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A B S T R A C T   

The GM(1,1) model’s prediction accuracy is significantly influenced by the accuracy of back
ground value estimation. The traditional trapezoidal background value can only be applied to a 
specific data sequence. Therefore, this study proposes a GM(1,1) model background value 
reconstruction approach based on the combination of intelligent trapezoidal and variable weights 
in order to increase the model’s application as well as its prediction accuracy. The trapezoidal 
background value function with slope and point position parameters is called model I. Then, a set 
of point position parameter sequences, with a new background value function is constructed, 
called model II. A genetic algorithm is utilized to seek for the values of the parameters to be 
determined in both models I and II. The results showed that for the exponential growth data 
series, model I and II have higher prediction accuracy compared to traditional models. For data 
sequences, taking the traffic volume series of a road from 2014 to 2023, the prediction accuracy 
of this paper’s model I method can be improved by 0.3643 % and 0.2725 % compared with 
Deng’s and Wang’s models. The prediction accuracy of this paper’s model II method has been 
further improved by 0.1075 % compared with that of model I.   

1. Introduction 

In 1982, “Systems and Control Letters” from North-Holland Publishing Company published the first grey systems. “The Control 
Problems of Grey systems” by Chinese scholar Professor Deng, marking the beginning of grey systems [1]. System theory is the official 
birth of an emerging discipline [2]. After more than 30 years of development, its practicality has been widely demonstrated. The main 
application of grey system theory in prediction is the GM(1,1) model. Since the GM(1,1) model requires fewer sample data and easy to 
calculate, it has been widely used in transportation, energy, hydrology, ecology, environment, military, society, economy, and many 
other scientific fields [3–5]. However, the conventional GM(1,1) model frequently falls short of the requirements regarding the ac
curacy of prediction and data adaptability because of the algorithm’s flaws. Therefore, to increase the model’s forecast, many scholars 
are studying grey prediction from different angles. A number of optimization research has been conducted on the model to increase its 
predictive accuracy and applicability, mainly from numerical transformation generation [6–9], improvement of boundary value 
conditions [2,10,11], improvement of background values [12,13], improvement of model parameter estimation methods [14], 
optimization of residual sequences [15,16] comprehensive optimization [17–20] and other aspects. 

Among them, the background value is a key factor influencing the prediction accuracy of the GM(1,1) model [21]. Assuming that 
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the monotonicity of the non-negative original sequence X(0) =
{
x(0)(k)

}

k=1,..,n , X
(0) tends to be inconspicuous and random, which is not 

conducive to the analysis and computation of the data, while one-additive preprocessing can lessen the data’s unpredictability and 
enhance the regularity of the data. Therefore, in this paper, X(0) is accumulated once to get X(1), and the processing method is shown in 
equations. (1) and (2). 

x(1)(k)=
∑k

i=1
x(0)(i), k = 1, ⋅ ⋅ ⋅, n (1)  

X(1) =
{
x(1)(k)

}

k=1,..,n (2) 

Since the sequence X(1) increases monotonically, it is useful for modeling and data analysis. Any two adjacent index values k-1 and 
k, with the index value as the abscissa, the index corresponding value x(1)(k) as the ordinate, Draw the two points (k-1, x(1)(k − 1)

)
and 

(k, x(1)(k)
)

as illustrated in Fig. 1. The background value in the geometric meaning is the area enclosed by line segment A k-1, line 
segment k-1 k, line segment k B and curve BA. Since the equation of curve BA is unknown, and the actual background value cannot be 
obtained through integration. Thus, in Ref. [1] proposed a combination of the line segment A k-1, the line segment k-1 k, the line 
segment k B and the line segment BA. The classic background value calculation formula’s source of error is the size of the contained 
trapezium, which is utilized as an estimate of the background value, as well as the area enclosed by the curve AB and the line segment 
AB. Therefore, in order to eliminate background value errors, scholars have done a number of research on background value recon
struction. However, current studies on background values have “static” problems and cannot dynamically change the background 
value estimation with different sequences. 

Therefore, it is necessary to use intelligent algorithms to dynamically optimize the background value parameters. Typical intel
ligent algorithms with similar principles include the GA (Genetic Algorithm) and the PSO (Particle Swarm Optimization) algorithms. 
These two algorithms have been widely used in the field of optimizing parameters of objective functions [22,23]. In the GA algorithm, 
chromosomes share information with each other, so the entire population moves relatively uniformly towards the optimal region. In 
PSO, particles share information only through the current best point found, so to a large extent, it is a one-way information-sharing 
mechanism. The entire search and update process follows the current optimal solution. From this perspective, the PSO algorithm can 
converge to the optimal solution faster than the GA algorithm. However, this also makes the PSO algorithm more prone to getting stuck 
in local optima. GA has been developed for a longer time and already has mature convergence analysis methods. Compared to the PSO 
algorithm, the GA algorithm has a broader applicability [24]. To better accommodate various data types, this paper adopts the GA 
algorithm to determine the parameters to be optimized. 

Currently, biomimetic intelligent algorithms and artificial intelligence algorithms have been widely applied to the field of 
parameter determination and prediction. These include the Multistart Nelder-Mead neural network algorithm [25], Genetic 
Nelder-Mead neural network algorithm [26], Adaptive Quasi-Monte Carlo Method for Nonlinear Function Error Propagation algorithm 
[27], Improved Artificial Gorilla Troops Optimizer with Chaotic Adaptive Parameters [28], Memristor-based artificial neural networks 
algorithm [29], particle swarm optimization-backpropagation-artificial neural network algorithm [30], Wavelet Transform (WT) and 
Particle Swarm Optimization Support Vector Machine (PSO-SVM) algorithms [31], the combination of backpropagation neural 
network optimized by genetic algorithm (GA-BP) and support vector machine (SVM) algorithms [32], hybrid genetic algorithm and 
modified support vector machine classifier [33], and so on. Some of the aforementioned research uses a single intelligent algorithm, 
but most of them combine multiple intelligent algorithms for optimization, improving the adaptability or robustness of the algorithms. 
These methods have significant guiding importance for this study, which aims to combine and optimize multiple algorithms. However, 
artificial intelligence algorithms mainly rely on large data samples, which are not suitable for this study’s small sample data. Therefore, 
previous artificial intelligence algorithms are not appropriate for this study. Instead, this study attempts to combine biomimetic 
intelligent algorithms with the GM(1,1) model, using biomimetic intelligent algorithms to determine the undetermined parameters in 

Fig. 1. The concept of background values.  
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the GM(1,1) model and applying the optimized GM(1,1) model for prediction. 
In recent years, the process of urban integration in China has accelerated, leading to an increasing demand for travel and worsening 

traffic congestion. The urban issues caused by traffic congestion have become major factors affecting the economic development of 
cities. Therefore, how to solve traffic congestion has attracted widespread attention from researchers in various fields [34–36]. 
Furthermore, traffic volume forecasting is key to taking effective measures to alleviate traffic congestion. Traffic volume forecasting 
can be divided into medium- and long-term, and short-term forecasts based on the prediction interval duration [37,38]. Medium- and 
long-term traffic volume forecasting uses intervals of days, months, or even years, and is typically used for situations requiring 
macro-level traffic volume predictions, such as traffic planning. This paper mainly focuses on urban medium- and long-term traffic 
volume forecasting. Thus, a method that can improve the effectiveness of existing forecasting methods has always been a focus of 
traffic management research. 

