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Abstract

Fisher’s fundamental theorem of natural selection predicts no additive variance of fitness in a natural population.
Consistently, studies in a variety of wild populations show virtually no narrow-sense heritability (h2) for traits important
to fitness. However, counterexamples are occasionally reported, calling for a deeper understanding on the evolution of
additive variance. In this study, we propose adaptive divergence followed by population admixture as a source of the
additive genetic variance of evolutionarily important traits. We experimentally tested the hypothesis by examining a
panel of �1,000 yeast segregants produced by a hybrid of two yeast strains that experienced adaptive divergence. We
measured >400 yeast cell morphological traits and found a strong positive correlation between h2 and evolutionary
importance. Because adaptive divergence followed by population admixture could happen constantly, particularly in
species with wide geographic distribution and strong migratory capacity (e.g., humans), the finding reconciles the
observation of abundant additive variances in evolutionarily important traits with Fisher’s fundamental theorem of
natural selection. Importantly, the revealed role of positive selection in promoting rather than depleting additive var-
iance suggests a simple explanation for why additive genetic variance can be dominant in a population despite the
ubiquitous between-gene epistasis observed in functional assays.

Key words: adaptive divergence, population admixture, complex trait, additive variance, Fisher’s theorem of natural
selection, positive selection.

Introduction
An intriguing issue in genetics is how the additive genetic
variance of a complex trait evolved in a population given
that the epistasis between genes appears to be ubiquitous
according to functional studies (Costanzo et al. 2010; Sackton
and Hartl 2016). The Fisher’s fundamental theorem of natural
selection predicts little additive variance (or narrow-sense
heritability, h2) for fitness, because natural selection will fix
alleles with the highest fitness quickly (Mousseau and Roff
1987; Merila and Sheldon 1999b; Crow 2002). An extended
prediction of the theorem is that traits tightly coupled with
fitness (i.e., evolutionarily important traits) should have
smaller h2 than those less-coupled with fitness (Kruuk et al.
2000), because the response to natural selection on fitness will
shape the evolution of the related traits (Orr 2009). The neg-
ative correlation between h2 and trait importance has been
found in a variety of studies on different species or popula-
tions (Merila and Sheldon 1999a, 2000; Kruuk et al. 2000;
Stirling et al. 2002; Teplitsky et al. 2009; Wheelwright et al.
2014; Sztepanacz et al. 2017). For example, for the wild female
red deer (Cervus elaphus), the h2 of several life-history traits,
including the total number of offsprings, the adult breeding
success, and the longevity, are all zero (Kruuk et al. 2000).

Meanwhile, the morphologic traits such as leg length and jaw
length, which are believed to be less related to fitness, are
found to have much higher h2 than the life-history traits. The
pattern is also true for collared flycatcher (Ficedula albicollis),
Savannah sparrows (Passerculus sandwichensis), red-billed gull
(Larus novaehollandiae), and so on (Merila and Sheldon 2000;
Stirling et al. 2002; Teplitsky et al. 2009; Wheelwright et al.
2014).

However, there are also reports of abudant additive var-
iances for important traits (Pettay et al. 2005; Teplitsky et al.
2009; Kosova et al. 2010; Milot et al. 2011; Zhang 2012). In
particular, there is sometimes even a positive correlation be-
tween h2 and trait importance. For example, in a bighorn
sheep population from Ram Mountain, the lowest h2 was
for body mass at primiparity (0.02), whereas the h2 of lifetime
fecundity was as high as 0.66 (Reale and Festa-Bianchet 2000).
A variety of explanations to the observations have been pro-
posed. In addition to considering the different variance com-
ponents of h2 (Visscher et al. 2008), or balancing selection
(Barton and Keightley 2002; Grieshop and Arnqvist 2018), a
predominant view is that fluctuating environments com-
bined with mutations could help maintain high additive var-
iance of fitness (Burger and Gimelfarb 2002; Crow 2008;
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Zhang 2012). These explanations are all theoretical, lacking
empirical evidence. More importantly, they do not predict a
positive correlation between h2 and trait importance.

