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Abstract: Array comparative genomic hybridization (aCGH) is a high-throughput lab technique to measure genome-wide 
chromosomal copy numbers. Data from aCGH experiments require extensive pre-processing, which consists of three steps: 
normalization, segmentation and calling. Each of these pre-processing steps yields a different data set: normalized data, 
segmented data, and called data. Publications using aCGH base their fi ndings on data from all stages of the pre-processing. 
Hence, there is no consensus on which should be used for further down-stream analysis. This consensus is however impor-
tant for correct reporting of fi ndings, and comparison of results from different studies. We discuss several issues that should 
be taken into account when deciding on which data are to be used. We express the believe that called data are best used, but 
would welcome opposing views. 
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Introduction
Chromosomal aberrations are a key event in the development and progression of cancer (Lengauer et al. 
1998). Array comparative genomic hybridization (aCGH) is a high resolution method to detect these 
DNA copy numbers (Pinkel and Albertson, 2005). The increasing number of publications using aCGH 
(confer arrayCGHtracker at http://www.progenetix.de/) is based on data from different stages of the 
pre-processing. The pre-processing consists of three steps: normalization, segmentation and calling 
(discussed in detail in the next section). Here we argue that calling should be the last pre-processing 
step of aCGH data, and its resulting data are best used for down-stream analysis. We fi rst introduce 
aCGH and its pre-processing steps. Then we discuss several issues that should be taken into account 
when deciding on which data are to be used.

aCGH and pre-processing 
Chromosomal DNA copy number is the number of copies of genomic DNA. Normal somatic cells have 
two copies of the autosomal chromosomes: the copy number is two. In addition, cells of normal males 
have one copy of the X and of the Y chromosome. Nuclei of Down syndrome patients show an extra 
copy of chromosome 21, whereas in cancer tissue the copy number may vary considerably over the 
genome.

Solinas-Toldo et al. (1997); Pinkel et al. (1998); Pollack et al. (1999); and Snijders et al. (2001) 
showed that DNA copy number can be measured genome-wide using aCGH. aCGH is a high-throughput 
technique, similar to the gene expression microarray but uses chromosomal DNA rather than cDNA for 
the hybridization. The array consists of many (possibly synthetic) strands of DNA, here referred to as 
array elements, that interrogate small regions of the genomic DNA (Pinkel and Albertson, 2005). 

In an aCGH experiment is differentially labeled test and reference samples are hybridized together 
to the array. The reference sample is assumed to have copy number two for all somatic chromosomes. 
Image analysis then results in test and reference intensities for all array elements. Under ideal experi-
mental conditions, the intensity of an array element is linearly proportional to the abundance of the 
corresponding DNA sequence in the sample. The log2 

ratio of the test and reference intensities refl ect 
the relative copy number in the test sample compared to that in the reference sample. 
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Pre-processing comprises of all preliminary 
operations on the data necessary to arrive at the 
quantity of interest. As such it is, together with the 
experimental protocol, an inherent part of the 
operational definition of the property being 
measured, the copy number of a genomic segment. 
For aCGH, the log2 

ratios undergo three pre-
processing steps before arriving at the actual copy 
number. 
● The fi rst pre-processing step is normalization 

(Khojasteh et al. 2005; Neuvial et al. 2006). 
Normalization corrects for experimental artifacts 
in order to make the log2 

ratio’s from different 
hybridizations comparable. 

● The second step of the pre-processing, named 
segmentation, is motivated by the underlying 
discrete DNA copy numbers of test and reference 
samples. Segmentation algorithms divide the 
genome into non-overlapping segments that are 
separated by breakpoints (Jong et al. 2004; Ol-
shen et al. 2004; Fridlyand et al. 2004; Picard et 
al. 2005; Marioni et al. 2006). These breakpoints 
indicate a change in DNA copy number. Array 
elements that belong to the same segment are 
assumed, as they are not separated by a break-
point, to have the same underlying chromo-
somal copy number. Segmentation methods also 
estimate the mean log2 

ratio per segments, re-
ferred to as states. 