For the reasons mentioned above, this paper presents a suitable method of intelligent trapezoidal construction, which is applicable 
to all types of data. First, the 1-AGO data sequence polynomial function is approximated by quadratic Newton interpolation formula 
and the trapezoid is constructed by using polynomial function. Second, a Genetic Algorithm (GA) is introduced into the estimation of 
trapezoidal background value to adapt to various types of data changes, and the key parameters in trapezoidal construction are 
searched for by the GA. Finally, it has been verified that this method has good prediction accuracy for exponential growth data, and it 
can also be used to predict the actual road traffic volume. 

2. Literature review 

Currently, there is extensive research on traffic volume forecasting, primarily based on machine learning algorithms, including 
Bayesian network models [39], neural network models [40], and support vector machine models [41]. Zhu [39] proposed using a 
Bayesian clustered Gaussian process ensemble model for prediction. This model performs hard clustering on input data based on a 
Dirichlet process mixture model; within each cluster, it uses Gaussian processes to learn the probabilistic relationship between inputs 
and outputs. During the prediction phase, the model performs soft clustering on the inputs as weights and predicts using the weighted 
average of the Gaussian process outputs. Manikandan [40] employed deep convolutional neural networks and used TensorFlow to 
predict traffic flow from real-time traffic data at different locations. The application of computer-based TensorFlow in deep neural 
networks verifies the accuracy of the algorithm. Toan [41] proposed an effective method for short-term traffic flow prediction using 
support vector machines and compared it with two traditional methods. The model was trained and tested using one month of time 
series traffic flow data from a section of Singapore’s Pan-Island Expressway, validating the algorithm’s effectiveness. 

The aforementioned studies are all based on machine learning algorithms for traffic volume prediction, extending the research 
depth in the field of traffic volume forecasting and improving the prediction accuracy of the models. However, these models share a 
common issue: they rely on large sample data due to the use of machine learning algorithms. In practical traffic volume forecasting 
applications, small sample data may exist, rendering machine learning algorithms ineffective for accurate prediction. The GM(1,1) 
model, due to its advantages of requiring fewer sample data and simpler calculations, can be applied in this field. 

There has been quite a lot of research on GM(1,1) model background value optimization and the main purpose is to construct a new 
background value expression. In Ref. [42] defined the accumulation sequence as a homogeneous exponential function, starting with 
the background value’s geometric meaning. It derived a new background value calculation formula and increased the model’s pre
diction accuracy. However, the one-time accumulation sequence is a non-homogeneous exponential function. In Ref. [43], further 
optimized the background value calculation algorithm and developed the one-time accumulation sequence as a non-homogeneous 
exponential function. In Refs. [44,45], further optimized based on the above background value calculation formula. The GM(1,1) 
model’s prediction accuracy and applicability are both enhanced by the aforementioned technique. However, the above background 
value calculation formula does not consider the geometric significance of constructing the background value, resulting in prediction 
accuracy that still needs further improvement. At the same time, the proposed background value calculation formula also constrains 
the model’s applicable range and cannot be dynamically adjusted according to changes in the original sequence. 

In [46,47], the analysis highlighted the significance of constructing background values in the GM(1,1) model. Reasonably con
structing background values can improve the accuracy and adaptability of the grey model. The paper discussed methods for recon
structing background values in the GM(1,1) model based on data interpolation and numerical integration using Newton-Cotes 
formulas. Simulation examples verified the effectiveness of the proposed methods. Zhu et al. [48] approached the construction of 
background values from a geometric perspective, using a monotonic piecewise cubic spline interpolation reconstruction curve to 
improve the background values and enhance the prediction accuracy of the grey model. Cheng et al. [49] used optimized values of 
exponential functions, power functions, polynomial functions, and difference functions as background values within the original 
model structure to calculate the parameters of the GM(1,1) model, aiming to improve prediction accuracy. Ma et al. [50] proposed a 
new discrete GM(1,1) model, where the background values were reconstructed using Simpson’s formula. They derived the expression 
of the specific time response function, and the proposed model was proven to be unbiased, capable of simulating homogeneous 
exponential sequences, and validated with actual sequences. 

The aforementioned methods all optimized the traditional trapezoidal background value from a geometric perspective. However, 
in Refs. [46–50], most methods used numerical integration combined with the accumulated sequence scatter values to construct a 
function that approximates the accumulated sequence, obtaining the time response sequence equation. This type of model, on the one 
hand, requires complex mathematical knowledge, making the model construction process quite complicated. On the other hand, the 
GM(1,1) model, optimized using numerical integration approximation, can only adapt to specific sequences. For some sequences, the 
improvement in prediction accuracy may be insignificant, or the prediction performance may even deteriorate. 
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Wang [51] further optimized the model by considering the geometric significance of the background values. Using the Lagrange 
mean value theorem, he constructed the background values as variables related to k, and set the initial values as variables. The 
corresponding optimal parameters and time response formula were determined based on the minimum average relative error. By 
applying this method to domestic annual natural gas consumption data, the accuracy of the grey model’s predictions was improved. 
These methods enhance the adaptability of the model to data by incorporating undetermined parameters into the construction of 
background values and solving for these parameters. However, the aforementioned models use traditional mathematical methods for 
solving, which have drawbacks such as slow solving speed, complexity in computation, and low precision of results. In today’s era of 
rapid computer development, intelligent algorithms are a very good choice. 

Liu [52] used the composite mean value theorem of integration to reconstruct the dynamic background values of the fractional grey 
model and proposed a variable background value based on the fractional grey model. Specifically, the particle swarm optimization 
algorithm (PSO) was then used to determine the optimal values of the fractional order and background value coefficients. The model’s 
effectiveness was validated using electricity consumption data from Beijing and Inner Mongolia as examples. This model introduced 
undetermined parameters into the construction of background values and used the PSO algorithm to determine the optimal values of 
these undetermined parameters, improving the accuracy of background value construction. However, there is a background value 
function between any two adjacent index values k− 1 and k, and each function has different trends. This means that using a single 
undetermined parameter cannot make all the background value functions completely approximate the actual values, indicating that 
there is still room for improvement in the prediction accuracy of the GM (1,1) model. 

In [53], optimized the traditional trapezoidal background value and transformed the background value into an arithmetic 
weighting to increase the model’s flexibility for various data sequences, and z(1)(k) has a background value of ax(1)(k − 1)+ (1 −

a)x(1)(k). It determined the optimal parameter a through theoretical analysis and iteration method. In Ref. [54], used GA to search and 
determine the value of the optimal parameter a, which further improved the model’s prediction accuracy. The model’s applicability 
can be greatly increased by optimizing the background value using the unknown parameter a and by employing intelligent algorithms 
for searching to find the optimum parameter value. However, there are still two problems in the above research. First, the weighted 
sum of the adjacent data, x(1)(k − 1) and x(1)(k), is used to calculate the traditional trapezoidal background value calculation algo
rithm. This trapezoidal background value construction method has great limitations and is difficult to adapt to different change se
quences. Secondly, the background value is a sequence set 

{
z(1)(k)

}

k=2,..,n, and all background value sequence element values are 
estimated using a specific background value parameter. It can only achieve comprehensive optimization but cannot lessen the error 
between the actual each background value and the estimated background value. Therefore, serializing the values of the undetermined 
parameters in the background value function will make the background value estimate closer to the actual background value and 
improved the model’s prediction accuracy. The determination of the undetermined set elements is a key factor influencing the model’s 
prediction accuracy. According to the above study, intelligent algorithms have better results in determining background value pa
rameters. Therefore, this study attempts to use GA to calibrate and improve an undetermined set of parameter sequences. 