We reason that here an ecological factor in evolution,
namely, migration, may play an essential role. For a given
species, there are often plenty of divergences between pop-
ulations (Pizzo et al. 2008; Sved et al. 2008; Roy et al. 2014).
When the divergences are coupled with local adaptation (i.e.,
adaptive divergences), which happens quite often in nature
(Pulido 2007; Liedvogel et al. 2011), alleles with beneficial ad-
ditive effects on important traits would be preferentially fixed
in a population. As different genes would be selected for in
different populations, subsequent population admixture by
migration would lead to new populations with abundant
additive genetic variances for important traits. In this study,
we designed an experimental test for this reasonable hypoth-
esis, revealing a birth–death cycle of additive variance driven
by positive selection.

Results
We examined a panel consisting of�1,000 prototrophic hap-
loid yeast segregants produced from a cross of two
Saccharomyces cerevisiae strains (BY parent and RM parent).

The two parental strains differ by �0.5% at the genomic
sequence level and experienced adaptive divergence accord-
ing to an analysis of a set of principle component traits (Ho
et al. 2017). The �1,000 segregants were all genotyped in a
previous study (Bloom et al. 2013). We first verified the seg-
regant panel and removed the segregants that appeared to be
discordant with the reported genotypes (fig. 1A; see Materials
and Methods).

We measured 405 cell morphological traits for each segre-
gant with two technical replications by following a previous
protocol with some modifications (see Materials and
Methods) (Ohya et al. 2005). These traits are related to the
characters of mother cell and/or bud in different stages, such
as area, distance, localization, angle, ratio, and so on (fig. 1B).
After excluding measurements with insufficient cell number
for calculating traits, we obtained the morphological trait
information for 734 segregants, 73.3% (538/734) of which
had data of at least two replications (supplementary table
S1, Supplementary Material online). Approximately 99.5% of
the trait values were derived from >100 cells of a given seg-
regant (supplementary fig. S1, Supplementary Material on-
line). Segregants A11_01 and A11_96 were measured in
every experiment as a technical control for potential operat-
ing bias in culturing, staining, and imaging. We calculated the
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FIG. 1. Measuring 405 cell morphological traits and their heritability in the yeast segregant population. (A) The experimental process in this study.
Both morphological traits and growth rate of each segregant were measured with replications. (B) The schematic diagram of a yeast cell with basic
coordinates for characterizing cell morphological traits. (C) The distribution of CV of the 405 traits calculated from technical replicates of
segregants A11_01 (left) and A11_96 (right), respectively. (D) The CVs obtained from segregants A11_01 and A11_96 are consistent
(Pearson’s R ¼ 0.76, P < 2.2� 10�16, N ¼ 405). (E) The broad-sense heritability (H2) and narrow-sense heritability (h2) of each trait. Error bars
represent SE.
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measuring coefficient of variance (CV) of each morphological
trait using the 26 technical replications of segregant A11_01,
or the 28 technical replications of segregant A11_96, respec-
tively (see Materials and Methods). The obtained CVs were
generally small, with >80% of them being <0.2 (347/405 in
A11_01 and 326/405 in A11_96; fig. 1C). In addition, they
were consistent between measures in segregant A11_01
and in A11_96 (Pearson’s R¼ 0.76, P< 2.2� 10�16; fig. 1D).
These data together suggested no strong batch effects in the
trait measurements. We also checked pairwise rank correla-
tion of the 405 traits between 28 technical replications of the
segregant A11_96, or 26 replications of the segregant A11_01,
or two replications of 536 segregants, respectively. We ob-
served invariably strong correlations (supplementary fig. S2,
Supplementary Material online). The large number of high-
quality quantitative traits of the same property (i.e., morphol-
ogy) measured under the same experimental setting provided
a unique opportunity to study the evolution of additive ge-
netic variance.

