticles plays an important role in their
biomedical applications. Particularly, proper surface modification of IONPs can ensure
their colloidal stability as well as capability to effectively escape immunological attacks
following administration in blood, resulting in a long blood residence time. To date, many
kinds of materials such as DMSA [33], PEG [34–36], PVP [37], and silica [38,39] have been
employed as the surface coating layer of IONPs for MRI applications, among which PEG
has shown undoubted advantages in constructing biocompatible probes. Although some
efforts have been made to gain insight into the effect of surface chemistry on the contrast
properties of IONPs [24,32,40,41], the influence of surface coating on the relaxivity of the
nanoparticles has not been well understood. The particle aggregation, which usually occurs
following the surface modification, has troubled researchers to identify the relationship
between the relaxometric properties and the surface chemistry of IONPs. In our previous
study, taking advantage of PEG derivatives with different anchoring moieties including
diphosphonate, catechol, and hydroxamate groups, which have high affinity towards
IONPs, the aggregation formation of the nanomaterials was hindered [25]. Additionally,
a plausible explanation for the effect of anchoring groups on the relaxivity of IONPs was
suggested. However, with respect to the PEG chain length, most of the studies focused
on the impacts on the pharmacokinetics and biodistribution [42,43]. The effects on the
relaxometric properties of IONPs remained unclear and need to be explored in-depth.

Therefore, the current study was devoted to systematically investigate the effect
of surface modification on the relaxivity of IONPs. Building upon our previous study,
diphosphonate-PEG (DP-PEG) derivates with different molecular weights were employed
to replace the native hydrophobic ligands on 3.6 nm and 10.9 nm-sized IONPs. Due to
the strong binding ability of the diphosphonate group to IONPs, two differently sized hy-
drophilic probes with varying PEG chain length were obtained. The resulting hydrophilic
IONPs can individually disperse in aqueous solution, eliminating the disturbance of aggre-
gated nanoparticles as a consequence. Thus, the prepared samples served as great candi-
dates to take part in the investigation of PEG length effect on the relaxometric properties
of IONPs, providing valuable information for designing high-performance nano-contrast
agents for MRI applications.

2. Materials and Methods
2.1. Materials

Ferric acetylacetonate (Fe(acac)3) was purchased from Sigma–Aldrich and used after
two recrystallizations. Diphenyl ether was used after vacuum distillation. Oleic acid,
oleylamine, 1-octadecene, and 1-octadecanol were purchased from Sigma–Aldrich and
used as received. Other chemicals of analytical grade, including ethanol, ether, cyclohexane,
and tetrahydrofuran (THF), were used as received. Diphosphonate PEG (Mw ≈ 1000, 2000,
and 5000 Da) with a diphosphonate group at one end of the chain and a methoxy group at
the other, were customized products provided by Suzhou Xinying Bio-Medical Technology
Co. Ltd. (Suzhou, China) The iron oleate complex was prepared according to a previous
report [42].

2.2. Synthesis of Hydrophobic IONPs

IONPs with a core size of 3.6 nm were synthesized according to a previous report,
with slight modifications [2]. Typically, 1.41 g (4 mmol) of Fe(acac)3, 3.39 g (12 mmol) of
oleic acid, 3.21 g (12 mmol) of oleylamine, and 2.70 g (10 mmol) of 1-octadecanol were
dissolved in 40 mL of diphenyl ether. After being purged with nitrogen for 30 min, the
solution was refluxed for 30 min under stirring. Then, the reaction system was cooled
to room temperature. The resultant nanoparticles were precipitated by ethanol, collected
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by centrifugation, washed with ethanol three times, and finally, redispersed in THF or
cyclohexane for further experiments.

IONPs with a core size of 10.9 nm were also synthesized according to a previous
report [1]. In brief, 3.6 g (4 mmol) of freshly prepared iron oleate and 3.39 g (4 mmol) of
oleic acid were dissolved in 25 mL of 1-octadecene. The resultant solution was heated to
310 ◦C at a rate of 3.3 ◦C/min and then maintained at 310 ◦C for 30 min under nitrogen
protection. The preparation was terminated by cooling the reaction mixture to room
temperature. The solution was subjected to the purification steps mentioned above for
3.6 nm nanoparticles and resulted in obtaining 10.9 nm IONPs.