In summary, the main contributions of this paper are as follows: 

Fig. 2. Research flowchart.  
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- Based on the traditional trapezoidal background value construction, this paper establishes a new trapezoidal background value 
function containing two undetermined parameters using simple mathematical geometric thinking. Compared to traditional opti
mization approaches, the new trapezoidal background value construction is simpler, does not rely on complex mathematical 
theories, and offers higher prediction accuracy.  

- This paper proposes two new GM(1,1) models with optimized background values. The background value function includes two 
undetermined parameters: the point position parameter and the slope parameter. The optimal values of these parameters are 
obtained using the GA (genetic algorithm). The GM(1,1) model with this background value is designated as Model I. Based on 
Model I, the undetermined parameters undergo variable weight optimization, making the values of the position and slope pa
rameters dependent on the index value k, varying with k. This further improves the accuracy of the background value function. The 
optimal parameter set is obtained using the GA genetic algorithm, and the GM(1,1) model with this background value is designated 
as Model II.  

- Validation with exponential data sequence examples shows that the two new GM(1,1) models proposed in this paper have higher 
prediction accuracy compared to traditional models and can adapt to rapid data growth. 

3. Research methods 

This study proposes and examines a GM(1,1) model background value reconstruction method based on the combination of variable 
weights and intelligent trapezoidal in the following steps, as described in Fig. 2. First step, the traditional GM(1,1) model optimization 
method was analyzed through literature review. To facilitate the determination of the study direction, research topics pertaining to 
background value optimization will be identified from this review. Second step, in terms of GM(1,1) model, an intelligent trapezoidal 
background value with undetermined parameters is constructed using the background value’s geometric meaning. In the third stage, 
the variable weights of the undetermined parameters are combined in order to improve the prediction accuracy of the GM(1,1) model. 
A background value is then created by combining the intelligent trapezoid with the variable weights. After that, use GA to find the 
optimum value for each of the undetermined parameters in the background value function. Finally, a comparison between the two 
proposed GM(1,1) models (Model I and II) and the two conventional GM(1,1) models is conducted: one is Deng [1] model hereinafter 
referred to as Deng’s model and the other one is Wang [54] model hereinafter referred to as Wang’s model, the exponential growth 
data sequence and the instance data sequence are used for verification respectively. 

4. Background values for smart trapezoidal and variable weight combinations 

4.1. Construction of polynomial functions approximating 1-AGO data sequence polynomials based on quadratic Newton interpolation 
Formulation 

A series of discrete points is formed from the sequence of X(1) and its corresponding transverse coordinate values (k-values). The 
functional equation and the function value between any two points (k-1, x(1)(k-1)) and (k, x(1)(k)) (2≤k ≤ n-1) are unknown. Therefore, 
smart trapezoids cannot be constructed to estimate the background values. Due to the computational simplicity and good approxi
mation of Newton’s interpolation formula [55], and the number of interpolations is too high will cause the Runge phenomenon, i.e., 
The quadratic Newton’s interpolation formula is used to construct the polynomial function, and the difference formula is shown in 
Definition 1. 

Definition 1. Assume that any four different k1, k2, k3 and k4 function values of f(k1), f(k2), f(k3) and f(k4) in the function f(x); that 
is:  

- The first order difference between ki and kj is divided into: 

f
[
ki, kj

]
=

f(ki) − f
(
kj
)

ki − kj
(3)    

- The second-order difference between ki, kj and kl is divided into: 

f
[
ki, kj, kl

]
=

f
[
kj, kl

]
− f
[
ki, kj

]

kl − ki
(4)    

- The third order difference between k1, k2, k3 and k4 is divided into: 

f [k1, k2, k3, k4] =
f [k2, k3, k4] − f [k1, k2, k3]

k4 − k1
(5)   

Property 1. The difference value is independent of the order of the nodes, i.e.: 

S. Zhang et al.                                                                                                                                                                                                          
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f [ki1, ki2, ⋅ ⋅ ⋅ , kin] = f [k1, k2, ⋅ ⋅ ⋅ , kn] (6) 

where [ki1, ki2, …, kin] is any permutation of [k1, k2, …, kn].  

Theorem 1. Assume three points (k-1, x(1)(k-1)), (k, x(1)(k)) and (k+1, x(1)(k+1)) 2≤k ≤ n-1 in X(1) and set N2(t) ≈x(1)(t)(t∈ [k-1, 
k]). The Newton interpolation polynomial function in the interval [k-1, k] is then: 

x(1)(t)= x(1)(k − 1)+
(
x(1)(k) − x(1)(k − 1)

)
⋅ (t+1 − k)

+

(
1
2

x(1)(k − 1) − x(1)(k)+
1
2

x(1)(k+1)

)

⋅ (t+1 − k) ⋅ (t − k)

Proof. Suppose t ∈ [k-1,k]; according to definition 1, f [t,k − 1] = x(1)(t)− x(1)(k− 1)
t− k+1 . Determine x(1)(t) as shown in equation (7). 

x(1)(t)= f [k − 1, t] ⋅ (t − k+1) + x(1)(k − 1) (7) 

According to definition 1, f [t,k − 1,k] = f [k− 1,k]− f [t,k− 1]
k− t . Determine f [k-1, t] as shown in equation (8). 

f [k − 1，, t] = f [k − 1, k] + (t − k) ⋅ f [k − 1, k, t] (8)  

Where f [t, k-1] = f [k-1, t] by Property 1. 
According to definition 1, f [t,k − 1,k,k + 1] = f [k− 1,k,k+1]− f [t,k− 1,k]

k+1− t . Determine f [k − 1, k, t] as shown in equation (9). 

f [k − 1, k, t] = f [k − 1, k, k+1] + (t − k − 1) ⋅ f [t, k − 1, k, k+1] (9)  

Where, it can be concluded that f [k-1, k, t] = f[t,k-1,k] according to property 1. Equations (8) and (9) are brought into the upper 
equation in turn, which can be expressed in equation (10). 

x(1)(t)= x(1)(k − 1)+ f [k − 1, k] ⋅ (t+1 − k)
+f [k − 1, k, k+1 ] ⋅ (t+ 1 − k) ⋅ (t − k)

+f [k − 1, k, k+1, t ] ⋅ (t+1 − k) ⋅ (t − k) ⋅ (t − k − 1)
(10)  