● As a fi nal and last pre-processing step, referred to 
as calling (Wang et al. 2004; Broët and Richardson, 
2006; Engler et al. 2006; Van de Wiel et al. 2007), 
the DNA copy number of each segment is deter-
mined. At present calling algorithms cannot deter-
mine whether there are, say, three or four copies 
present. They can however detect deviations from 

the normal copy number, and classify each seg-
ment as either ‘normal’, ‘loss’, ‘gain’ or ‘amplifi -
cation’: ‘normal’ if there are two copies of the 
chromosomal segment present, ‘loss’ (also named 
deletion) if at least one copy is lost, ‘gain’ if at least 
one additional copy is present, and ‘amplifi cation’ 
if there are high level, say >5, copy numbers (for 
simplicity we ignore the existence of polyploid 
genomes). These labels are referred to as calls. 

Pre-processing thus maps the raw log2 
intensity 

values onto the ordinal scale of the calls.
Figure 1 shows the different pre-processing 

data for an oral squamous cell carcinoma sample 
from the data set of Snijders et al. (2005). The data 
have been median normalized, segmented with 
DNAcopy of Olshen et al. (2004) and called with 
CGHcall of Van de Wiel et al. (2007). Normalized 
log2 

ratios are plotted (black dots) with the scale 
on the right axis. The segmentation states are 
plotted in blue. Red and green bars indicate loss 
and gain probabilities, respectively. The left axis 
contains the probability scale, which is reversed 
(“1−”) for the gains. Segments for which either 
bar extends beyond the middle axis (probability 
>0.5) are aberrated. 

Table 1 contains the pre-processed data of the 
same oral squamous cell carcinoma sample. It 
should be observed that the normalized data vary 
between clones, whereas the segmented and called 
data only exhibit a change at the breakpoints found 
by DNAcopy. 

Each step of the data pre-processing yields a 
different data set: normalized data, segmented data, 
and called data. There is no consensus on which 
should be used for further down-stream analysis. 
For instance, Weiss et al. (2003) and Ching et al. 

Table 1. Normalized log2 
ratio’s, segmentation states, and calls for a small part of the genome of the oral squa-

mous cell carcinoma sample X3482 from the data set of Snijders et al. (2005). The coding of the calls is as 
follows: –1, 0, 1 correspond to loss, normal, gain, respectively.

Clone ID Chr. Start bp. Normalized log2 ratio Segmentation state Call
� � � � � �
RP11–232D21 4 48102 0.239 0.151 0
RP11–109P3 4 48340 0.291 0.151 0
RP11–72P14 4 48340 0.380 0.151 0
RP11–217B22 4 48819 0.227 0.151 0
RP11–32K21 4 52945 –0.348 –0.250 –1
RP11–210D19 4 53294 –0.216 –0.250 –1
RP11–175I24 4 53657 –0.319 –0.250 –1
RP11–98G22 4 54688 0.000 –0.250 –1
� � � � � �



323

Which aCGH data? 

Cancer Informatics 2007:3

(2005) use normalized data, Jong et al. (2007) and 
Fridlyand et al. (2006) use segmented data, and 
Jönsson et al. (2005) and Zhao et al. (2005) use 
called data. This consensus is important for correct 
reporting of fi ndings, and comparison of results 
from different studies. 

Discussion 
Several aspects of the different data and issues 
surrounding their use in analysis of aCGH experi-
ments are discussed. This should help statisticians 
and bioinformaticians in their decision on the data 
to be used. 

Interpretation 
The called data have a clear biological meaning, 
lacked by the normalized or segmented data. 
The ramifications—with respect to copy number 
—of a statement like ‘8q3 has a loss’ are evident: 
at most one copy of 8q3 is present. The ramifi-
cations of ‘8q3 has a log

2 
ratio of –0.17’, 

however, are less clear. Similarly, how is the 
difference between two segmentation states to 
be interpreted in terms of their difference in 
copy number? 