Quantile normalization of the raw trait values was per-
formed to ensure the different traits comparable (see
Materials and Methods). The broad-sense heritability H2

and narrow-sense heritability h2 were estimated for each of
the 405 traits according to a previous study (Bloom et al.
2013) (supplementary table S2, Supplementary Material on-
line). The H2 of the 405 traits ranged from 0.021 to 0.913, with
a median of 0.478; the h2 ranged from 0.000 to 0.619, with a
median of 0.240 (fig. 1E). In this study, there were no domi-
nance effects because the segregants are haploid; the gene–
environment interactions should be weak because the same
culture condition was used. Thus, here, H2 is the proportion of
phenotypic variance (VP) explained by additive (VA) and non-
additive (or epistatic) effects (VNon-A), and h2 ¼ VA/VP.
Because normalized trait values were considered, VP of the
different traits was within an �1.5-fold range, whereas h2

spanned a >100-fold range (supplementary fig. S3,
Supplementary Material online). As a result, in this study,
h2 served effectively as a direct measure of VA because they
were highly correlated with Pearson’s R¼ 0.99 among the 405
traits (supplementary fig. S3, Supplementary Material online).

To assess the evolutionary importance of the morpholog-
ical traits, we computed their relatedness to growth rate
(RTGR). We measured the growth rate of each segregant
under the same condition as for trait measurement (fig. 1A
and supplementary table S3, Supplementary Material online).
For each of the 405 traits, we computed the Pearson’s corre-
lation coefficient (Pearson’s R) between trait value and cell
growth rate among the 734 segregants. Following a previous
study (Chen et al. 2018), the absolute value of Pearson’s R was
then used as the RTGR of a morphological trait; traits with
larger RTGR are regarded as evolutionarily more important.
The value of RTGR varied from 0 to 0.308, with a median of
0.065, highlighting a wide range of evolutionary importance of
the 405 morphological traits (fig. 2A).

According to our hypothesis, the admixture of two pop-
ulations with adaptive divergence would result in a new pop-
ulation with more additive variances in evolutionarily more

important traits. The availability of both h2 and evolutionary
importance for the large number of traits enabled a direct test
for the hypothesis. Consistent with the hypothesis, we found
a strong positive correlation between h2 and trait importance
estimated by RTGR among the 405 yeast traits (Pearson’s
R¼ 0.55, P< 2.2� 10�16; fig. 2A). Because many traits are
correlated with each other, we conducted affinity propaga-
tion clustering and obtained 59 trait clusters each with an
exemplary trait (fig. 2B and supplementary fig. S4,
Supplementary Material online). The number of traits repre-
sented by an exemplary trait ranged from 2 to 16, with a
median of 6, and there were only weak correlations among
the 59 exemplary traits (supplementary fig. S4,
Supplementary Material online). The strong positive correla-
tion between h2 and RTGR remained when only the exem-
plary traits were considered (Pearson’s R¼ 0.52,
P¼ 2.5� 10�5, fig. 2C).

The 405 traits represent cell morphology at different cell
cycle stages. We divided these traits into four categories
according to the states of bud and nucleus (see Materials
and Methods). Traits of stage A1B and stage A tended to
have small RTGR, suggesting less selective constraints on the
morphology of the two stages. Importantly, the positive cor-
relation between h2 and RTGR remained with the exception
for traits of stage A (fig. 2D). In addition, as the 405 traits
represent features of cell wall and nucleus that are stained by
two different dyes FITC-ConA and Hoechst, respectively (see
Materials and Methods), we examined the 133 cell wall-
related traits and 272 nucleus-related traits separately. The
positive correlation between h2 and RTGR held in both cat-
egories (fig. 2E).

A previous study suggests the CV in trait measurement
could serve as a proxy of trait importance, with smaller CV for
more important traits (Ho and Zhang 2014). To be conser-
vative we considered only 293 traits that have consistent CV
between A11_01 and A11_96, and used the average to rep-
resent trait importance (supplementary fig. S5,
Supplementary Material online). To be consistent with
RTGR in the direction of trait importance, we considered
1�CV rather than CV. We observed a positive correlation
between h2 and 1�CV (Pearson’s R¼ 0.34, P¼ 1.4� 10�9;
fig. 2F), a result supporting our hypothesis. The pattern gen-
erally remained by considering exemplary traits or by sepa-
rating the traits into different categories (supplementary fig.
S5, Supplementary Material online).