Where N2(t) = x(1)(k − 1)+ (t − k + 1) ⋅ f [k − 1,k] + (t − k + 1) ⋅ (t − k) ⋅ f [k − 1,k,k + 1]. N2(t) is a quadratic Newton interpolation 
polynomial function, R(t) = (t − k + 1) ⋅ (t − k) ⋅ (t − k − 1) ⋅ f [k − 1, k, k + 1, t], and R(t), is the remainder of quadratic Newton 
interpolation polynomial function. This is because according to definition 1, N2(t) ≈ x(1)(t)，(t∈ [k − 1, k]), the difference quotient 
values f[k-1, k] and f[k-1, k,k+1] are introduced into N2(t) for simplification to obtain equation (11). 

x(1)(t)= x(1)(k − 1)+
(
x(1)(k) − x(1)(k − 1)

)
⋅ (t+1 − k)+

(
1
2

x(1)(k − 1) − x(1)(k)+
1
2

x(1)(k+ 1)

)

⋅ (t+1 − k)

⋅ (t − k) (t ∈ [k − 1, k]) (11) 

End of proof. 
For example, in a first-order accumulated sequence with three adjacent points (1, 1357), (2, 2385), and (3, 4006), assuming N2(t) ≈

x(1)(t)(t ∈ [1,2]), calculate the Newton interpolation polynomial function over the interval [1,2]. Substitute the given variables into 

Fig. 3. Ladder background value function construction diagram.  
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equation (11), where k is 2, x(1)(k − 1) is 1357, x(1)(k) is 2385, and x(1)(k+1) is 4006. Ultimately, solving yields x(1)(t) = 2681.5⋅ t2 −

7016.5 ⋅ t+ 5692(t ∈ [1,2]). 

4.2. Optimization of background values 

4.2.1. Construction of the background value of the smart trapezoid 
With coordinates of (t, x(1)(t)) (k-1≤t < k), take any point T on curve AB, the value of x(1)(t) is given by equation (11). Draw a 

straight line through point T and intersect curve AB at another point M, as shown in Fig. 3(a). When point M coincides with point B, the 
slope of the line TB is as shown in equation (12) as shown in Fig. 3(b). 

kTB =
x(1)(k) − x(1)(t)

k − t
(12)  

Where kTB is the slope of line TB, the slope of line TM is less than the slope of line TB, which means that the slope of line TM can be 
expressed as ∂⋅kTB(0≤ ∂≤ 1，∂is the slope parameter) and that line TM passes the point T. Then, the function of line TM is as shown in 
equation (13). When point T is determined, the slope change effect diagram of straight-line TM is shown in Fig. 4. 

y − x(1)(t)= ∂ ⋅
(

x(1)(k) − x(1)(t)
k − t

)

⋅ (x − t) (13) 

The line in transverse coordinates equal to k-1 intersects with k at two points S and N. To solve for the value of the function of the 
line TM at k-1 and k, substitute the transverse coordinates of k-1 and k into equation (13). 

When x = k − 1. 

yk− 1 = ∂ ⋅
(

x(1)(k) − x(1)(t)
k − t

)

⋅ (k − 1 − t)+x(1)(t) (14)  

whenx = k. 

yk = ∂ ⋅
(

x(1)(k) − x(1)(t)
k − t

)

⋅ (k − t)+x(1)(t) (15)  

Where yk− 1 and yk are the function values of line TM at the abscissae of k-1 and k, yk− 1 and yk are as the upper line and down line of a 
trapezoid. The new background value function value is the trapezoid area surrounded by line segment S k-1, line segment k-1 k, line 
segment k N and line segment N S. Equation (16) shows the estimation function of the background value based on the trapezoidal area. 

z(1)(k)=0.5 ⋅ (yk− 1 + yk)= x(1)(t)+ ∂ ⋅
(

x(1)(k) − x(1)(t)
k − t

)

⋅
(

k − t −
1
2

)

(16)  

Where the point T is any point in the interval [k-1, k] on the curve, which indicates that the abscissa of point T can be represented as t =
k-1+d (0≤d < 1, d is the point position parameter). Then, take the abscissa of point T into equation (16), and obtain equation (17). 

z(1)(k) = 0.5 ⋅ (yk− 1 + yk) = x(1)(k − 1 + d) + ∂ ⋅
(

x(1)(k) − x(1)(k − 1 + d)
1 − d

)

⋅
(

1
2
− d
)

(0 ≤ ∂ ≤ 1, 0 ≤ d < 1, 2 ≤ k ≤ n − 1)
(17) 

Substituting the expression of x(1)(t) in equation (11) into equation (17), then equation (18) can be obtained. 

Fig. 4. Linear TM slope change effect graph.  
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z(1)(k) = x(1)(k − 1) +
(
x(1)(k) − x(1)(k − 1)

)
⋅ (d + ∂ ⋅ (1/2 − d))

+d ⋅
(
1
/
2 ⋅ x(1)(k − 1) − x(1)(k) + 1

/
2 ⋅ x(1)(k + 1)

)
⋅ (d − 1 − ∂ ⋅ (1/2 − d))

(0 ≤ ∂ ≤ 1, 0 ≤ d < 1,2 ≤ k ≤ n − 1)
(18) 

The background value for intelligent trapezoid construction can be calculated using equation (18). When d = 0 and ∂ = 1, equation 
(18) is the background value of the classic GM(1,1) model [1], so the background value of the excellent GM(1,1) includes the classic 
GM(1,1) model background value, the GM(1,1) model constructed by equation (18) is defined as model I. The above equation contains 
two undetermined parameters, ∂ and d, with a maximum degree of 3 (cubic equation). This background value function is a bivariate 
cubic nonlinear function. Because it is not a conventional function, exploring its monotonic characteristics using mathematical 
methods is quite complex. Therefore, using intelligent algorithms for optimization is a very good choice. 

4.2.2. Variable weight optimization of intelligent trapezoidal background values 
The following equation shows the calculation of the traditional approach of trapezoidal background value in Deng’s model. 

z(1)(k)=
1
2

⋅
(
x(1)(k)+ x(1)(k − 1)

)
, k= 2, .., n (19) 

The following equation shows Wang’s model’s background value calculating procedure. 

z(1)(k)= ax(1)(k − 1) + (1 − a)x(1)(k), k = 2, .., n (20)  

In this study, the optimized background value calculation approach is based on equation (18) and performs variable weight optimi
zation on the slope parameter ∂ and the point position parameter d. The calculation method is shown in the following equation. 

z(1)(k) = x(1)(k − 1) +
(
x(1)(k) − x(1)(k − 1)

)
⋅ (d(k) + ∂(k) ⋅ (1/2 − d(k)))

+d(k) ⋅
(
1
/
2 ⋅ x(1)(k − 1) − x(1)(k) + 1

/
2 ⋅ x(1)(k + 1)

)
⋅ (d(k) − 1 − ∂(k) ⋅ (1/2 − d(k)))

(0 ≤ ∂(k) ≤ 1, 0 ≤ d(k) < 1,2 ≤ k ≤ n − 1)
(21) 

Among them, 
{
z(1)(k)

}

k=2,..,n− 1 is the background value sequence, {∂(k)}k=2,..,n− 1 is the slope parameter sequence, {d(k)}k=2,..,n− 1 is 
the point position parameter sequence. In order to increase the precision of the model prediction and the accuracy of the background 
value estimate, the optimization idea of this study is to gather the unknown parameters in the background value function and convert 
them into weight sequences. The GM(1,1) model constructed by equation (21) is called model II. 

