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Abstract
Purpose: As a subgroup of lung cancer, small cell lung cancer (SCLC) is charac-
terized by a short tumor doubling time, high rates of early occurred distant cancer 
spread, and poor outcomes. Despite its exquisite sensitivity to chemotherapy and 
radiotherapy, acquired drug resistance and tumor progression are typical. This 
study aimed to develop a robust signature based on immune-related genes to pre-
dict the outcome of patients with SCLC.
Methods: The expression data of 77 SCLC patients from George's cohort were 
divided into training set and testing set, and 1534 immune-related genes from 
ImmPort database were used to generate and validate the signature. Cox pro-
portional hazards and the Kaplan–Meier analysis were used for developing and 
testing the prognostic signature. Single-sample gene set enrichment analysis was 
used to determine immune cell infiltration phenotypes.
Results: A 10-gene model comprising NR3C1, NR1D2, TANK, ARAF, HDGF, 
INHBE, LRSAM1, PLXNA1, PML, and SP1 with the highest frequency after 1000 
interactions, was chosen to construct immune-related signature. This signature 
showed robust predictive value for SCLC patients’ survival in both training and 
testing sets. This signature was weakly associated with the clinic pathological 
values like TNM stage. Furthermore, patients with low risk presented with ac-
tivation of immune signal pathways, and specific immune cell infiltration with 
high levels of CD56bright NK cells but low levels of CD8+ T cells, mast cells, and 
helper T cells.
Conclusion: The present study developed immune-related signature that may 
help predict the prognosis of SCLC patients, which reflects an unappreciated 
level of heterogeneity of immunophenotype associated with diverse prognosis for 
specific subsets in this highly lethal cancer type.
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1   |   INTRODUCTION

Lung cancer, the most common cancer in male and fe-
male worldwide, accounts for approximately 19% of all 
cancer deaths.1 In general, a majority of lung cancers are 
non-small cell lung cancer (NSCLC), whereas 13%–15% is 
small cell lung cancer (SCLC). SCLC is an aggressive un-
differentiated neuroendocrine tumor and clinically char-
acterized by its high grade, rapid growth, and early spread 
of cancer cells. Thus, approximately 70% of SCLC patients 
are classified as having extensive disease, which leads to 
the extremely poor prognosis.2 Although first-line chemo-
therapy with etoposide plus either cisplatin or carboplatin 
produces a high response rate of up to 70%, SCLC patients 
fail to have an opportunity to receive molecular-targeted 
therapy targeting specific driver genes. Furthermore, 
most patients relapse within 6  months of the comple-
tion of initial treatment due to acquired drug resistance, 
subsequent effective treatment options are still limited.3 
SCLC has been reported to have high tumor mutation 
burden and high neoantigens formation which are asso-
ciated with increased sensitivity to immunotherapy with 
immune checkpoint inhibitors (ICIs).4 Actually, ICIs tar-
geting the programmed cell death 1 and programmed cell 
death-ligand 1 (PD-L1) pathway, such as nivolumab, pem-
brolizumab, atezolizumab, and durvalumab monotherapy 
or in combination with chemotherapy have been shown 
to prolong the survival of patients with SCLC with man-
ageable toxicity profile.3 However, the application of ICIs 
in SCLC appears to be less effective when compared to 
NSCLC, and only a minority of SCLC patients can bene-
fit from immune checkpoint blockade.4 In particular, low 
expression levels of major histocompatibility complex and 
PD-L1 on tumor cells, less immune cells infiltration, and 
high ratio of suppressive immune cells all have compro-
mised the efficacy of ICIs.

The importance of tumor immune microenvironment 
in SCLC has been demonstrated using antigen vaccines 
and dendritic cell vaccines treatment.5,6 However, there is 
a lack of feasible cytogenetic signatures associated with 
immune microenvironment to predict SCLC patients' 
prognosis.2,3 Therefore, it is essential to define immune-
related biomarkers as a predictor for SCLC patients' sur-
vival from the perspective of tumor immunity, which 
could help clinician identify a subgroup with a favorable 
outcome and might benefit from immunotherapy with 
ICIs. In this study, transcriptome data were utilized to 

create an immune-related signature comprising 10 genes 
for SCLC prognostication.

