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Abstract

Malaria incidence in Panama has plateaued in recent years in spite of elimination efforts,

with almost all cases caused by Plasmodium vivax. Notwithstanding, overall malaria preva-

lence remains low (fewer than 1 case per 1000 persons). We used selective whole genome

amplification to sequence 59 P. vivax samples from Panama. The P. vivax samples were

collected from two periods (2007–2009 and 2017–2019) to study the population structure

and transmission dynamics of the parasite. Imported cases resulting from increased levels

of human migration could threaten malaria elimination prospects, and four of the samples

evaluated came from individuals with travel history. We explored patterns of recent common

ancestry among the samples and observed that a highly genetically related lineage (termed

CL1) was dominant among the samples (47 out of 59 samples with good sequencing cover-

age), spanning the entire period of the collection (2007–2019) and all regions of the country.

We also found a second, smaller clonal lineage (termed CL2) of four parasites collected

between 2017 and 2019. To explore the regional context of Panamanian P. vivax we con-

ducted principal components analysis and constructed a neighbor-joining tree using these

samples and samples collected worldwide from a previous study. Three of the four samples

with travel history clustered with samples collected from their suspected country of origin

(consistent with importation), while one appears to have been a result of local transmission.

The small number of Panamanian P. vivax samples not belonging to either CL1 or CL2 clus-

tered with samples collected from Colombia, suggesting they represent the genetically simi-

lar ancestral P. vivax population in Panama or were recently imported from Colombia. The

low diversity we observe in Panama indicates that this parasite population has been previ-

ously subject to a severe bottleneck and may be eligible for elimination. Additionally, while

we confirmed that P. vivax is imported to Panama from diverse geographic locations, the

lack of impact from imported cases on the overall parasite population genomic profile

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008962 December 14, 2020 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Buyon LE, Santamaria AM, Early AM,

Quijada M, Barahona I, Lasso J, et al. (2020)

Population genomics of Plasmodium vivax in

Panama to assess the risk of case importation on

malaria elimination. PLoS Negl Trop Dis 14(12):

e0008962. https://doi.org/10.1371/journal.

pntd.0008962

Editor: Margaret A. Phillips, University of Texas

Southwestern Medical School, UNITED STATES

Received: August 25, 2020

Accepted: November 6, 2020

Published: December 14, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pntd.0008962

Copyright: © 2020 Buyon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that all data underlying the findings are fully

available without restriction. Illumina sequencing

https://orcid.org/0000-0001-5805-6574
https://orcid.org/0000-0002-3169-2324
https://orcid.org/0000-0002-1665-9323
https://orcid.org/0000-0002-3711-9449
https://doi.org/10.1371/journal.pntd.0008962
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008962&domain=pdf&date_stamp=2020-12-28
https://doi.org/10.1371/journal.pntd.0008962
https://doi.org/10.1371/journal.pntd.0008962
https://doi.org/10.1371/journal.pntd.0008962
http://creativecommons.org/licenses/by/4.0/


suggests that onward transmission from such cases is limited and that imported cases may

not presently pose a major barrier to elimination.

Author summary

Plasmodium vivax is a major global health threat particularly in Central and South Amer-

ica which experiences 700,000 P. vivax cases each year. Panama has greatly reduced P.

vivax incidence, however, this progress has since plateaued. Understanding how the para-

site moves throughout the country, uncovering pockets of focalized transmission, and

identifying imported cases, is critical for Panama and other countries to succeed in their

elimination efforts. Genomic epidemiology and population genomics tools can help pro-

vide this information needed to inform malaria control policy. In this study, we collected

100 Panamanian P. vivax samples from two time periods (2007–2009 and 2017–2019), of

which 59 yielded usable sequencing data. We found that the majority (n = 47) samples

belong to a single highly related lineage, termed CL1. This lineage has persisted since at

least 2007. We also observed a second smaller completely clonal lineage of four parasites,

termed CL2. Additionally, we observed four samples that shared no recent ancestry with

any other Panamanian samples but clustered with samples collected in a previous study

from Colombia. We highlight how genomic epidemiology can be used to spotlight para-

sites that may be imported as a result of human migration, as well as corroborate or refute

the country of origin as suggested by the travel history of a patient. There is no evidence of

outcrossing between these potentially imported parasites and the local Panamanian para-

site population. This finding suggests that imported parasites are not driving ongoing

malaria transmission in Panama. We note the need for sustained genomic surveillance of

P. vivax in Panama to monitor transmission dynamics in the local population and to fur-

ther flag potentially imported cases. The low diversity we observe in Panama indicates

that this parasite population has been previously subject to a severe bottleneck and may be

eligible for elimination.