4.3. Modeling steps for optimizing the GM(1,1) model 

Let the original data non-negative sequence be： X(0) =
{
x(0)(1),x(0)(2),…,x(0)(n)

}
. 

Perform an accumulation calculation on x(0) to obtain the sequence X(1) =
{
x(1)(1),x(1)(2),…,x(1)(n)

}
, the main calculation method 

is as shown in equation (1). 
The grey differential equation of GM(1,1) model is shown in the following equation (22). 

x(0)(k)+ a ⋅ z(1)(k) = u, k = 2,…, n − 1 (22) 

The parameters a and u are parameters in GM(1,1) model modeling, and the calculation method can be expressed in equation (23). 

(a, u)T
=
(
BTB

)− 1BTY (23) 

In, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− Z(1)(2) 1

− Z(1)(3) 1

⋯ − Z(1)(n − 1)
⋯

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X(0)(2)

X(0)(3)

⋯

X(0)(n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, the calculation methods of the background value sequence 
{
z(1)(k)

}

k=2,..,n− 1 

are as shown in equations (18) and (21) respectively. Equation (24), which illustrates the whitening equation of the grey differential 
equation of the GM(1,1) model, is derived based on the GM(1,1) modeling principle. 

dx(1)

dt
+ a ⋅ x(1) = u (24) 

The time response sequence of an accumulation sequence can be found by solving the whitening differential equation, as indicated 
by equation (25). 

x̂(1)
(k)=

(
x(1)(1) −

u
a

)
⋅ e− a⋅(k− 1) +

u
a
, k= 1,…, n (25) 

Among them, x̂(1)
(k) is a cumulative prediction sequence, x̂(1)

(1) = x(1)(1). 
The cumulative reduction value is shown in the following equation (26). 
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x̂(0)
(k)= x̂(1)

(k) − x̂(1)
(k − 1)= (1 − ea) ⋅

(
x(1)(1) −

u
a

)
⋅ e− a⋅(k− 1), k=1,…, n (26)  

Where x̂(0)
(k) is the original prediction sequence. 

According to the modeling steps, one significant influencing parameter that the GM(1,1) model can predict is the determination of 
the slope and point location parameters. Thus, the following describes how to determine the background value undetermined 
parameter. 

4.4. Determination of background value parameters based on GA 

As a highly efficient optimization method seeking a global, optimal solution without any initialization information, GA can be 
effectively combined with various algorithms and applied to many fields [56]. It has been common practice to search the GM(1,1) 
background value parameter using GA [57,58]. GA is used to intelligently search the optimum important parameters of trapezoid 
background value estimation in this paper. 

4.4.1. Chromosome coding and initial population generation 
Chromosome coding: The key undetermined parameters of a trapezoid building background function are slope parameter and 

point position parameter. To make selection, cross mutation and other operations more convenient, binary coding is adopted [59]. For 
model I, there are two undetermined parameters in the background value function. The encoding length ω is set to 20 to achieve more 
than three decimal places accuracy for the parameters ∂ and d in the search process. The first 10 binary code length represents 
parameter ∂, while the latter 10 binary code length represents parameter d. For Model II, the number of undetermined parameters in 
the background value function is determined based on the original sequence number n, and the number of undetermined parameters is 
2(n − 2). Each parameter occupies a 6-bit binary encoding length, and the encoding length ω is 12(n − 2). The precision τ of each 
number encoding can be determined by equation (27). 

τ= σmax − σmin

2ϖ − 1
(27)  

where ϖ represents the encoding length of a binary number; σmax and σmin indicate the range of decimal numbers of undetermined 
parameters, the value of σmax and σmin are 1 and 0. τ represents the precision of encoding for each undetermined parameter. This value 
reflects the search accuracy of the genetic algorithm. For example, if the search precision for the undetermined parameter values needs 
to be accurate to two decimal places or more, then τ ≤ 0.01. The coding of the decimal value represented in the GA can be obtained by 
converting coding binary to the decimal number and then multiplying by the number of encoding accuracy. 

Initial population generation: Generate N initial populations at random. The population size is generally between ω and 2ω. In 
model I, the population size is 40, while in model II, it is 24(n − 2) and this allows for a faster convergence to the optimal solution. 

4.4.2. Calculation of the fitness function 
An individual’s fitness within the population is often determined as the GA’s objective function. The fitness function is the main 

basis of “survival of the fittest” in the future. The individual with a large fitness has a higher chance of transferring their genes to the 
next generation. In contrast, a person with low fitness has a reduced likelihood of transferring their genes to the next generation. 
Equation (28), which calculates the average relative error, is used in this study to identify the background value’s critical parameters 
that result in the lowest average relative error. 

er =
1
n
∑n

k=1

⃒
⃒x
∧
(0)(k) − x(0)(k)

⃒
⃒

|x(0)(k)|
(28)  

Where er is the average relative error predicted by the GM(1,1) model, and x
∧
(0)(k) is the predicted value. The corresponding slope 

parameter and point position parameter values of each individual population are introduced into the background value estimation 
equation. The GM(1,1) model is solved to obtain the corresponding predicted sequence. x(0)(k) is the actual value, and n represents the 
amount of data in a sequence. Equation (29), which represents the fitness function of the GA, uses the reciprocal of the average relative 
error to reach agreement with the highest value of the GA’s fitness function. 

ffitnessfunction = n ⋅
∑n

k=1

⃒
⃒x(0)(k)

⃒
⃒

|x
∧
(0)(k) − x(0)(k)|

(29)  

4.4.3. Operations of selection, crossover and mutation 
Selection Generally, a high level of fitness increases the likelihood that an individual will pass on their genes to the next gener

ation. To establish the relationship between individual fitness and individual survival probability, the probability that each person will 
survive is calculated using the Monte Carlo method. It is the link to establishing the relationship between individual fitness and in
dividual survival probability as shown in equation (30). 
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Pj =
fj

∑N

i=1
fi

j = 1, 2, ⋅ ⋅ ⋅,N (30)  

Where Pj is for the survival probability of individual j, fj stands for the fitness function value of individual j, and N is the number of 
individuals in the population. 

The roulette method uses a fan area to divide the roulette wheel and is based on the survival probability found using the Monte 
Carlo method. A larger Pj corresponds to a greater area on the roulette wheel. The specific operation of the roulette method is as 
follows: A bamboo stick is fixed at the center of the roulette wheel, and every time the bamboo stick is rotated, the individual whose 
area the bamboo stick has stopped in is selected. At the same time, the same operation would be carried out N times to obtain N new 
individual populations. 

Crossover: It is the process of creating a new individual by partially recombining and replacing the structural components of two 
parent individuals. An essential component of the GA is the crossover operator. Single-point crossover is utilized, and the crossover 
probability is typically 0.4–0.99, to minimize the time complexity of the crossover portion. Thus, this study selects 0.6 for better 
prediction results. The specific process of crossover is: perform crossover operation on any two adjacent individuals. First, judge 
whether to crossover based on probability. If not, the two individuals will not change. If crossover is performed, then select the 
intersection point and exchange the codes after the intersection point, as shown in Fig. 5 before and after cross transformation. 