Platform comparison 
aCGH profi les from different platforms can be 
compared directly when using the called data: the 
interpretation of ‘loss’, ’normal’, ‘gain’ and ‘ampli-
fi cation’ is the same across platforms, whereas the 
segmentation states are likely to have different 
interpretations between platforms, possibly even 
between experiments. The calling could thus be 
viewed as a fi nal between-array normalization step. 
This comparability is a requirement for down-stream 
analysis, which involves data from multiple hybrid-
izations. A requirement satisfi ed by the called data, 
but not ensured for the segmentation states. 

Corroboration 
The called data can directly be used for corrobora-
tion with existing knowledge of genomic aberra-
tions, which is expressed in terms of copy numbers. 
This corroboration may function as an internal 
control of the experiment. For instance, called data 
from a human male sample show a loss at the 
X chromosome. Of course, the normalized or 
segmented data could be used for the same purpose: 
a plot will reveal a jump in the data. Nonetheless, 
one still needs to decide whether this jump 

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g2

 ra
tio

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20

X3482

Figure 1. Pre-processing results of the oral squamous cell carcinoma sample X3482 from the data set of Snijders et al. (2005).
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corresponds to an aberration. Most likely, one will 
(implicitly) draw an imaginary line used as a yard-
stick for classifi cation, thus mapping the normal-
ized or segmented data to the ordinal scale of the 
called data. 

Verifi cation of fi ndings
The verifi cation of fi ndings from an aCGH exper-
iment is often done by FISH (e.g. Snijders et al. 
2001; Van den IJssel et al. 2005). FISH counts the 
copy number of a genomic segment of interest. 
Hence, not the log

2 
ratio is verifi ed, but the call of 

(say) a loss. The latter has tangible implications 
for the copy number that can be verifi ed (or falsi-
fi ed) using FISH: is there a reduced copy number? 
Hence, the scale of the calls directly matches that 
of the outcome of verifi cation experiments, unlike 
the normalized and segmented data which need to 
be translated to the scale of aberrations, the scale 
on which new fi ndings are reported.

‘De-noising’
The DNA copy number assumes only integer values, 
{0, 1, 2, 3,...}. The discreteness of this scale pleas 
for a discretization of the normalized data, which 
could be viewed as ‘de-noising’ the normalized data. 
Both segmented and called data are ‘de-noised’ data. 
Willenbrock and Fridlyand (2005) showed that 
dealing with aCGH data as discrete levels (segmen-
tation states) rather than normalized log

2 
ratios 

greatly improved sensitivity and specifi city. 

Cell heterogeneity 
aCGH detects chromosomal aberrations if they are 
present in the majority of the cells of the test sample. 
Heterogeneity in the DNA copy number profi les 
between cells complicates the calling, possibly 
leading to incorrect calls. Similarly, it introduces 
differences in segmentation states and additional 
breakpoints that are not unambiguously assignable 
to changes in copy number. Where the heights of 
the segmentation states refl ect—in some intricate 
way—the cell heterogeneity, the calls contain no 
information on the heterogeneity. This is straight-
forwardly overcome when not the actual calls, but 
their (posterior) probability of a ‘loss’, ‘normal’, 
and ‘gain’ (as provided by CGHmix of Broët and 
Richardson, 2006; or CGHclassify by Engler et al. 
2006) are considered as the resulting data from a 
calling method. These probabilities refl ect the cell 

heterogeneity: the probability of a loss corresponds 
to the proportion of cells with a loss in the sample. 