Introduction

Malaria is a parasitic disease transmitted by the bite of female Anopheles mosquitoes. Malaria

parasites cause approximately 219 million cases and 435,000 deaths each year, the vast majority

in sub-Saharan Africa [1]. Plasmodium falciparum, the most virulent of the six Plasmodium
species that infect humans (P. falciparum, P. vivax, P. malariae, P. ovale wallikeri, P. ovale cur-
tisi, and P. knowlesi), causes the majority of these cases [1]. Though billions of dollars have

been devoted to the control and eradication of malaria caused by P. falciparum, comparatively

little attention has beens given to P. vivax, the most prevalent malaria parasite outside Africa

[2]. The impact of P. vivax on human health was once considered minimal, relative to the

more virulent P. falciparum [1,2]. However, recent studies suggest P. vivax causes a significant

global health burden [1,2]. The P. vivax lifecycle includes a dormant liver “hypnozoite” stage

[2].The hypnozoite stage can cause a relapse of malaria weeks to months after the initial infec-

tion, thus beginning the cycle of infection and complicating control efforts [2].

Sixty percent of the Central and South American population lives in areas with ongoing

malaria transmission, predominantly caused by P. vivax [3]. The region experiences about

700,000 P. vivax cases each year [1]. Between 2000 and 2015 the incidence rate of malaria fell
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Panamá. Authors funded: N.O. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist. Author Jose

Lasso was unable to confirm their authorship

contributions. On their behalf, the corresponding

author has reported their contributions to the best

of their knowledge

https://doi.org/10.1371/journal.pntd.0008962


37% globally and 42% in Africa [1]. In the Americas during the same period, malaria mortality

decreased by 72% [1]. Unfortunately, recent evidence suggests that this trend has stalled, and

in some countries malaria incidence has even increased [1]. Panama eliminated the autochtho-

nous transmission of P. falciparum in 2010, outside of a small outbreak on the Colombian bor-

der in 2015 [4]. Since 2010, P. vivax has caused almost all malaria cases in Panama [1,5,6]. P.

vivax cases in Panama have declined precipitously since 2005, from close to 1 case per 1000

persons, to under 0.25 cases per 1000 persons in 2017 [7]. However, malaria incidence in Pan-

ama has plateaued since 2008. This plateau in incidence could be due to low levels of transmis-

sion and/or imported cases that are re-seeding infections.

Human movement leading to parasite migration is a potentially significant epidemiological

threat to malaria control in Panama. Parasite importation stemming from human migration is

a challenge to elimination programs in other countries around the world [8–10]. The unique

geographic position of Panama makes it a crossroads for human migration to the United States

from South America [5,11]. Migrants enter Panama through two paths: through the Darien

jungle region on the border with Colombia, and through the Kuna Yala Amerindian reserve

(‘Comarca’) on the Caribbean coast [5,6,11]. Previous studies implicate these regions as focal

points of ongoing malaria transmission in Panama and suggest this is partly due to imported

parasites [5,11]. It is estimated that approximately 60,000 continental and extra-continental

migrants crossed the southern border of Panama through the Darien jungle region in 2015

and 2016 [12].

To inform effective malaria elimination strategies in Panama, it is critical to understand

how the parasite moves throughout the country, uncover pockets of focalized transmission,

and differentiate between sustained local infection and case importation as the reason for dis-

ease persistence. [4,5]. Whole-genome sequencing can help paint a detailed picture of parasite

movement and transmission within and between countries [10,12,13]. However, P. vivax can-

not be grown in vitro, and the difficulty of sequencing P. vivax from clinical samples domi-

nated by host DNA has hindered parasite population studies [14]. Recent advances such as

hybrid capture [15] and selective whole genome amplification (SWGA) mitigate this problem

by allowing for parasite DNA to be selectively enriched before sequencing [14]. Both methods

have allowed for population genomic studies of P. vivax using samples directly from patients.

In this study, we describe the population genomics of P. vivax in Panama over a 12-year

time span, with the aim of understanding patterns of genetic variation and recent shared

ancestry (relatedness) at different geographical and temporal scales. We found the vast major-

ity of P. vivax cases in Panama belong to a single highly related lineage that has persisted for at

least a decade. Furthermore, we observed a second smaller clonal lineage concentrated near

the Panamanian-Colombian border. We also found several samples that shared no relatedness

with any other sample, which may represent either localized pockets of outbred P. vivax trans-

mission or imported cases. Revealing these patterns of relatedness among parasite infections

can help inform best strategies for targeting interventions or case investigation methods to

increase the likelihood of successful elimination. We discuss these findings and their implica-

tions for ongoing elimination efforts of P. vivax in Panama. The results obtained from this

study will help inform future elimination efforts in Panama and the rest of Meso-America.