We then mapped quantitative trait loci (QTL) for each of
the traits. A total of 2,505 QTLs were detected for 393 traits
(supplementary table S4, Supplementary Material online),
and the number of QTLs ranged from 1 to 19, with a median
of 6 for each trait (supplementary fig. S6, Supplementary
Material online). There were 12 traits with no detectable
QTLs, which conforms to their extremely low h2 (median
h2 � 0.016). In nearly all cases, the trait variance explained
by detected QTLs was close to h2 (Pearson’s R¼ 0.96,
P< 2.2� 10�16, fig. 3A), suggesting a nearly saturation of
the QTL detection. This is consistent with a previous obser-
vation in the yeast segregant panel (Bloom et al. 2015). Most
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FIG. 2. Evolutionarily important traits tend to have a large h2 in the segregant population. (A) A strong positive correlation between h2 and trait
importance measured by RTGR (Pearson’s R ¼ 0.55, P < 2.2� 10�16, N ¼ 405). Error bars represent SE. The gray zone shows 95% confidence
interval of the regression line. (B) Define 59 exemplary traits from the 405 traits. The heatmap shows trait similarity in five randomly chosen clusters
derived by apcluster, with one exemplary trait highlighted in orange from each cluster. (C) The correlation between h2 and RTGR remains for
exemplary traits (Pearson’s R ¼ 0.52, P ¼ 2.5� 10�5, N¼ 59). (D) The correlation between h2 and RTGR largely holds for traits characterized at
different stages. The top diagrams show the states of a yeast cell that separate cell stages. (E) The correlation between h2 and RTGR remains for
traits related to cell wall (stained by FITC-ConA) or to nucleus (stained by Hoechst). (F) A positive correlation between h2 and trait importance
measured by 1�CV (Pearson’s R ¼ 0.34, P ¼ 1.4� 10�9, N ¼ 293).
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FIG. 3. Analysis of QTLs of the 405 traits. (A) The proportion of phenotypic variance explained by QTLs is close to h2, suggesting a nearly saturation
of the QTL detection. Error bars represent SE. (B) A strong positive correlation between QTL number and h2 (Pearson’s R¼ 0.83, P< 2.2� 10�16, N
¼ 405). The gray zone shows 95% confidence interval of the regression line. (C) A moderately positive correlation between QTL number and trait
importance measured by RTGR (left) or 1�CV (right). (D) No apparent correlation between the fraction of genes that affect a trait (fgene) and trait
importance. Only those traits examined in panel C have estimated fgene values are included.
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of the QTLs (�90.6%) each explained a small proportion
(<5%) of the trait variance (supplementary fig. S6,
Supplementary Material online).

We found the h2 of a trait was highly correlated with the
number of QTLs (Pearson’s R¼ 0.83, P< 2.2� 10�16; fig. 3B).
Consistently, there were in general more QTLs detected for
more important traits (fig. 3C and supplementary fig. S7,
Supplementary Material online). This result indicated there
are more diverged loci for important traits after the split of
the two parental yeasts of the segregant population examined
here. There are two possible explanations: First, there are
more genes and thus more mutations that affect important
traits; second, there are higher fixation rates for mutations
that affect important traits. To distinguish them, we exam-
ined the cell morphology data generated for a large set of
yeast single gene deletion mutants. For each of the traits, we
obtained the fraction of genes that affect a trait (fgene) by
following a previous study (Ho and Zhang 2014). We failed
to observe a larger fgene for more important traits (fig. 3D),
suggesting the second explanation is plausible although the
number of whole genes affecting a trait does not necessarily
tell the number of natural variants affecting the trait. A higher
fixation rate of mutations affecting more important traits
indicates positive selection underlies the genetic divergence
of the parental yeasts. This echoes the adaptive phenotypic
evolution of the yeast S. cerevisiae previously proposed based
on the faster phenotypic evolution of more important traits
(Ho et al. 2017). Of note, the many QTLs detected for an
important trait often showed opposite effects in a parent
(supplementary fig. S8, Supplementary Material online), indi-
cating the phenotypic divergence between the two parents
does not represent well the underlying genetic divergence.
This may explain the relatively weak signal of adaptive phe-
notypic divergence between the two parents (Ho et al. 2017).