2.3. Ligand Exchange

Typically, 150 mg of PEG derivative was dissolved in 10 mL of THF containing
10 mg hydrophobic IONPs. Then, the reaction mixture was heated to 60 ◦C and kept at
this temperature for 12 h under stirring. Afterwards, the IONPs were precipitated by
cyclohexane, isolated via centrifugation, washed with cyclohexane three times, and then
dried under a vacuum at room temperature. The particle powders obtained in this way,
independent of the molecular weight of PEG and the particle core size, were found to be
readily dissolved in water, supporting that the PEG coating was effectively realized. To
remove excess PEG ligands, the resultant aqueous solutions containing the PEGylated
IONPs were purified by ultrafiltration for 4 cycles using a 100 kDa MWCO centrifugal filter
(Millipore YM-100, Merck, Germany).

2.4. Characterizations

Transmission electron microscopy (TEM) images of the nanoparticles were taken on
a JEM-100CXII electron microscope (JEOL, Japan) at an acceleration voltage of 100 kV.
The particle size was determined by averaging at least 300 particles per sample. Powder
X-ray diffraction (XRD) patterns of the particle samples were recorded on a D/Max-2500
diffractometer (Regaku, Japan) under Cu Kα1 radiation (λ = 1.54056 Å). TGA measurements
were performed on a TG209F3 thermogravimetric analyzer (NETZSCH, Germany). The
magnetic properties of the resultant samples were characterized by using a vibrating
sample magnetometer (VSM JDM-13, Changchun Yingpu Magnetoelectric Technology
Development Co., Ltd., China). Dynamic light scattering (DLS) measurements were carried
out at 298.0 K with a Nano ZS (Malvern, United Kingdom) equipped with a solid-state He-
Ne laser (λ = 633 nm) for measuring the hydrodynamic size of the resultant nanoparticles.
The concentration of Fe was determined by using an inductively coupled plasma atomic
emission spectrometer (ICP-2000) produced by Jiangsu Skyray Instrument Co., Ltd. (China)

2.5. Relaxivity Measurements

The relaxivity measurements were carried out on a 3 T clinical MRI instrument (Signa
3.0 T HD, GE, Milwaukee, WI, USA). A series of aqueous solutions of PEG-coated IONPs
in 2 mL Eppendorf tubes were prepared. The parameters for T1 measurements were set as
follows: echo time (TE) = 25.3 ms and repetition time (TR) = 500, 1000, 1500, and 2000 ms.
For T2 measurements, the parameters were set as TR = 2000 ms and TE = 20, 40, 60, 80, and
100 ms.

3. Results and Discussion
3.1. Synthesis of Hydrophobic IONPs

The hydrophobic IONPs were synthesized based on the thermal decomposition
method according to previous reports, with slight modifications [44,45]. The representative
TEM images of the as-prepared nanoparticles together with their corresponding particle
size distribution profiles are shown in Figure 1a,b. As it can be seen from the figures,
nearly monodispersed particles with narrow size distributions and average particle sizes
of 3.6 ± 0.5 nm and 10.9 ± 1.5 nm were obtained. For the sake of simplicity, the former
samples are referred to as “small” and the latter ones are labeled as “large” nanoparticles
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throughout this manuscript. The X-ray diffraction patterns of both the small and large
nanoparticles shown in Figure 1c matched well with that of the magnetite. Moreover,
the room-temperature magnetization curves illustrated in Figure 1d implied that these
two groups of samples were superparamagnetic. However, the magnetization (Ms) did not
reach the state of saturation for either sample while measured under a range of magnetic
fields from the weakest to the highest available in our equipment (12 kOe), suggesting
that these two differently sized samples were also prone to paramagnetism. In addition,
due to a higher degree of spin disorder on their particle surfaces, the small particles dis-
played stronger paramagnetic behavior. Although the magnetizations recorded at 12 kOe
(i.e., 50.0 emu/g for the small and 42.6 emu/g for the large IONPs) were not fully satu-
rated, they were considered as quasi-saturated magnetizations in interpretation of their
performances in MR contrast enhancement effects.
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3.2. Ligand Exchange of Hydrophobic IONPs