Mutation: A mutation is a shift in the gene values of individual strings within the population at specific loci, to maintain the 
diversity of individuals in the population and prevent them from falling into local optimality. The mutation probability pm is usually 
taken as 0.0001–0.1. This study refers to the previous study [34] where the mutation probability pm is taken as 0.001. The specific 
process of mutation is: select mutant individuals based on probability, and select mutation points on the selected individuals. If the 
original gene is 1, it becomes 0, and if the original gene is 0, it becomes 1. 

The fitness calculation, selection, crossover and mutation procedures are repeatedly carried until the predetermined number of 
iterations (100 iterations in this study) is fulfilled or a satisfactory result is obtained. The choice of iteration count primarily depends on 
the convergence of the algorithm. By observing the effect graph of the fitness function as it changes with the number of iterations, when 
the fitness function stabilizes with increasing iterations and approaches a steady value, it is recognized that the algorithm has 
converged. The iteration count corresponding to algorithm convergence is recorded. Through multiple experiments, the maximum 
iteration count corresponding to stable convergence is selected as the iteration count for the experiments in this paper. 

5. Result and discussion 

5.1. Modeling and testing of exponential growth data series 

The optimization method in this study is utilized to predict exponential growth sequences using the GM(1,1) model, an approx
imate exponential fitting method. The parameter a is the development coefficient in the GM(1,1) model, as shown in equation (22). 
Thus, the exponential growth data sequence is calculated and generated by the following equation (31). 

x(0)(i)= e− a(i− 1), i = 1,2 ⋅ ⋅⋅,6 (31)  

Where, i is the index sequence number; -α is taken as 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0 for simulation analysis. Table 1 shows the 
resulting of original sequence. 

This study compared models I and II with Deng’s model and Wang’s model, and GM(1,1) model is built with the background value 
of model I by applying the method in Wang’s model for data sequences under various development coefficients. For data sequences 
under different development coefficients, the optimal background value searched by GA is used. The parameters that need to be 

Fig. 5. Cross processes.  
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determined are depicted in Fig. 6. Also, this paper creates a GM(1,1) model on the basis of the Model II background value. For data 
sequences under different development coefficients, the optimal background value undetermined parameter sequence searched by the 
GA is illustrated in Fig. 7. 

Fig. 6 illustrates that when the GA converges, the values of the slope parameter ∂ and point position parameter d are obtained by 
searching under different development coefficients. The parameters have no obvious change rules, and the scattered points are 
randomly distributed. In order to predict the outcomes, the parameter will be substituted into equation (18) together with the GM(1,1) 
model. 

According to Fig. 7, it can be seen that when the GA converges, the values of the slope parameter sequence ∂(i) and the point 
position parameter sequence d(i) are obtained by searching under different development coefficients. The parameter value scatter 
points are randomly distributed, and there is no obvious changing pattern of it. The prediction results can be derived by entering the 
parameter sequence into equation (21) and combining it with the GM(1,1) model. 

The four GM(1,1) models use the undetermined parameters obtained from the above research to substitute into the background 
value function and combine with the modeling steps to calculate the prediction results, as shown in Fig. 8. 

When the development coefficient |a| = 0.2, the four GM(1,1) model’s forecast outputs essentially match the actual values. As the 
development coefficient increases, the prediction results of Deng’s model deviate more and more from the actual values. When the 
development coefficient is greater than 1 and the index value i is greater than 4, from the graph, it can be visually observed that there is 
a significant deviation between the prediction and the actual values. As the development coefficient changes, the prediction results of 
the other three methods basically coincide with the actual values, indicating that the two models proposed in Wang’s model and this 
study have high prediction accuracy. The prediction results are entered into the following equation (32) to determine the relative error 
at each point, allowing for a more accurate comparison of the three approaches’ forecast accuracy. 

e(k)=
⃒
⃒x
∧
(0)(k) − x(0)(k)

⃒
⃒

|x(0)(k)|
(32)  

where x
∧
(0)(k) is the predicted value, x(0)(k) is the actual value, and e(k) is the relative error value. 

The relative error value can be calculated by using the predicted and actual values from Fig. 8 into equation (32). The development 
coefficient |a|, the index sequence number i and the corresponding relative error are sorted to form a spatial error point. For better 

Table 1 
Exponential growth series with different development coefficients.  

i 1 2 3 4 5 6 

|a|

0.2 1 1.2214 1.4918 1.8221 2.2255 2.7183 
0.4 1 1.4918 2.2255 3.3201 4.9530 7.3890 
0.6 1 1.8221 3.3201 6.0496 11.0232 20.0855 
0.8 1 2.2255 4.9530 11.0232 24.5325 54.5982 
1.0 1 2.7183 7.3891 20.0855 54.5982 148.4132 
1.2 1 3.3201 11.0232 36.5982 121.5104 403.4288 
1.4 1 4.0552 16.4446 66.6863 270.4264 1096.6331 
1.6 1 4.9530 24.5325 121.5104 601.845 2980.958 
1.8 1 6.0496 36.5982 221.4064 1339.4308 8103.0839 
2.0 1 7.3891 54.5982 403.4288 2980.958 22026.4658  

Fig. 6. Optimal background value weights obtained based on model I searching.  
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observation the relative error values under different development coefficients, different index sequence numbers and convert the 
points into surfaces through interpolation. The relative error surface plots predicted by the four GM(1,1) models are shown in Fig. 9. 

The "." shown in Fig. 9 calculates the relative error value scatter points for equation (32). The relative error of the GM(1,1) model on 
the basis of Deng’s model increases with the increase of the development coefficient. The interval [0,1] contains the relative errors for 
each scatter point. The prediction result is distorted, When the development coefficient |a| is greater than 1. This is the same as the 
analysis result in Fig. 8. Based on Wang’s model, the relative error from the GM(1,1) model has no obvious relationship with the 
development coefficient and the change of index sequence number i. All relative errors are within the interval [0,0.00004]. When the 
development coefficient takes 1.8 and the index sequence number i takes 2, the relative error reaches the maximum value, and the 
space surface exists. There are multiple extreme points, and the relative error in most areas is within 0.000015. Wang’s model provides 

Fig. 7. Optimal background value weights obtained based on the Model II search.  
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Fig. 8. Predicted and actual values of four GM(1,1) models under different development coefficients.  
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a high prediction accuracy with the GM(1,1) model and can be used to forecast exponential sequences; the relative error and 
development coefficient based on the model I have no relationship with the change of the index sequence number i, and the spatial 
surface. There is a similar trend to Wang’s model. All relative errors are within the interval [0, 0.00003]. When the development 
coefficient is 2.0 and the index sequence number i is 2, the relative error reaches the maximum value. There are multiple extreme 
points on the space surface, and the relative error in most areas is within 0.00001. Thus, model I is more suitable for exponential 
sequence prediction than the GM(1,1) model in Wang’s model. The relative error based on model II also has no obvious relationship 
with the development coefficient and the change of index sequence number i. All relative errors are within the interval [0,0.00002]. 
When the development coefficient is 0.2 and the index sequence number i is 2, and the relative error reaches the maximum value. 
There are multiple extreme points on the space surface, and the relative error in most areas is within 0.000005. Therefore, Model II is 
more suitable for exponential sequence prediction than Model I. 