“On the other hand, in cases of tumors with 
instable karyotypes, the fact that random gains and 
losses of chromosome material affecting only a 
few cells cannot be ascertained should help tremen-
dously in distinguishing chromosomal imbalances 
present in the majority of cells of a given tumor. 
(a)CGH analyses performed with tumor DNA 
prepared from a series of individual tumors repre-
senting a distinct tumor type should lead to the 
identifi cation of those chromosomal imbalancies 
that are consistently involved, and should thus help 
identify candidate chromosome segments for genes 
of major biological importance for the tumor type 
in question.” (Du Manoir et al. 1993). 

Not the heterogeneity of a tumor, but knowledge 
on the presence or absence of chromosomal aber-
rations in a tumor is what the researcher is gener-
ally after when profi ling a tumor by aCGH. If one 
is interested whether these aberrations occur in all 
or part of the tumor one would need to perform 
targeted experiments by taking separate samples 
of different parts of a tumor. 

Imperfect calling
The calling of aberrations is not yet perfect in case 
samples or chromosomal areas contain different 
log-ratio levels for the same copy number. For 
example, due to unknown contaminations by 
normal cells or different ploidies. In principle, this 
‘standardization imperfection’ is also present in 
the normalized and segmented data, but has less 
consequences due to the continuous levels 
(a sample with low gain log2 

ratio levels still 
contributes to the total signal).

The problem of imperfect calling may be 
resolved when the call probabilities (instead of the 
calls) are used in down-stream analysis, for call 
probabilities refl ect the uncertainty of the calling. 
Then, like low gain log2 

ratio levels, small call 
probabilities of a gain still contribute. As such the 
use of call probabilities in down-stream analysis 
could thus be viewed as error propagation.

Moreover, calling methods are likely to improve 
(the fi rst paper on calling, Wang et al. 2004, is only 
a few years old) and address these matters. 

Down-stream analysis 
Before we discuss the use of called aCGH data in 
several instances of down-stream analysis, it 
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should be noted that most machinery for the 
analysis of continuous expression data is not 
applicable to the ordinal called aCGH data. Tailor-
made methods for the analysis of called aCGH data 
are needed. This can only be considered as a chal-
lenge for the statistical community, and only a 
temporary, practical, not an intrinsic, argument in 
favor of the use of normalized or segmented data 
in down-stream analysis.

Hypothesis testing 
The use of called data may lead to a loss of statis-
tical power when testing hypotheses, if the calling 
discretizes the copy numbers too much. This lack 
of power may be overcome by the use of call 
probabilities in hypothesis testing, or as described 
below (see Hypothesis testing revisited). An 
approach taken (e.g. Nakao et al. 2004) to circum-
vent this possible loss of statistical power is the 
use of the normalized data. But what conclusion 
can one draw if the null hypothesis H0 is rejected 
using the normalized data? Only that the average 
signals differ, NOT that the copy number differ. 
Hence, inferences with respect to copy number 
differences on the basis of normalized (or 
segmented) data are formally invalid. The called 
data facilitate inferences on the desired biological 
level, that of the copy numbers.

Dimension reduction
The called data allow for natural dimension reduc-
tion of the data (Van de Wiel and Van Wieringen, 
2007). This is done by changing the statistical unit 
from array elements into regions. A region is a series 
of neighboring array elements on the chromosome 
whose aCGH-signature is shared by all array 
elements. The ordinal nature of the aCGH data 
allows for a huge dimension reduction, as the data 
assume only a limited number of values (three or 
four), many segments on the genome are likely to 
have the same values over consecutive array 
elements. A region may consist of one array element 
representing a small amplification, but also a 
complete chromosome arm. Hence, the dimension 
reduction from array elements to regions captures 
the relevant features of the data.