Thermal decomposition of metal precursors at high temperature in the presence of
oleic acid and/or oleylamine in organic media has become the most successful approach
for producing monodispersed IONPs. However, the as-prepared IONPs are hydrophobic
and cannot be directly used for biomedical applications. As the phosphate group has a
strong binding affinity with IONPs, DP-PEG was employed to exchange the hydrophobic
ligands on the particle surface and render the hydrophobic IONPs water-soluble. In
order to investigate the effect of PEG chain length on the MR contrast enhancement effect,
three different molecular weights of DP-PEG, namely 1, 2, and 5 kDa, were utilized.
Depending on the molecular weight and the size of the IONPs (small or large), the resulting
six hydrophilic samples were labeled as S/L-DP-1/2/5K (e.g., S-DP-1K refers to the samples
prepared after exchanging the PEG of 1 kDa molecular weight with the native ligands of
small IONPs). After the ligand exchange process, the nanoparticles were dispersed in water,
forming transparent and aggregation-free solutions (Figure S1 in Supporting Information).
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To gain further insights into the impact of ligand exchange on the morphology of
the PEGylated IONPs, TEM measurements were carried out thoroughly, and the detailed
results are provided in Figure 2. As suggested by the results, particle aggregation was
observed in neither of the six resultant PEGylated samples. Statistical results on particle
size indicated that excluding the large IONPs, which encountered a size reduction from
10.9 to 9.5 nm following producing L-DP-1K, the ligand exchange process did not alter the
average size and size distribution profiles of the other five samples. The reason for the
size reduction in the case of L-DP-1K might lie in the fact that a fixed mass ratio of PEG
to IONPs was adopted in the ligand exchange processes. Since PEG with a low molecular
weight of 1 kDa was used in producing the L-DP-1K sample, excessive amounts of PEG
slightly etched the iron oxide particles. Nevertheless, such phenomenon was not observed
for the large IONPs treated by the 2 and 5 kDa PEGs (i.e., L-DP-2K and L-DP-5K sample,
respectively).
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Although the resultant PEGylated particles in powder form could spontaneously be
dissolved in water, any form of aggregation would alter the relaxometric properties of the
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samples and consequently, pose major obstacles for extracting magnetic relaxivity related
to particle size and surface coating structures. Therefore, dynamic light scattering analysis
was carried out to characterize the solution properties of the resultant IONPs. As shown in
Figure 3, the small and large IONPs exhibited relatively narrow particle size distributions
in cyclohexane (before ligand exchange), displaying single, scattering peaks located at
6.1 nm and 12.6 nm, respectively. After ligand exchange, the hydrodynamic size of all the
PEGylated nanoparticles increased by different degrees, while the size distribution profiles
remained nearly unchanged in comparison to those of their hydrophobic counterparts. In
addition, the hydrodynamic size gradually increased with the PEG chain length for both the
small and large IONPs. Moreover, the experimentally determined hydrodynamic sizes were
in good agreement with the theoretical predictions based on an empirical formula provided
in the literature [46], further indicating that the PEGylated particles were homogeneously
dispersed in water with no aggregations being present. In addition, all samples possessed
excellent colloidal stability and no precipitate was observed even after being stored for
3 years. The lack of aggregation is of great importance for investigating the contrast effects
associated with particle size and surface chemistry. More detailed DLS measurement results
are given in Table S1 and Figure S2.
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Figure 3. Number weighted hydrodynamic size profiles of 3.6 nm (a) and 10.9 nm (b) IONPs capped
by hydrophobic ligands or DP-PEG of different chain lengths. The small (3.6 nm) and large (10.9 nm)
IONPs have been denoted as S and L, respectively. Diphosphonate PEGs (DP) with molecular weights
of 1, 2, and 5 kDa were labeled as DP-1K, DP-2K and DP-5K, respectively.