Materials and methods

Ethics statement

The Research Bioethics Committee (CBI) of the Gorgas Memorial Institute of Health Studies

gave the study ethical approval (Permit: 154/CBI/ICGES/17). Written consent was obtained

from infected patients prior to collecting samples.
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Sample collection

We collected 96 P. vivax samples from infected consenting volunteers identified through pas-

sive or active surveillance by technicians from the Department of Vector Control, Ministry of

Health (MINSA) of Panama. Two groups of DNA samples from infected patients were used in

this study: 1) 56 DNA samples collected during 2007–2009 and 2) 40 DNA samples collected

during 2017–2019. The 2007–2009 samples were collected as part of an earlier study exploring

the genetic diversity of P. falciparum and P. vivax in Panama (Approved by The National

Committee for Research Bioethics of Panama (CNBI): Permit: 468/CNBI/ICGES/06, PI: José

E. Calzada). The Gorgas Memorial Institutional Animal Use and Care Committee (CIUCAL)

(Permit: 002/CIUCAL-ICCES-2012) approved the use of Aotus P. vivax AMRU-1 and SAL-1

infected blood samples as a source of control DNA. Patient blood samples were collected by

finger-prick with a lancet and spotted into EBF 903 Five Spot Blood Cards (Eastern Business

Forms, INC, SC, USA). The samples were then transported at ambient temperature to the lab-

oratory and stored at –20˚C until processing. Thin and thick blood smears were obtained from

patient samples. The blood smears were stained with Giemsa for percent parasite density

determination, species identification, and stage differential counts. Each volunteer donated

~150 μL of blood.

Information survey

We collected demographic, geographic, socioeconomic, and epidemiological information

from each study subject using an epidemiological form developed for the Survey123 for Arc-

GIS online survey program (Esri, Redlands, CA), as allowed under ethical approval.

Malaria microscopy

Giemsa stained thick and thin blood smears were examined by light microscopy for parasite

density determinations, Plasmodium species confirmation, and parasite lifecycle stage count.

Parasite densities were calculated by quantifying the number of malaria-infected red blood

cells (iRBCs) among 500–2000 RBCs on a thin blood smear and expressing the result as per-

cent parasitemia (percent parasitemia = parasitized RBCs /total RBCs) x 100).

DNA extraction

We extracted DNA from the filter paper blood spots using the Chelex method as described

[16] for samples obtained during 2007–2009 and with the Qiagen DNA mini kit for samples

obtained during 2017–2019.

Molecular confirmation of P. vivax infection

We confirmed P. vivax infection for all samples collected during 2017–2019 by amplification

of the P. vivax PVX_18SrRNA gene using a qRT-PCR assay as described [17].

Selective whole genome amplification and sequencing

We carried out DNA pre-amplification as described [14]. Briefly, the thermocycler was pre-

heated to 35˚C. We dispensed aliquots of 37μl of Power SYBR Green Master Mix, plus 3μl

phi39 into each PCR tube, next adding DNA and water to achieve a final volume of 47μl. Ther-

mocycler settings were as follows: 35˚C x 10 min; 34˚C x 10 min; 33˚C x 10 min; 32˚C x 10

min; 31˚C x 10 min; 30˚C x 16 hours; 65˚C x 10 min; and, 4˚C for infinity. SWGA reaction

products were diluted with 50 μl of water. We purified 50 μl of the diluted product using 50 μl

AmPURE beads according to the instructions of the manufacturer. We then eluted beads in
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30 μl of water. Approximately 60–120 ng/μl of DNA was obtained after bead purification of

the SWGA reaction. We measured DNA concentration using Nanodrop quantitation.

Whole-genome sequencing

We performed whole-genome sequencing (WGS) on all 96 P. vivax samples using Nextera

libraries and an Illumina HiSeq X platform. Sample reads were aligned to the P01 reference

genome assembly using BWA-MEM, version 0.7 [18].