Such a natural, interpretation preserving reduction 
of the data seems not possible with normalized data. 
Of course, a technique like principal component 
analysis could be applied. This would yield principal 
components that are weighted averages of the aCGH 

profi les. These components could be interpreted, 
following Alter et al. (2000), as ‘superclones’. Such 
an interpretation is however a label without content, 
for it is neither linked to a biological entity nor to a 
theoretical construct. The interpretation of compo-
nents is generally not straightforward, especially if 
the number of array elements that contribute to the 
component gets large. Nonetheless, these compo-
nents can be used for low-dimensional visualization. 
But such components can also be constructed for 
the called data, as is outlined in Jöreskog and 
Moustaki (2001).

Hypothesis testing revisited 
The use of dimension reduced regional called data 
can be very advantageous for down-stream analysis 
(Van de Wiel and Van Wieringen, 2007), as a 
re-analysis of the colorectal cancer data set of 
Douglas et al. (2004) shows. The original analysis 
of the data set reported several interesting fi ndings, 
but lacked rigorous statistical evidence (for 
instance, p-values were not mentioned). In Van de 
Wiel and Van Wieringen (2007) the data were 
re-analyzed applying CGHMultiArray (Van de 
Wiel et al. 2005), a tailor-made two-group testing 
procedure for ordinal data, to the regional called 
data. This confi rmed most of the fi ndings reported 
by Douglas et al. (2004), now provided with a 
sound statistical underpinning. Recall that, for 
reasons discussed above (see Hypothesis testing), 
copy number differences between the two condi-
tions could not have been inferred (formally) from 
the normalized or segmented data. 

Unsupervised analysis 
Finally, we discuss the use of aCGH data for unsuper-
vised analysis (omitting supervised analysis of aCGH 
as it has not received much attention yet). Normalized 
or segmented data are often used for clustering of 
aCGH data (e.g. Wilhelm et al. 2002; Jong et al. 2007). 
Effectively, this means the signal—as is, regardless 
of its biological interpretation—is used as input, 
hoping for sensible output. The unsupervised method 
is then treated as a black box. Its results may be very 
interesting. But they may also be hard to explain in 
terms of what aCGH purports to measure, DNA copy 
number.

The use of the called data in unsupervised 
analysis can be advantageous (Van Wieringen et al. 
2007). The use of regions, rather than array 
elements, as input of the cluster method introduces 
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a natural and data-driven weighting in the clus-
tering. Long ‘dull’ chromosomal areas with normal 
DNA copy number and small amplifi cations are 
weighted equally. One thus clusters on the relevant 
features of the data, without letting dull areas 
dominate the cluster output. Simulations in Van 
Wieringen et al. (2007) showed that the use of 
regional called data improves the performance of 
clustering methods, even outperforming clustering 
methods using the normalized data. 

Conclusion 
The discussion above reveals that called data have 
the clearest interpretation, are directly translatable 
to tangible implications for the empirical relation-
ships between DNA copy numbers (whereas 
normalized and segmented data are not), are a neces-
sity for inferences on the DNA copy number, and 
can be advantageous for down-stream analysis. 

The resolution of calling methods could be 
improved though, for instance calling into the 
classes ‘double deletion’, ‘single deletion’, 
‘normal’, ‘single copy gain’, ‘double copy gain’ 
and ‘amplifi cation’. Furthermore, heterogeneity of 
the cell population suggests that the distribution of 
the calls may be preferred. For data from a homo-
geneous cell population, however, the actual calls 
suffi ce, as the probability will be close to one. Also 
tailor-made methods for the analysis of called 
aCGH data are needed.

In all, calling is an inherent part of the 
pre-processing, yielding the quantity most closely 
linked with copy number. Realizing that improve-
ment and development of calling methods and 
down-stream analysis methods are needed, we 
currently believe that it is this quantity, the call or 
call probability, that is to be used.

We do, however, not claim that the above 
discussion is exhaustive and fi nal. For instance, it 
is not known yet which data are best used for 
prediction purposes. We would therefore welcome 
additional arguments and opposing views on the 
issue, and hope that a thorough discussion will 
yield the desirable consensus on which pre-processed 
aCGH data are to be used.
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