Discussion
Fisher’s fundamental theorem of natural selection provides a
general framework for thinking of the evolution of additive
genetic variance. Previous empirical studies on this issue are
all based on wild populations and the resulting patterns are
discordant, which are often ascribed to confounding ecolog-
ical factors. This study is, to the best of our knowledge, the
first controlled experiment for examining the relationship
between additive variance and evolutionary importance in
a large set of quantitative traits. The advantage of controlled
experiments is the ecological variables in wild populations,
such as nutrition, parasite, predator, and so on, are all fixed.
However, there is a caveat in our experiment. Specifically, as
the proposed adaptive divergence of the two parental yeasts
must occur in natural environments, the trait importance
obtained in the lab condition may not necessarily represent
that of the natural environments. Nevertheless, this problem
would most likely reduce the correlation between h2 and trait
importance, underestimating the contribution of positive se-
lection to the origin of additive variance.

The unexpected role positive selection could play in pro-
moting additive variance provides an solution to a long-

standing puzzle, namely, that the additive variances are often
pervasive in a population despite the ubiquitous nonadditive
(or epistatic) interactions observed between genes in func-
tional studies (Costanzo et al. 2010; Sackton and Hartl 2016).
A previous explanation to the puzzle considers the variance
allele frequencies that are often J- or U-shaped distribution in
natural populations, which minimizes epistasis by precluding
multilocus genotypes (Hill et al. 2008). This, however, cannot
explain why h2 is comparably large in experimental popula-
tions with uniform allele frequencies of �50% (Bloom et al.
2013). In the model of adaptive divergence followed by pop-
ulation admixture, the process of adaptive divergence serves
effectively as a filter to remove nonadditive alleles that could
be the majority of raw mutations. This is because positive
selection favors the fixation of additive alleles but not non-
additive alleles. The subsequent population admixture would
then result in a population full of additive variances (fig. 4).

Notably, the acquired additive variances would be de-
pleted also by selection in a way clearly described by
Fisher’s fundamental theorem of natural selection. We con-
ducted simulations to track the depletion process for a rep-
resentative trait with an h2 � 0.6 in the yeast segregant
population, and observed a rapid reduction of h2 (supple-
mentary fig. S9, Supplementary Material online). Hence, there
is a birth–death cycle of additive variance driven by positive
selection, which could be repeated again and again by assum-
ing pervasive adaptive divergences followed by population
admixtures in some species (fig. 4). Populations at different
stages of the cycle would have different structures of additive
variance. Under the Wright–Fisher model with natural selec-
tion, it would take�1,000 (or�10,000) generations for a new
beneficial mutation with s¼ 0.01 (or¼ 0.001) to be fixed in a
diploid population of N¼ 100,000, where N is the population
size and s is the selection coefficient (Otto and Whitlock
2013). The time will be shorter for alleles with larger than
1/2 N initial frequency, which is the case for populations
resulted from admixture (Kimura 1983). These numbers are
useful for thinking of the time scale of the birth and death of
an additive variance in the cycle.

The proposed origin of additive variance in this study is of
particular relevance to the following scenarios. First, our
knowledge of quantitative genetics is often from studies on
laboratory populations that are produced by crossing two or
several strains/lines of a model organism such as yeast or fruit
fly (Bloom et al. 2013; Long et al. 2014). As in the current
study, the additive variances of these populations are all
explained by the birth process of variance. Second, in the
breeding of crops or livestock there are often a few to a
few ten generations (Wiener et al. 1992; Hinze and Lamkey
2003). As a result, the additive variance structure of a breeding
population should be also dominated by the birth process.
Third, our human beings have both wide geographic distri-
bution and strong migratory capacity, the former predicting
frequent local adaptions (i.e., adaptive divergences) and the
latter enabling repeated population admixtures (Hellenthal
et al. 2014; Fu et al. 2016). Hence, the selection-driven birth–
death cycle of additive variance could have been constantly
active during the human evolution. The resulting additive
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variance structure in current human populations determines
how human complex traits can be studied and understood.