SNP discovery and quality filtering

We marked duplicate reads using the MarkDuplicates tool from Picard tools. We next per-

formed local realignment around indels using the Genome Analysis Toolkit (GATK) Realig-

nerTargetCreator and GATK IndelRealigner (GATK Version 3.5.0). We called variants using

GATK HaplotypeCaller using best practices to call and filter single nucleotide polymporph-

isms (SNPs) and generate individual variant call files (gVCFs) s for each sample. We called var-

iants in two batches, one containing samples collected in 2007–2009 and one containing

samples collected in 2017–2019. We performed joint variant calling on the sets separately

using GATK GenotypeGVCFs tool with GATK hard filters, including calls in subtelomeric

regions. The resulting datasets consisted of 56 samples and 407,554 sites for the 2007–2009

samples, and 40 samples and 171,433 variants for the 2017–2019 samples. We retained samples

for analysis if they exhibited a minimum mean read depth of five and had calls at more than

80% of variant sites in the dataset corresponding to their collection period, including those in

subtelomeric regions. We calculated and evaluated data quality measures using the VCFtools

package and custom R scripts [19]. Thirty-five samples from 2007–2009 and 24 samples from

2017–2019 passed these filters and were kept for further analysis.

We next used GenotypeGVCFs tool to construct a joint dataset with the 59 Panamanian

samples plus a collection of previously collected global samples (Bioproject numbers

PRJNA240356-PRJNA240533 [20]). The joint dataset contained 168 samples and 2,250,245

variants. We filtered sites on the basis of quality (GQ > 40), passing VQSR truth sensitivity

level of 0.99 or greater, missing rate (having a call at that site in> 85% of samples). We also

excluded any sites that were not bi-allelic and indels. The joint dataset generated after filtering

contained 168 samples and 62,211 sites.

Lastly, we generated a dataset containing SNPs found jointly in 80% of both the 2007–2009

and 2017–2019 samples. We also filtered sites in this dataset by excluding non-biallelic SNPs

and on the basis of quality (GQ> 30), and passing GATK filters. The resultant dataset con-

tained 56 samples and 2,335 SNPs for the 2007–2009 samples, and 40 samples and 1,301 SNPs

for the 2017–2019 samples. For these samples, we generated a highly filtered variant set con-

taining biallelic SNPs that passed the GATK filters (GQ> 30, truth sensitivity level> 0.99,

Mean DP> five) and were called in at least 80% of the samples from both time periods (2007–

2009; 2017–2019). Calls from the two sample sets were merged to create a unified dataset of 96

samples and 264 genotyped SNPs.

Determination of sample clonality

We estimated sample clonality using the Fws statistic. Fws measures the within-sample genetic

diversity (measured by heterozygosity Hw) relative to the overall population genetic diversity

(Hs) [21]. The underlying theory assumes that a monoclonal (single strain) infection has

extremely low genetic diversity relative to overall population genetic diversity. By contrast, a

polyclonal (multiple strain) infection has high diversity relative to overall population diversity

(compared to a monoclonal infection). By estimating the ratio between within-host diversity
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and population diversity, we can distinguish between monoclonal and polyclonal infections

[21]. A sample with an Fws statistic of 0.95 or greater (> = 0.95) is considered monoclonal. We

calculated Fws using the R package moimix [22].

Analysis of recent common ancestry

We used hmmIBD [23] to estimate the proportion of sites identical by descent (IBD) between

sample pairs to ascertain recent common ancestry among Panamanian and Colombian sam-

ples collected previously from a global P. vivax population study [20]. We estimated minor

allele frequency (MAF) for IBD inference using the genetically distinct Panamanian samples, a

representative sample from each of the two highly related Panamanian clusters, and the

Colombian samples. We included Colombian samples to improve MAF estimation given the

greater genetic diversity of the Colombian parasite population and presumed historical gene

flow with Panama. We subsetted the master dataset file to keep only samples collected in Pan-

ama and Colombia. Sites were excluded sites on the basis of minimum and maximum read

depth (five and thirty respectively) to ensure that we were using only high-quality SNPs. The

input dataset for hmmIBD contained 89 samples (59 Panamanian samples and 30 Colombian

samples) and 15,788 variant sites. We then re-formatted the data using a custom perl script for

input into hmmIBD along with the MAF estimates. We conducted analysis and visualization

of the hmmIBD output using custom R scripts.

Analysis of population structure

We employed principal components analysis (PCA) and a neighbor-joining tree to study the pop-

ulation structure of Panamanian samples in the context of the worldwide P. vivax population

[20]. We used a strictly filtered SNP set for PCA, keeping only variants with calls in at least 95% of

samples. This input dataset consisted of 168 samples and 2,428 variants. We used the R package

SNPRelate to conduct PCA [24]. Covariation within the two clusters heavily influenced the PCA

of all samples, so we also performed PCA using a single consensus sequence for each cluster.