2   |   MATERIALS AND METHODS

2.1  |  Construction of the immune-
related risk signature

Here we constructed a prognostic signature by focusing 
on immune-related genes, which were downloaded from 
the ImmPort database (https://immpo​rt.niaid.nih.gov). 
ImmPort database is one of the largest open repositories 
of human immunological data.7 We downloaded a list 
of 2,498 immune-related genes from ImmPort database 
(Table  S1). A variety of immune-related genes were in-
cluded, such as cytokine genes, cytokine receptor genes, 
and genes associated with the T-cell receptor signaling 
pathway, B-cell antigen receptor signaling pathway, natu-
ral killer cell cytotoxicity, antigen processing, and presen-
tation pathways. All patients from George's cohort7 were 
obtained, and 77 samples with OS information were ran-
domly divided into a training set (n = 54) for identifying 
key immune-related genes and a testing set (n = 23) for 
validating the immune-related genes signature. The clini-
cal and survival information of the 77 samples are sum-
marized in Table  1. Univariate analysis was performed 
to identify prognostic immune-related risk signature, 
and p < 0.05 indicates a significant correlation between 
immune-related genes and prognosis. In order to identify 

K E Y W O R D S

immune cell infiltration, immune-related gene, prognosis, signature, small cell lung cancer, 
tumor mutational burden

T A B L E  1   Clinical characteristics of the total datasets

Feature Sample number Ratio (%)

Age

≤60 years 20 26.0

>60 years 57 74.0

Gender

Male 54 70.1

Female 23 29.9

AJCC stage

Stage I 33 42.9

Stage II 14 18.2

Stage III 21 27.3

Stage IV 9 11.7

https://immport.niaid.nih.gov
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the best gene model for predicting the outcome in SCLC 
patients, the Cox proportional hazards model with an 
elastic net penalty (iteration = 1000) was performed with 
R3.4.4 package “glmnet.” The penalty parameter was 
evaluated by 10-fold cross-validation with the training 
dataset. Based on a linear combination of Cox coefficient 
and gene expression, genes weighted value was yielded for 
further analysis.

2.2  |  Performance assessment

The predictive efficiency of the immune-related risk sig-
nature was assessed using Harrell's concordance index 
(C-index) and time-dependent receiver operating char-
acteristic (ROC) analysis. The area under curve (AUC) 
was calculated using the “survival ROC” package in 
R3.4.4. In order to estimate survival differences of pa-
tients between high-  and low-risk groups, the Kaplan–
Meier (K–M) survival curves were generated using the 
“survminer” package in R. Besides, principal component 
analysis (PCA) was performed to assess gene expression 
patterns.

2.3  |  Gene enrichment analysis

In order to explore the biological processes of differen-
tially expressed genes (DEGs), Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were performed with the Database 
for Annotation, Visualization, and Integrated Discovery 
(https://david.ncifc​rf.gov/) with the cut-off criterion of 
false discovery rate < 0.01. p < 0.05 was considered statis-
tically significant. The 26 immune cell types enrichment 
score was calculated using single-sample gene set enrich-
ment analysis (ssGSEA) method implemented by R pack-

age Gene Set Variation Analysis (GSVA), to measure the 
level of immune cell infiltration.8,9

2.4  |  Statistical analysis

Heatmaps were produced using R pheatmap package. 
Clustering of the heatmaps was performed by the stand-
ard R hclust (hierarchical clustering) method, using 
the “ward.D2” option. Multivariable cox analysis was 

performed with cox proportional hazard regression using 
R3.4.4 survival package for three datasets: (1) risk score, 
age, gender, and pathological stage; (2) proportion of eight 
immune cells infiltrated; and (3) 26 immune cells enrich-
ment score. We obtained the gene set corresponding to 
the 26 immune cells mentioned in previous research and 
used the default parameters of the ssGSEA algorithm for 
immune cell infiltration analysis.10 The boxplots were 
conducted using the R package called ggpubr. Differences 
among two and three groups were determined by the 
Wilcoxon rank-sum test and the Kruskal–Wallis test, re-
spectively. p < 0.05 was considered statistically significant.