Materials and Methods

Verify Segregant Panel
The segregant panel was kindly provided by Dr L. Kruglyak.
There were total 1,056 segregants in eleven 96-well plates. To
verify the genotypes, 12 segregants in each plate were ran-
domly picked up and four loci (MATa, MATa, hphMX4,
natMX4) were amplified by polymerase chain reaction for
these segregants. By comparing the results with the genotypes
provided by Dr L. Kruglyak, we found that some percentage of
segregants in plates 8 and 9 were mismatched, and there was
no pattern to rescue the segregants in a row or a line, which
may be the result of contaminations. We then focused the
segregants in the left nine plates with right genotypes in the
next experiments.

Measure Cell Morphological Traits
The morphological traits of each segregant were measured
following Ohya’s protocol with some modifications (Ohya
et al. 2005). Briefly, segregants were grown in YPD medium
(yeast extract/peptone/dextrose medium) to saturation
phase at 25 �C for 2 or 3 days, and then transferred to new
cultures to exponential phase at 25 �C for 3 or 4 h. Each
segregant had two replications. Cells were fixed with 3.7%
formaldehyde solution. Cell walls were stained with FITC-
ConA (fluorescein isothiocyanate-conjugated, concanavalin
A, Sigma–Aldrich C7642). Cell nucleus was stained by

Hoechst-mix (Thermo Fisher, Hoechst 33342 Solution) in-
stead of DAPI to enhance the specificity. We omitted the
process of actin staining because the dye of actin
(Rhodamine phalloidin) was not stable and could not sup-
port to image for a long time in the high-throughput auto-
mated image-processing. The stained cells were plated on
microplates (Greiner 781091) with �5.0� 104 cells per well
and taken images by IN Cell Analyzer 2200 (GE Healthcare)
with 100� objective lens. There were two technical replica-
tions for each segregant, and segregants A11_01 and A11_96
were cultured, stained, and imaged in every experiment as a
technical control.

CalMorph software was used to analyze images to quantify
yeast morphology, and 405 quantitative traits were derived
(Ohya et al. 2005). Segregants whose cell number for calcu-
lating traits <80 in both two replications were excluded.
Values of all traits were listed in supplementary table S1,
Supplementary Material online. There were 734 segregants
each with 405 morphological traits derived, in which 73.3%
(538/734) had at least two replications. Quantile normaliza-
tion was performed to the raw values of traits by R package
preprocessCore for further calculations (https://github.com/
bmbolstad/preprocessCore).

Traits derived from cell wall or nucleus can be distin-
guished by the initial letter of traits, in which “C” is related
to cell wall and “D” is related to nucleus. Traits in different
stages can be distinguished by the letters after the connector
line. “A” represents traits calculated by cells with one nucleus
and without a bud, “A1B” is traits calculated by cells with one
nucleus in the mother cell with a bud or the nucleus is

Starting population Adaptive divergence Population admixture
Birth of VA

Death of VA

VNon-A VAVNon-A VA

trait importance

h2
Non-additive
Additive

FIG. 4. A birth–death cycle of additive variance driven by positive selection. The birth process is explained by adaptive divergence followed by
population admixture. During adaptive divergence, different genetic loci would be positively selected in the diverged populations. Although
nonadditive variances (VNon-A) could be the majority in the starting population, additive alleles but not nonadditive alleles would be preferentially
fixed. The subsequent population admixture would then result in a new population full of additive variances (VA). The death of additive variances
is a typical process described by Fisher’s fundamental theorem of natural selection. By assuming frequent adaptive divergences followed by
population admixture, there could be a constantly active birth–death cycle underlying the structure of additive variances of a species.
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dividing at the neck, and “C” is traits derived by cells with one
nucleus each in the mother cell and bud. The 405 traits are
not independent, and 59 exemplary traits were derived by R
package “apcluster” (negDistMat, r¼ 2) using the mean nor-
malized values of 734 segregants (Frey and Dueck 2007).