We used the R packages ape, StAMPP, pegas, and adegenet, [25–28] to generate the neigh-

bor-joining tree and genetic distance statistics. First, we calculated Nei’s distance for all pair-

wise sample combinations using the master dataset consisting of 168 samples and 62,211 sites

to generate a distance matrix. The distance matrix was used to generate a tree. We used the

bootphylo function in the ape package to bootstrap the dataset 100 times to estimate nodal

support. We then visualized the final tree with support values using the FigTree program [29].

We used R software (R version 3.6.1) to carry out statistical analysis and data visualization.

Results

Recent common ancestry analysis reveals single highly related lineage of

parasites

We successfully generated usable sequencing data from 35/56 (58%) Panamanian P. vivax
samples collected between 2007–2009 and 24/40 (60%) collected between 2017–2019, for a

total of 59 samples (Fig 1A). All Panamanian samples had an Fws statistic greater than 0.95,

indicating that they were all monoclonal (Fig 1B).

We next analyzed the 59 Panamanian genomes in the context of 109 previously published

P. vivax genomes, generating a filtered dataset consisting of 168 samples and 62,211 high-qual-

ity biallelic SNPs.

We used hmmIBD [23] to estimate the proportion of the genome that is identical by

descent (IBD) among Panamanian sample pairs to understand patterns of recent common
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ancestry. IBD measures the proportion of the genome between two individuals that was inher-

ited from a recent common ancestor. Pairwise IBD values closer to 100% indicate very recent

common ancestry. We subsetted the dataset to contain only samples collected in Panama and

Colombia to estimate pairwise IBD. We strictly filtered sites on the basis of minimum and

maximum read depth (five and thirty respectively), resulting in a dataset with 89 samples and

15,788 sites for input into hmmIBD.

We observed a bimodal distribution of pairwise IBD in Panamanian samples, with peaks

near zero and 0.95 (Fig 2A). Forty-seven of the 59 Panamanian samples shared high IBD

(>0.875) with each other, indicating very recent common ancestry. Four other Panamanian

samples, all collected in the Kuna Yala Province, shared 100% IBD with each other, and 0–10%

IBD with any other sample, Panamanian or Colombian (Fig 2A and 2B). Another four Pana-

manian samples exhibited no IBD with each other nor any of the other Panamanian samples.

All four of these samples were collected in the Darien jungle region or Kuna Yala, which are

the two main points of entry for migrants traveling through Panama. These four samples drive

the modal peak of pairwise IBD at zero.

The variable degree of relatedness among the 47 samples sharing > 0.85 IBD suggested that

data quality potentially impacted the estimation of IBD. We plotted the relationship between

IBD and sample quality, measured by the average proportion of high coverage sites in each

sample pair, to determine if pairwise sample data quality affected the estimation of IBD (S1

Fig). We defined high coverage sites as sites with greater than 5x coverage (the cutoff for site

filtering). We observed that as the average proportion of high coverage sites for sample pairs

increased, pairwise IBD estimates correspondingly increased as well (S1 Fig). This relationship

Fig 1. Sequencing and Sample Assessment at Variant Sites. A) Distribution of variant site read coverage for each

sample stratified by the collection period. Coverage values> 100 were censored for visualization purposes. Samples

within the red boxes were kept for analysis. B) Distribution of Fws values for all samples, stratified by the collection

period. We interpreted Fws values> 0.95 as evidence of sample monoclonality.

https://doi.org/10.1371/journal.pntd.0008962.g001
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suggests that poor data quality can lead to underestimation of IBD. It is possible that the

majority of the pairwise IBD estimations would be closer to one had the overall sample

sequence quality been higher. The prevalent highly genetically related lineage is referred to

henceforth as cluster one (CL1). CL1 samples share an IBD fraction of at least 0.875 with other

samples in this cluster. We also concluded that the four samples that shared 100% IBD with

each other constituted a second completely clonal lineage, henceforth referred to as cluster two

(CL2).

Next, we examined how these two clusters and the other Panamanian samples not belong-

ing to either lineage were geographically distributed in Panama (Fig 3). Samples from CL1

were found across Panama. Notably, samples collected from both 2007–2009 and 2017–2019

were found in this lineage. The inclusion of samples from both collection periods demon-

strates that this lineage has persisted throughout Panama for at least a decade. We did not find

any evidence of structure in the P. vivax population by region or relative to the Panama Canal,

as was previously observed for P. falciparum [4].