3.3. MRI Enhancement Effects of the PEGylated IONPs

To evaluate the MR enhancement effect of the various types of PEGylated IONPs
mentioned above, relaxivity measurements were performed on a clinical 3 T MRI scanner
at room temperature. Figure 4a shows the T1- and T2-weighted MR images of the small
and large IONPs capped with DP-PEG, with different PEG chain lengths. As expected,
small IONPs showed obvious T1 and T2 contrast effects, especially when the concentration
of iron ions ([Fe]) was higher than 0.6 mmol/L. In contrast, the large IONPs exhibited
a stronger T2 contrast effect and no obvious T1 effect. The concentration-independent
longitudinal (r1) and transversal (r2) relaxivities are important parameters for qualifying
MRI contrast agents in practice. Therefore, obtaining a comprehensive understanding of
the structural impacts of PEGylated IONPs on r1 and r2 is of great significance. These
parameters were extracted through linear regression fitting of the plots of experimentally
determined longitudinal and transverse relaxation rates of water protons against the [Fe],
as shown in Figure 4b,c. The fitting results listed in Table 1 indicate that all the samples
exhibited comparable r1 values but higher r2 values in comparison to the clinical Gd-based
contrast agents [47,48]. In addition, regardless of the PEG chain length, large IONPs
showed higher r2 values compared to the small IONPs. Moreover, IONPs of both sizes
exhibited monotonically increased r2 against the PEG chain length, contrasting with the
slight variation and nonmonotonic behaviors of r1, which showed a maximum value for
the samples coated with 2 kDa PEG.
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Table 1. Effects of PEG chain length on the relaxivities of DP-PEG-capped IONPs.

3.6 nm IONPs 10.9 nm IONPs

Sample r2
(mM−1 s −1)

r1
(mM−1 s −1) Sample r2

(mM −1 s −1)
r1

(mM−1 s −1)

S-DP-1K 16.97 2.67 L-DP-1K 65.37 2.96
S-DP-2K 24.64 3.21 L-DP-2K 79.07 3.24
S-DP-5K 34.82 2.89 L-DP-5K 103.28 2.97

Theoretically, the relaxation enhancement of IONPs is mainly dominated by an outer-
sphere mechanism, which originates from the relaxation enhancement of water molecules
in bulk water. Under a high magnetic field, the r2 and r1 of IONPs can be expressed
by [25,49–52]:

r2 =
256π2γ2

I Mn

1215ρ

(
1

1 + L/a

)3
M2

s τD (1)

r1 =
128π2γ2

I Mn

405ρ

(
1

1 + L/a

)3
M2

s τD JA

(√
2ωIτD

)
(2)

where γI is the proton gyromagnetic ratio and MS is the saturation magnetization of the
IONP core. Mn and ρ are the molar mass and bulk phase density of IONPs, respectively;
a is the radius of the IONP core; r stands for the effective radius of particles which is equal
to a plus the water impermeable thickness (L) of the surface coating layer (r = a + L); τD is
the translational diffusion time (τD = r2/D, D is the water translational diffusion constant);
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ωI is the proton Larmor frequency; and JA represents Ayant’s spectral density function that
can be given by:

JA(z) =
1 + 5z

8 + z2

8

1 + z + z2

2 + z3

6 + 4z4

81 + z5

81 + z6

648

(3)

According to Equation (1), the transverse relaxivity of IONPs depends on many
factors, including the particle core size, saturation magnetization, water impermeable
thickness of the surface coating layer, and translational diffusion time of protons. As
demonstrated previously, the hydrophilic PEGs were effectively replaced with hydrophobic
ligands on the particle surface based on their higher binding affinities to iron, which would
result in negligible water impermeable thickness of the surface coating layer (i.e., L ≈ 0).
Therefore, for IONPs with the same core size, the transverse relaxivity is mainly related to
the saturation magnetization and translational diffusion time.

Table 2 and Figure S3 show the VSM results of IONPs coated with DP-PEGs of different
PEG lengths. The saturation magnetizations of the samples generally decreased after ligand
exchange, regardless of the PEG chain length. This can be attributed to the enhanced
disturbance of the surface spin disorder layer thickness caused by PEGylation of the
particle surface. In addition, it is worth noting that the saturation magnetization increased
with increasing PEG chain length. Presumably, PEG derivatives of longer chain lengths
caused higher steric hindrance, giving rise to relatively weaker bonding activity to iron
on the particle surface, which in turn, might lead to a thinner surface spin disorder layer.
This conjecture is supported by our previous report in which the saturated magnetization
of IONPs was shown to be inversely correlated to the binding affinity of PEG derivates
capped on the surface of nanoparticles [25].

Table 2. The saturation magnetization of IONPs coated with DP-PEGs of different chain lengths 1.