Measure Cell Growth Rate
Strains were grown in YPD medium to saturation phase at
25 �C for 2 or 3 days, then diluted 1:100 to 100 ll fresh YPD
medium at 96-well plate. Two replications of each segregant
were placed in the same 96-well plate. The 96-well plates were
put on Epoch2 Microplate Spectrophotometer (BioTek) and
incubated at 25 �C with shaking. The absorbances at 600 nm
of each well were determined per hour. The measurements
lasted 24 h and all strains reached saturation phase. The Vmax

of growth rate, that is, the maximum slope of growth curve of
each well, was used to estimate the fitness of each strain. To
control the positional bias, the original values of growth rate
in each plate were fit by a robust locally weighted regression
by R package “locfit” according to Bloom et al.’s study (2013).
The average normalized values of growth rate were taken as
the fitness of each segregant, and listed in supplementary
table S3, Supplementary Material online.

Calculate Heritability
Because the segregant panel was produced by Bloom et al.,
broad-sense heritability (H2), narrow-sense heritability (h2),
additive QTL, and the variance explained by QTL of each
morphological trait were calculated by methods consisted
with Bloom et al.’s study (2013). Briefly, H2 was calculated
by normalized values of traits of segregants with two replica-
tions. H2 was estimated as r2

G=ðr2
G þ r2

EÞ, where r2
G was the

genetic variance and r2
E was the error variance. It was per-

formed by the “lmer” function in lme4 R package (Bates et al.
2015). When compared with H2, h2 was calculated by the
average normalized values of traits of segregants with two
replications. And, segregants with only one replication were
also included in other situations. Narrow-sense heritability
was estimated as r2

A=ðr2
A þ r2

EVÞ, where r2
A was the additive

genetic variance and r2
EV was the error variance. R package

rrBLUP was used to calculate h2 (Endelman 2011). SEs of H2

and h2 were calculated by delete-one jackknife both.
Additive QTL of each trait was detected using the stepwise

forward-search approach developed by Bloom et al. (2013).
LOD scores for each genotypic marker and each trait were

calculated as�n ln 1�r2ð Þ
2ln 10ð Þ

� �
, where r is the Pearson correlation

coefficient between the genotypes and trait values. Significant
genetic markers were detected from four rounds using differ-
ent LOD thresholds corresponding to a 5% FDR, which were
2.68, 2.92, 3.72, and 4.9, respectively. A multiple regression
linear model was estimated by taken each QTL as indepen-
dent variables of each trait, and the total phenotypic variance
explained by additive QTL was the square of the multiple
regression coefficient. The results were listed in supplemen-
tary table S2, Supplementary Material online.

Calculate Trait RTGR
For each trait, the average normalized values of replications of
each segregant were calculated. For segregants with only one
replication, the trait values were the normalized values from
the only measurement. The absolute Pearson’s R between the
trait values and the growth rates in YPD medium across 734
segregants was used as a proxy of RTGR for each trait. The
results were listed in supplementary table S2, Supplementary
Material online.

Calculate Trait CV among Replications
Coefficient of variations for each trait was calculated using
raw data of replications of A11_01 and A11_96, respectively.
Traits with large CV may indicate their indeterminacy, so we
excluded seven traits with CV >0.4 when using CV as an
index of trait importance. To evaluate the repeatability of
two groups, we used a distance index between two groups
of CV as CV01i

� CV96i
=ðCV01i

þ CV96i
Þ, where CV01i

and
CV96i

were the values of CV for trait i in A11_01 and
A11_96, respectively. A large CV distance means the environ-
mental robustness of the trait would be different for different
segregants, so we excluded 105 traits with CV distance index
>0.2 to obtain a set of traits with consistent measurements.
There were 293 traits left. The results were listed in supple-
mentary table S2, Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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