3   |   RESULTS

3.1  |  Construction and validation of the 
immune-related risk signature

All 77 samples were randomly divided into a training set 
(n = 54) (54/77, 70% for identifying key genes) and a test-
ing set (n = 23) (23/77, 30% for validating). Using univari-
ate Cox analysis, the correlation between gene expression 
and patient's overall survival (OS) was calculated and 77 
genes with prognostic ability were obtained (p < 0.05). In 
order to develop the best gene model to predict the progno-
sis of SCLC patients, the Cox proportional hazards model 
with an elastic net penalty was performed. After 1000 it-
erations, 14 model feature gene sets were obtained, and 
one of which contained 10 feature genes was highly stable 
and reaches the frequency of 430 times, accounting for 43% 
in 1000 iterations (Figure 1). This 10-gene model include 
ARAF, HDGF, INHBE, LRSAM1, NR1D2, NR3C1, PLXNA1, 
PML, SP1, and TANK and respective coefficients are listed 
in Table 2. Using the risk scoring formula as follows, the 
risk score for each SCLC patient was calculated based on 
expression level and coefficient of 10 characteristic genes.

Time-dependent ROC and C-index were applied to 
evaluate the prognostic values of the 10-gene signature in 
terms of OS. The ROC curve analysis of 10-gene signature 
in the training set has exhibited the favorable predictive 
value for survival of SCLC patients, and AUC was 0.83 at 
1  year, 0.801 at 3  year, and 0.783 at 5  year (Figure  2A). 
Then, 10-gene signature was validated in the testing set, 
and the 1-, 3-, and 5-year AUC were 0.713, 0.701, and 
0.719, respectively (Figure 2B). As for all cohorts, 10-gene 
signature also achieved an accuracy to predict patient's 

Risk score = (−0.0066322∗ARAF)+ (−0.0015719∗HDGF)+ (−0.0021426∗ INHBE)

+ (−0.0152107∗RSAM1)+ (0.00920882∗NR1D2)+ (0.0185948∗NR3C1)

+ (−0.0009105∗PLXNA1)+ (−0.0081578∗PML)+ (−0.0023929∗SP1)+ (0.00671622∗TANK).

https://david.ncifcrf.gov/
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OS, and the AUC value for 1-, 3- and 5-year was 0.806, 0.8, 
and 0.732, respectively (Figure 2C). Besides, the C-index 
for the training, testing, and total data set was all above 
0.75 (Figure 2D), indicating a superior prognostic value of 
constructed model.

3.2  |  Association between 10 immune-
related risk signature and SCLC 
patients' survival

The median value of the risk score is taken as the thresh-
old to divide the high-risk and low-risk populations. PCA 
of the training, testing, and total SCLC cohort demon-
strated a different distribution pattern of high risk and low 
risk based on 10 immune-related gene expression, indi-
cating their difference in immune phenotype (Figure 3), 
the training set was clustered and heatmap was created 
(Figure  4), and the NR3C1, NR1D2, and TANK gene 

expression levels were higher in high-risk population, 
while ARAF, HDGF, INHBE, LRSAM1, PLXNA1, PML, 
and SP1 gene expression levels were higher in low-risk 
population (Figure 4).