3.6 nm IONPs 10.9 nm IONPs

Sample MS
(emu/g) Sample MS

(emu/g)

S-DP-1K 7.69 L-DP-1K 11.69
S-DP-2K 12.97 L-DP-2K 19.79
S-DP-5K 17.99 L-DP-5K 28.13

1 The saturation magnetization refers to the quasi-saturated magnetization recorded at 12 kOe. The magnetization
was normalized to the mass of IONPs (the PEG mass was subtracted based on TGA results).

In comparison with the saturation magnetization, the translational diffusion time is
immeasurable. However, according to the expression of τD, it can be easily inferred that
the permeability of the PEG coating layer to water molecules can prolong the translational
diffusion time because the diffusivity of water molecules in the PEG coating layer is
lower than that of water in the bulk phase. Obviously, the translational diffusion time is
dependent on the PEG chain length and density on the particle surface. In other words, the
longer the PEG chain length is or the higher the PEG density is, the longer the translational
diffusion time will be. As DP-PEG of longer chain length exhibit relatively weaker bonding
activity to iron on the particle surface, IONPs coated with the longer chain lengths of
the polymer would undoubtedly have lower PEG density on their surface. Thus, since
the chain length and density have antagonistic effects, evaluating the translational time
is difficult.

Nevertheless, as shown in Table 1, the transverse relaxivity was directly proportional
to the PEG chain length, which was consistent with the saturation magnetization trend,
indicating that the transverse relaxivity difference was dominated by the variation in satu-
ration magnetization. This observation seems reasonable, since the transverse relaxivity is
proportional to the translational diffusion time and the square of saturation magnetization.

Similar to the case of transverse relaxivity discussed above, the longitudinal relaxivity
is also proportional to the square of saturation magnetization. However, as shown in
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Figure S4, since the term of τD JA
(√

2ωIτD
)

in Equation (2) is nonmonotonic for τD, this
proportionality is more complex compared to that of transverse relaxivity. The value of the
τDJA term rises at the beginning, then drops with the increase in translational diffusion
time. As mentioned previously, the relative order of the translational diffusion time for
IONPs coated with DP-PEG of different chain lengths is unpredictable. Therefore, the
evaluation of the longitudinal relaxivity change caused by the translational diffusion time
is intricate. Nevertheless, the results showed that the variation in both of the saturation
magnetization and translational diffusion time did not induce any noticeable change in the
longitudinal relaxivity of IONPs, with respect to the PEG chain length.

Depending on the application of interest, specific optimizations of certain properties of
IONPs need to be performed. For instance, striking a balance between the pharmacokinetics
and relaxometric properties of IONPs is necessary for tumor diagnosis in order to prepare
high performance nanoprobes. According to previous reports, PEG chain length has
remarkable effects on the blood circulation time and metabolic behaviors of IONPs [43,53].
In the current work, it was shown that the PEGylation of IONPs would also result in
a relaxivity change of IONPs. We believe that the results of our study shed light on
the correlation between these important parameters, providing essential information for
seeking the balance.

4. Conclusions

In summary, diphosphonate PEGs with molecular weights of 1, 2, and 5 kDa were
used to exchange the hydrophobic ligands of 3.6 nm and 10.9 nm IONPs. The high
binding affinity of diphosphonate groups for Fe3+ ions enabled a reliable ligand exchange
process for achieving PEGylated IONPs that were well dispersible in water. As a result
of the absence of particle aggregation in the resultant solutions, in-depth evaluations
of the impacts of the PEG chain length on the contrast effects of the underlying IONPs
became feasible. Further systematic investigation showed that the transverse relaxivity,
r2, was positively correlated with the PEG chain length due to the enhanced saturation
magnetization caused by increasing in PEG chain length. Conversely, the longitudinal
relaxivity, r1, exhibited slight and non-monotonous variation with changing PEG chain
length, which might be attributed to the antagonistic effects of translational diffusion time
and saturation magnetization. In conclusion, the current investigations disclose the impacts
of the chain length of PEG ligands on the relaxometric properties of the underlying IONPs
and thus, provide valuable information for constructing high-performance MRI contrast
agents for specific applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12152673/s1, Figure S1: Photographs of PEGylated IONPs in aqueous solution, Figure S2:
Detailed DLS measurement results of large IONPs, Figure S3: Room-temperature magnetization
curves of PEGylated IONPs, Figure S4: The τDJA profile computed under magnetic field of 3 T,
Table S1: The experimental and predicted hydrodynamic sizes of the PEGylated IONPs.
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