In order to make a better comparison between the four model’s approaches’ accuracy of prediction, the parameter average relative 
error of the prediction model is usually used to measure it. Under the same development coefficient, the relative errors corresponding 
to different index sequence numbers are substituted into equation (28) to obtain the average relative error as summarized in Table 2. 

In accordance with the prediction results in the above table, Deng’s model has the lowest prediction accuracy. If the development 
coefficient increases, the average relative prediction error becomes larger and larger. If the development coefficient |a| is greater than 
1, the prediction error is more than 20 % and cannot be used for exponential sequence prediction; In Wang’s model, the model’s 
prediction accuracy has significantly increased. The lowest prediction accuracy is found at 2.0 for the development coefficient. At this 
time, the average relative error is 1.35× 10− 3. It still has high prediction accuracy and can be used for indices. Sequence prediction; 

Fig. 9. Relative error surfaces of the predictions of the four GM(1,1) models.  

Table 2 
Average relative error of four GM(1,1) model predictions (unit: %).  

Model Deng’s model Wang’s model Model I Model II 

|a|

0.2 0.42 6.56× 10− 4 6.56× 10− 4 6.56× 10− 4 

0.4 2.18 3.03× 10− 4 2.47× 10− 4 2.39× 10− 4 

0.6 5.9 3.04× 10− 4 3.73× 10− 4 1.83× 10− 4 

0.8 11.8 5.06× 10− 4 5.58× 10− 4 2.62× 10− 4 

1.0 19.62 3.74× 10− 4 4.19× 10− 4 1.19× 10− 4 

1.2 28.66 1.33× 10− 4 1.33× 10− 4 1.17× 10− 4 

1.4 38.01 3.86× 10− 4 1.69× 10− 4 5.48× 10− 5 

1.6 46.83 7.63× 10− 4 7.45× 10− 4 9.58× 10− 5 

1.8 54.55 1.32× 10− 3 9.61× 10− 4 1.21× 10− 4 

2.0 60.94 1.35× 10− 3 1.03× 10− 3 9.28× 10− 4  
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model I’s prediction accuracy has been considerably enhanced. When the development coefficient |a| is 2.0, the prediction accuracy is 
the lowest. At this time, the average relative error is 1.03× 10− 3, and it still has high prediction accuracy. It can be used for exponential 
sequence prediction. Compared with the model in Wang’s model, except when the development coefficient |a| is 0.6, 0.8 and 1.0, the 
other prediction accuracy is lower than that of Model I. The main reason analysis in Fig. 8 involves observing the line charts of 
predicted results under three scenarios of the development coefficient |a| = 0.6, 0.8, and 1.0. When the development coefficient |a| is 
0.6, upon zooming into the local area at index i = 6, Wang’s model predictions and Model II predictions closely match the actual 
values, while Model I predictions show significant deviation from the actual values. This is the primary reason for the lower prediction 
accuracy of Model I compared to Wang’s model when |a| = 0.6. Similarly, when the development coefficient |a| is 0.8, upon zooming 
into the local area at index i = 5, Model II predictions closely match the actual values, while Wang’s model predictions are closer to the 
actual values compared to Model I predictions. This is why Model I has lower prediction accuracy than Wang’s model when |a| = 0.8. 
Likewise, when the development coefficient |a| is 1.0, upon zooming into the local area at index i = 6, Wang’s model predictions are 
closer to the actual values compared to Model I predictions. This explains why Model I has lower prediction accuracy than Wang’s 
model when |a| = 1.0. In general, compared to Wang’s model, Model I has a greater overall accuracy; Model II has the highest pre
diction accuracy. When the development coefficient |a| is 2.0, the prediction accuracy is the lowest. At this time, the average relative 
error is 9.28 × 10− 4 and it still has high prediction accuracy and can be used for exponential sequence prediction. Compared with other 
methods, after the development coefficient |a| is determined, the prediction accuracy of model II in this paper is the highest. Among the 
four GM(1,1) models for exponential sequence prediction, model II in this study has the highest accuracy, followed by model I, fol
lowed by model in Wang’s model, and finally model in Deng’s model. 

5.2. Modeling and test of instance data sequences 

A certain road annual average daily traffic volume sequence from 2014 to 2023 in Huai’an city was used as the object of study and 
the original sequence is shown in Table 3. In terms of prediction and verification, four GM(1,1) models were employed, and the GA was 
used to search for undetermined parameters. 

The average relative errors corresponding to the final convergence of the three GM(1,1) models are different, and the prediction 
accuracies of several GM(1,1) models are further analyzed below. Wang’s model searched for the weights a of 0.5324; Model I of this 
paper searched for the slope parameter ∂ of 0.9254 with the point location parameter d of 0.9999; and the sequence of pending pa
rameters of Model II of this paper is shown in Fig. 10. 

Fig. 10 presents that there is no obvious change pattern between the slope parameter sequence ∂(i) and the position parameter 
sequence d(i) obtained through the search. The undetermined parameters are substituted into the GM(1,1) model, and the predicted 
results are shown in Fig. 11. 

The initial sequence is an approximately monotonically rising sequence, with a mutation point at 2015 on the abscissa. Model I and 
Model II are closer to this mutation point than Deng’s model and Wang’s model, ensuring prediction accuracy. For other points, Model 
I and Model II should be as close as possible while ensuring their own growth trends, and ensure comprehensive prediction optimi
zation on the basis of discarding the prediction accuracy of some points (such as point 2023). 

In summary, compared to the other models, the predicted values of the model I and II in this paper are similar to the field data. 
Equation (28) shows that the actual value and the predicted value in the figure are combined to get the average relative prediction 
error of each method, which is shown in Table 4. 

The methods by Deng and Wang are compared with model I for prediction accuracy, which can be improved by 0.3643 % and 
0.2725 %, respectively, verifying the GM constructed with intelligent trapezoidal background values. For the sudden drop in traffic 
volume in 2015, Deng’s model and Wang’s model could not adapt to such data changes. This is the main reason why the overall 
prediction accuracy is lower than that of Model I. The model is able to enhance the prediction accuracy of actual sequences compared 
with traditional models. Compared with the Model I method, the prediction accuracy of the Model II method is further improved by 
0.1075 %, which verifies that the prediction accuracy can be further improved by using the GM(1,1) model with variable weight 
optimization of intelligent trapezoidal background values. Combining the analysis of Fig. 11 and Table 4, the main reason Model II 
achieved better prediction results than Model I is that for the sudden drop in traffic volume in 2015, Model I excessively pursued the 
prediction accuracy of individual mutation points, leading to a significantly lower overall prediction accuracy for other years 
compared to Model II. On the other hand, Model II, by adopting a variable weight background value construction approach, ensures 
the prediction accuracy for both the mutation point year and other years, resulting in Model II’s overall prediction accuracy being 
superior to Model I. 

6. Conclusion 

This study fits the original sequence based on the quadratic Newton interpolation formula and combines geometric ideas to 

Table 3 
The traffic volume in a certain road from 2014 to 2023 (unit: vehicles/day).  

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Volume 1982 1792 2311 2785 2987 3497 4109 4602 5242 5643  
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construct the trapezoid, which contains point position parameters and slope parameters. For the background value calculation for
mula, two models are proposed. Firstly, the GM(1,1) model constructed using the new background value function is called model I. 
Secondly, based on the new background value function, the point position parameters and slope parameters are serialized. Also, a new 
background value function based on intelligent trapezoid and variable weight combinations is proposed, called Model II. In order to 
improve the applicability and prediction accuracy of the two GM (1,1) models, a GA is used to intelligently search for the optimal 
values of the undetermined parameters in the background value function. 