We only observed samples belonging to CL2 in a specific locality, Puerto Obaldia, in the

Kuna Yala Amerindian territory (Comarca) along the Atlantic Coast. We lacked geographic

information for one of the four samples in CL2. Additionally, of four samples that shared no

recent common ancestry with any sample in the dataset, three were collected in Darien prov-

ince, along the Colombian border and one was collected in Kuna Yala.

After identifying two highly related lineages in Panama, we explored an approach for deter-

mining whether the samples excluded from analysis due to low coverage could belong to one

of these lineages. We identified a set of 264 genotyped SNPs that were called in at least 80% of

samples across both Panama sample collection periods. We then calculated Nei’s standard

genetic distance on all pairwise sample comparisons. The majority of excluded samples across

both collection periods (17/21 and 4/16 for the 2007–2009 and 2017–2019 collection periods

respectively; a total of 21/37 samples) exhibited very low levels (0–1%) of genetic distance with

the CL1 samples and higher genetic distance (0.2–0.25) with the CL2 samples (S2 Fig). Seven

samples in the 2017–2019 collection period had a high proportion of missing calls for these

264 SNPs, making distance measures uninformative. Three excluded samples from 2007–2009

Fig 2. IBD analysis of the Panamanian samples. A) The distribution of pairwise IBD estimates among the Panamanian samples. IBD values near zero indicate no recent

common ancestry. Values closer to one indicate that the sample pair are clonal or essentially clonal. B) Depicts heatmap of pairwise IBD values for Panamanian and

Colombian samples.

https://doi.org/10.1371/journal.pntd.0008962.g002
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collected in the Darien Jungle Region had relatively high genetic distance from all other sam-

ples in the dataset. Two samples from the 2017–2019 collection period exhibit very low (0–0.1)

genetic distance with the CL2 samples, and higher (0.15–0.25) genetic distance with the CL1

samples. The previously observed sample clustering patterns did not change when conducting

the analysis with the 264 SNPs.

Exploring the regional context of Panamanian P. vivax
We built a neighbor-joining tree using the Panamanian samples plus previously sequenced sam-

ples [20] (Fig 4A) to understand the Panamanian P. vivax population in a global context. As noted

in previous studies [20,30] we observed clusters of samples corresponding to different geographic

regions, with a large cluster of Central and South American samples. CL1 and CL2 formed distinct

clusters within the Central and South American cluster with 100% bootstrap support. CL2 is situ-

ated in a cluster containing samples from Colombia, with 100% bootstrap support at deep nodes.

While these four samples are clustered together with 100% support and exhibit short branch

length, a long branch connects them to the rest of the Colombian cluster. The Panamanian sam-

ples that shared little IBD with either cluster also grouped with the Colombian samples. These

samples appear to share distant ancestry with each other and the rest of the Colombian samples.

The samples also formed their own sub-cluster within the Colombian cluster.

PCA conducted with worldwide samples showed tight clustering of all Central and South

American samples, with only one Panamanian sample falling outside this Central and South

American cluster (S3 Fig). PCA restricted to the samples collected from Central and South

America is heavily influenced by covariation among samples within the two clusters (S4 Fig).

PCA performed with a single consensus sequence representing each cluster revealed CL1

Fig 3. Map of Panamanian sample collection sites. Sample colors show which cluster (or neither) each sample belongs too. Shape indicates the sample collection period.

The dotted line shows the location of the Panama Canal. The Blue Line shows the border of the Comarca Kuna Yala. The Darien Jungle Region is indicated by the green

shaded area.

https://doi.org/10.1371/journal.pntd.0008962.g003
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clusters with samples from Peru and Brazil and CL2 clusters with the Colombian samples (Fig

4B). All four outbred Panamanian samples that shared no recent ancestry with the other sam-

ples also clustered with the Colombian samples. Principal component one differentiated CL1

and samples from Brazil and Peru from CL2 and the rest of the Central and South American

samples.

Genomic data are concordant with travel history in three out of four cases

Four of the 59 samples had travel history data associated with them. All of these samples with

travel history data were collected during the 2007–2009 period. Travel history information

suggested that two samples were originally from Brazil, one sample from India, and one sam-

ple from China. The two samples with Brazilian travel history fell within the Brazilian cluster

on the NJ tree and clustered with Brazilian samples on PCA (Fig 2A and 2B). The one sample

with Indian travel history grouped with the other Indian samples on the NJ tree, and clustered

with the other Indian samples via PCA as well (Figs 2A and S4). This sample was the only one

collected in Panama to fall outside of the Central and South American cluster in the PCA with

the worldwide sample set. For the two samples with Brazilian travel history and one sample

with Indian travel history, genomic data supported the same country of origin as the travel his-

tory information.