In order to calculate the association between immune-
related risk signature and SCLC patients' survival out-
come, the K–M survival analysis was performed in three 
data sets. In the training sets, SCLC patients from the 
low-risk group had significantly better OS than patients 
from the high-risk group (HR = 3.87, 95% CI: 1.79–8.36, 
p = 0.00027) (Figure 5A). The same trends were also ob-
served in the validation sets (HR  =  3.71, 95% CI: 1.25–
11.05, p = 0.012) (Figure 5B) and total data sets (HR = 4.39, 
95% CI: 2.33–8.24, p < 0.0001) (Figure 5C). Hazard ratio 
analysis showed risk score was a poor prognostic factor of 
the risk of survival in SCLC patients with a HR of 367.34 
in training set (95% CI: 39–3460, p < 0.001), and 155.40 in 
testing set (95% CI: 1.91–13000, p = 0.025). (Figure 5D–
F). In addition, in the validation and total data set, the 
gender of SCLC patients was a favorable prognostic factor 
of the risk of survival, and the risk of survival was signifi-
cantly lower in female SCLC patients (HR = 0.078, 95% 
CI: 0.0085–0.71, p = 0.024; HR = 0.32, 95% CI: 0.14–0.70, 
p = 0.004) (Figure 5D–F). In the total data set, pathologi-
cal stage is a poor prognostic factor of the risk of survival 
in SCLC patients (HR = 1.42, 95% CI: 1.07–1.9, p = 0.014). 
Of note, there was no significant association between the 
age and survival risk of SCLC patients in all three data sets 
(Figure 5D–F).

3.3  |  Enrichment of GO and KEGG 
pathway by immune-related risk signature

To elucidate the molecular mechanism of the 10 
immune-related risk gene signature, GO and KEGG 

T A B L E  2   The best gene set and coefficient related to prognosis

Gene Coef

ARAF −0.0066322

HDGF −0.0015719

INHBE −0.0021426

LRSAM1 −0.0152107

NR1D2 0.00920882

NR3C1 0.0185948

PLXNA1 −0.0009105

PML −0.0081578

SP1 −0.0023929

TANK 0.00671622

F I G U R E  1   Frequency of each model 
in 1000 iterations. Generation of 14 model 
feature gene sets after 1000 iterations. 
One gene model contained 10 feature 
genes was highly stable and reaches the 
frequency of 430 times compared with 
other 13 gene models
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pathway enrichment analyses were applied to explore 
the functions of the 10 genes. Fifteen Go terms were 
significantly enriched in GO enrichment and four path-
ways were enriched in KEGG pathway enrichment 
analyses. KEGG pathway enrichment analyses revealed 
that the DEGs participated in acute myeloid leukemia 
(p = 0.04), TGF-β signaling pathway (p = 0.04), endo-
crine resistance (p  =  0.04), and parathyroid hormone 
synthesis, secretion, and action (p  =  0.04) (Table  3). 

After GO enrichment analyses, the 10 genes were 
significantly enriched in biological processes including 
small ubiquitin-like modifier binding, core promoter 
binding, transcription factor activity, RNA polymer-
ase II transcription factor binding, steroid hormone 
receptor activity, ubiquitin-like protein binding, core 
promoter sequence-specific DNA binding, growth 
factor activity, and ubiquitin protein ligase binding 
(Table 4).

F I G U R E  2   Model performance evaluation. Receiver operator characteristic analysis was performed to compare our 10-gene signature 
in predicting 1-, 3-, and 5-year overall survival in training (A), testing (B), and all data cohorts (C). Harrell's concordance index (C-index) for 
the training, testing, and total data set was 0.83, 0.87, and 0.8, respectively (D). AUC, area under curve
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F I G U R E  4   Cluster analysis of 10 
characteristic genes expression in training 
data set. Ten genes with higher expression 
in the heatmap are shown in red color, 
and with lower expression are shown in 
blue. Tiffany blue represents cancer tissue 
from the low-risk population, while the 
pink represents cancer tissue from the 
high-risk population

F I G U R E  5   K–M survival and hazard ratio analysis. The Kaplan–Meier curves of overall survival (OS) for SCLC patients with high risk 
and low risk in training set (A), testing set (B), and all data set (C). Hazard ratios (HRs) and 95% CIs are for high-risk group versus low-risk 
population. p values were calculated with the log-rank test. Gender (p = 0.024) in testing set (E) and gender (p = 0.004) and stage (p = 0.014) 
in all data set (p = 0.004) (F) were significantly related to the prognosis by Cox regression analysis
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3.4  |  Correlation of the immune-related  
risk signature with clinicopathologic  
features