In the data simulation prediction, using the exponential growth data sequence as the original sequence, compared with the 
traditional Deng’s model, the models I and II in this paper are better than the Deng’s model. For Model II, regardless of the value of the 
development coefficient, the prediction accuracy of Model II is better than Wang’s model. For the actual data sequence, taking the road 
traffic volume from 2014 to 2023 as the original sequence, the prediction accuracy of the model I method in this paper is 0.3643 % and 
0.2725 % higher than the prediction accuracy of Deng’s and Wang’s models, respectively. Compared with Model I, the prediction 
accuracy of Model II is further improved by 0.1075 %. The comparison of simulation and prediction accuracy shows that the trape
zoidal background value containing point position parameters and slope parameters is able to increase the prediction accuracy of the 
GM(1,1) model. Moreover, background value function based on intelligent trapezoid and variable weight combination can further 
improve the GM(1,1) model prediction accuracy. Thus, it can be expected that the proposed methods will serve as a foundation for 
more in-depth research in the future that focuses on using the GM(1,1) model to forecast time series with accuracy. However, there are 
some limitations in that the incomplete use of information could influence the accuracy of the model’s predictions. Thus, deeper 
research will be needed on the approximation of 1-AGO data sequences to avoid the situation in which the background value 
dimension becomes smaller. 

Fig. 10. Values of the sequence of parameters to be determined for the model II of this paper.  

Fig. 11. Prediction results of four GM(1,1) models.  

Table 4 
Mean relative errors of predictions of four GM(1,1) models.  

Method Deng’s model Wang’s model Model I Model II 

Forecast error 3.4246 % 3.3328 % 3.0603 % 2.9528 %  

S. Zhang et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e35889

17

Data availability statement 

All data generated or analyzed during this study are included in this published article. 

Funding 

This work was funded by Construction project of “Excellent Science and Technology Innovation Team in Jiangsu Province Uni
versities, China” advanced manufacturing technology team for electronic precision molds; 2022 The General Program of Philosophy 
and Social Science Research in Colleges and Universities in Jiangsu Province (Grant no. 2022SJYB1969); Jiangsu Vocational College 
Student Innovation and Entrepreneurship Training Program Project (Grant no. G-2023-0312). 

CRediT authorship contribution statement 

Shanhua Zhang: Writing – original draft, Software, Resources, Methodology, Funding acquisition, Formal analysis, Data curation, 
Conceptualization. Hong Ki An: Writing – review & editing, Supervision, Conceptualization. Hongmei Yin: Visualization, Validation, 
Resources, Formal analysis. 

Declaration of competing interest 

The authors declare the following financial interests/personal relationships which may be considered as potential competing in
terests: Shanhua Zhang reports article publishing charges was provided by Jiangsu Vocational College of Electronics and Information. 
If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

References 

[1] J.L. Deng, Control problems of grey systems, Systems and Control Letters 1 1 (1982) N0, https://doi.org/10.1016/S0167-6911(82)80025-X. 
[2] Y. Dang, S. Liu, K. Chen, The GM models that x (n) be taken as initial value, Kybernetes 33 (2) (2004) 247–254, https://doi.org/10.1108/03684920410514175. 
[3] L. Wang, J. Sun, Q. Wu, Nonlinear total least-squares variance component estimation for GM (1, 1) model, Geodesy and Geodynamics 12 (3) (2021) 211–217, 

https://doi.org/10.1016/j.geog.2021.02.006. 
[4] W. Qian, J. Wang, An improved seasonal GM (1, 1) model based on the HP filter for forecasting wind power generation in China, Energy 209 (2020) 118499, 

https://doi.org/10.1016/j.energy.2020.118499. 
[5] B. Zeng, Y. Yang, X. Gou, Research on physical health early warning based on GM(1,1), Comput. Biol. Med. 143 (2022) 105256, https://doi.org/10.1016/j. 

compbiomed.2022.105256. 
[6] J. Li, W. Dai, H. Pan, GM (1, 1) model-ameliorated based on genetic algorithm and its application, in: Third International Conference on Natural Computation 

(ICNC 2007), vol. 4, IEEE, 2007, August, pp. 23–27, https://doi.org/10.1109/ICNC.2007.407. 
[7] C. Li, Y. Yang, S. Liu, A new method to mitigate data fluctuations for time series prediction, Appl. Math. Model. 65 (2019) 390–407, https://doi.org/10.1016/j. 

apm.2018.08.017. 
[8] J. Chen, Z. Wu, A positive real order weakening buffer operator and its applications in grey prediction model, Appl. Soft Comput. 99 (2021) 106922, https://doi. 

org/10.1016/j.asoc.2020.106922. 
[9] X. Gou, B. Zeng, Y. Gong, Application of the novel four-parameter discrete optimized grey model to forecast the wastewater discharged in Chongqing China, 

Eng. Appl. Artif. Intell. 107 (2022) 104522, https://doi.org/10.1016/j.engappai.2021.104522. 
[10] T.L. Tien, A new grey prediction model FGM (1, 1), Math. Comput. Model. 49 (7–8) (2009) 1416–1426, https://doi.org/10.1016/j.mcm.2008.11.015. 
[11] S. Ding, R. Li, Forecasting the sales and stock of electric vehicles using a novel self-adaptive optimized grey model, Eng. Appl. Artif. Intell. 100 (2021) 104148, 

https://doi.org/10.1016/j.engappai.2020.104148. 
[12] S. Li, Y. Chen, R. Dong, A novel optimized grey model with quadratic polynomials term and its application, Chaos, Solit. Fractals X (8) (2022) 100074, https:// 

doi.org/10.1016/j.csfx.2022.100074. 
[13] Z.X. Wang, Y.G. Dang, S.F. Liu, Optimization of background value in GM (1, 1) model, Systems engineering-theory & practice 28 (2) (2008) 61–67, https://doi. 

org/10.1016/S1874-8651(09)60011-9. 
[14] J. Cui, S.F. Liu, B. Zeng, N.M. Xie, A novel grey forecasting model and its optimization, Appl. Math. Model. 37 (6) (2013) 4399–4406, https://doi.org/10.1016/j. 

apm.2012.09.052. 
[15] X. Yang, S. Wang, Y. Peng, J. Chen, L. Meng, Short-term photovoltaic power prediction with similar-day integrated by BP-AdaBoost based on the Grey-Markov 

model, Elec. Power Syst. Res. 215 (2023) 108966, https://doi.org/10.1016/j.epsr.2022.108966. 
[16] Y.C. Hu, Energy demand forecasting using a novel remnant GM (1, 1) model, Soft Comput. 24 (18) (2020) 13903–13912, https://doi.org/10.1007/s00500-020- 

04765-3. 
[17] M.U. Yousuf, I. Al-Bahadly, E. Avci, A modified GM (1, 1) model to accurately predict wind speed, Sustain. Energy Technol. Assessments 43 (2021) 100905, 

https://doi.org/10.1016/j.seta.2020.100905. 
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