The sample with Chinese travel history had a discrepancy between the region of origin sug-

gested by its travel history information and its genomic data. This sample clusters with the

Fig 4. Population Structure. A) Neighbor-joining tree for all samples worldwide. Node symbols denote support values: circles indicate 100% support, triangles

indicate> 50% support. Branch color indicates the country of collection for each sample. Panamanian samples with travel history are noted with the colored stars. B) PCA

of Central and South American samples. Circle color indicates country of collection. Consensus sequences for cluster one and cluster two are noted as a square and

triangle respectively. Panamanian samples with travel history are annotated.

https://doi.org/10.1371/journal.pntd.0008962.g004
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Central and South American samples on the worldwide PCA instead of with the samples from

China. This sample clustered with the Colombian samples in the PCA conducted with only the

Central and South American samples (Fig 4B). Similarly, on the NJ tree, this sample fell within

the Colombian cluster with 100% bootstrap support along with the four Panamanian samples

that shared zero IBD with other Panamanian samples in the dataset.

Discussion

Panama is on the cusp of eliminating malaria after several decades of intervention [5]. We

found extremely high clonality in the Panamanian P. vivax population, observing that the

majority of the successfully sequenced samples (47/59) belonged to a single highly related line-

age, CL1. CL1 has persisted throughout Panama for at least a decade, in spite of ongoing elimi-

nation efforts. Sample contamination could not explain this pattern as samples were collected

in two collection periods 10 years apart and extracted, amplified, and sequenced separately.

Our study suggests that the Panamanian P. vivax population has been through a strong bottle-

neck due to reduced transmission, resulting in the majority of the population belonging to a

single highly related lineage. Similar reductions in clonal diversity of P. vivax populations have

been observed elsewhere. For example, a study investigating the relationship between P. vivax
transmission intensity and genetic diversity in Malaysia [31] documented that when there is a

decline in parasite transmission, there is an increase in the clonal composition of the popula-

tion. Several studies of P. falciparum genetic diversity and transmission intensity from Senegal

[32], Thailand [33,34], and Colombia [34] have also noted the same relationship. Furthermore,

there is evidence of persistence and transmission of P. vivax clonal lineages in Malaysia [31],

and P. falciparum clonal lineages in Colombia [35], Ecuador [36], and Haiti [37]. Our study

demonstrates a similar relationship in Panama between low transmission and extremely low

genetic diversity of the P. vivax population. Almost all CL1 samples (46/47) share IBD > 0.95

with at least one other CL1 sample, suggesting a substantial fraction of this population is

clonal. Several previous studies found that the Central and South American P. vivax popula-

tions are distinct from each other [20,30,38]. A previous study suggested this population struc-

ture is due to multiple founding events after likely European introduction [39]. This structure

could also be due to genetic drift since founding. However, the Panamanian P. vivax popula-

tion has been through too severe of a bottleneck to help clarify historical causes of this popula-

tion structure with the present data. Both scenarios point to the need for further longitudinal

genomic studies of Plasmodium parasites to better understand population dynamics over

space and time.

Previous studies have indicated that Panama has focal transmission in indigenous regions

(Comarcas) [5,6,11]. Malaria transmission in Panama is increasingly concentrated in the

Comarcas, with the proportion of total malaria cases in Panama reported from the Comarcas

rising from 41.8% in 2005 to 90% in 2019 [40]. Prior work shows that low transmission can

lead to an increase in clonal population structure [33]. The finding that CL1 is distributed

ubiquitously throughout Panama is unexpected given the concentration of the malaria epi-

demic within spatially separated regions of the country. The geographic distribution of CL1

suggests that parasites have historically moved throughout the country, founding new popula-

tions or supplanting small existing ones. Case investigations and understanding human move-

ment patterns throughout Panama will be critical to achieving elimination.

This study had some limitations. We were unable to generate high-quality sequencing data

from ~40% of the samples. Factors such as differences in DNA extraction techniques used for

the two sample collection periods or length of storage of the samples could have affected DNA

yield and/or molecular weight, impacting SWGA. Some samples may have had lower coverage
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due to lower parasitemia. Dissimilarities in coverage between the early and late sample batches

could be due to technical factors such as different flowcell loading. We did not find an associa-

tion between coverage and geographic location. Low sequencing coverage for some samples

may have limited the sensitivity of the Fws statistic to detect polyclonal infections. However we

used a filtered dataset of SNPs for Fws calculation that had a minimum of coverage of 5x and a

maximum coverage of 30x to minimize bias from coverage. We also used a small set of 264

SNPs that were called in ~80% of samples to calculate Nei’s standard genetic distance to deter-

mine if the excluded samples were genetically distant from CL1 or CL2. We found that the

majority of the excluded samples were genetically similar to CL1 (S2 Fig). This result indicates

that our assessment of relatedness within the Panamanian P. vivax population is not biased by

parasitemia or other factors that could have affected sequencing success. This finding also sug-

gests that we did not miss additional genetically distinct circulating Panamanian P. vivax
strains and thus did not bias our analysis by excluding these samples. Additionally, all samples

that did yield usable sequence data were distributed across almost all localities across Panama.

The exception to this was a group of samples collected near the Panamanian-Costa-Rican bor-

der from which we were unable to generate usable sequence data. However, most ongoing

malaria transmission in Panama occurs East of the Panama Canal, where most of the samples

that generated usable sequencing data were collected [6,11]. Due to the geographic sampling

coverage of regions with ongoing malaria transmission, we believe these data are reflective of

the current state of the Panamanian P. vivax population. We also lacked geographic collection

data for two of the successfully sequenced samples, and they were excluded from the geo-

graphic analysis. The lack of geographical data is unlikely to bias our conclusions since these

samples came from both different collection periods and regions. The two samples also consti-

tute a small proportion of samples in the final dataset.

Genomic epidemiology can help to support malaria elimination efforts in Panama in multi-

ple ways. First, genomic data can help identify genetically distinct cases that may be imported.

Panama sits at the crux of migration paths to the United States, and it is possible that geneti-

cally distinct samples collected in Panama represent imported cases. Integrating travel history

information with genomic data can help solidify the identification of imported cases. Four

samples had patient travel history information, and genomic data supported the presumed

country of origin for three of them. The fourth sample was collected from a subject with travel

history from China. However, it clustered with Colombian samples on the NJ tree and the

PCA, suggesting the infection was likely acquired somewhere in Central or South America,

rather than China. Relapsing P. vivax infections resulting from dormant hypnozoites could

complicate reconciliation of travel history with genomic data if infections were acquired

months previously. Further development of tools using a benchmarked set of markers, such as

SNP barcodes [41,42], for each P. vivax endemic country would help to identify parasite coun-

try of origin solely using genomic data.

Second, genomic data will be critical to determine if imported parasites are contributing to

local transmission and/or admixing with the local parasite population. For example, we did

not observe evidence of admixture between the imported samples from India and Brazil and

the samples that comprise CL1, or evidence of onward clonal transmission of the imported

samples. Our data cannot distinguish whether CL2 is a native Panamanian parasite lineage or

if it has been imported from Colombia. However, the four CL2 samples displayed a genomic

and epidemiological pattern consistent with recent local transmission, as all CL2 samples are

virtually identical and were collected from the same municipality in 2019.

Overall, the existence of one main parasite genetic lineage exhibiting no recent evidence of

outcrossing with imported infections suggests that Panama is ripe for the elimination of P.

vivax. While case importation remains a threat, the lack of evidence of outcrossing suggests it
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may not be sufficient to prevent elimination under present circumstances. The potential for

genomic data to identify imported cases in Panama will be improved by collecting genomic

data from other countries in the region as a population genomics reference. Ongoing genomic

surveillance paired with case containment efforts will also be needed to mitigate the risk of out-

breaks resulting from imported cases and prevent reversal of the impressive progress that has

been recently made towards malaria elimination in Panama.

Supporting information

S1 Fig. Pairwise IBD Estimates Increase with Sample Quality. Depicts pairwise IBD esti-

mates for all Panamanian sample pairs with IBD > 0.875 plotted against the mean proportion

of high coverage sites (sites with> 5x coverage) in each sample pair. The line indicates a linear

regression, the box displays the Pearson correlation coefficient between the two axes variables.

(PNG)

S2 Fig. Annotated heatmap of pairwise Nei’s standard distance comparisons between all

2007–2009 and 2017–2019 samples using SNPs that were callable in at least 80% of sam-

ples. Each block row and column presents a single sample. Brackets indicate sample groups.

(PNG)

S3 Fig. Principal components analysis of Panama samples and previously collected sam-

ples from Central and South America, Asia, and Africa. Samples are colored by the region

of origin. Parentheses contain the percentage of variance explained by each principal compo-

nent.

(PNG)

S4 Fig. Principal components analysis of Panama samples and previously collected Central

and South American samples. Samples are colored by country of origin. Parentheses contain

the percentage of variance explained by each principal component.

(PNG)
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