The relationship between 10-gene signature and tumor 
staging, age, and gender was analyzed. We have ob-
served that SCLC patients who were above 60 years old 
(Figure 6A) and male SCLC patients (Figure 6B) tend to 
have higher risk. In our case, the numbers of stages I, II, 
III, and IV patients in dataset were 33, 14, 21, and 9, re-
spectively. We have found that the mean of risk score in 

advanced SCLC was higher than early stage SCLC, but the 
difference was not significant (Figure 6C).

3.5  |  Tumor immunity relevance of 
immune-related risk signature

The abundance of 26 immune cells in the total data set 
was calculated by ssGSEA method. The relationship be-
tween the abundance of immune cells in tumor immune 
microenvironment and overall survival (OS) was ana-
lyzed by multivariate Cox analysis. We have observed that 
abundance of specific immune cells was associated with 
OS of SCLC patients. The abundance of CD56dim NK cells 
is a favorable prognostic factor for survival of SCLC pa-
tients (p = 0.035), while the abundance of the plasmacy-
toid dendritic cells (pDC) is a poor prognostic factor for 
survival of SCLC patients (p  =  0.044) (Figure  7). There 
was no significant association between other immune cell 
subsets including CD8+ T cells, macrophages, or T cells 
and increased patients' survival.

T A B L E  3   Pathways with significant enrichment of 
characteristic genes

ID Description q value

hsa05221 Acute myeloid leukemia 0.04

hsa04350 TGF-beta signaling pathway 0.04

hsa01522 Endocrine resistance 0.04

hsa04928 Parathyroid hormone synthesis, 
secretion, and action

0.04

ID Description q value Gene ID

GO:0032183 SUMO binding 8.65E–04 NR3C1/PML

GO:0001047 Core promoter binding 9.74E–04 NR1D2/NR3C1/
SP1

GO:0001076 Transcription factor activity, RNA 
polymerase II transcription factor 
binding

1.57E–03 HDGF/NR1D2/
NR3C1

GO:0003707 Steroid hormone receptor activity 4.01E–03 NR1D2/NR3C1

GO:0032182 Ubiquitin-like protein binding 5.80E–03 NR3C1/PML

GO:0001046 Core promoter sequence-specific DNA 
binding

5.80E–03 NR1D2/SP1

GO:0000982 Transcription factor activity, RNA 
polymerase II proximal promoter 
sequence-specific DNA binding

6.49E–03 NR1D2/NR3C1/
SP1

GO:0008083 Growth factor activity 1.33E–02 HDGF/INHBE

GO:0001077 Transcriptional activator activity, RNA 
polymerase II proximal promoter 
sequence-specific DNA binding

2.31E–02 NR3C1/SP1

GO:0031625 Ubiquitin protein ligase binding 2.43E–02 PML/TANK

GO:0044389 Ubiquitin-like protein ligase binding 2.50E–02 PML/TANK

GO:0001228 Transcriptional activator activity, RNA 
polymerase II transcription regulatory 
region sequence-specific DNA binding

2.70E–02 NR3C1/SP1

GO:0000978 RNA polymerase II proximal promoter 
sequence-specific DNA binding

2.70E–02 NR3C1/SP1

GO:0000987 Proximal promoter sequence-specific DNA 
binding

2.70E–02 NR3C1/SP1

GO:0048018 Receptor ligand activity 2.70E–02 HDGF/INHBE

T A B L E  4   Go term with significantly 
enriched characteristic genes
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In order to interpret survival difference between high- 
and low-risk population from the perspective of tumor 
immunity, the immune cell infiltration profile in patients 
with high and low risk was analyzed. We failed to observe 
a significant difference regarding CD56dim NK cells and 
pDC infiltration between low-risk and high-risk groups, 
indicating that immune-related risk signature and im-
mune microenvironment have independent effects on 
prognosis (Figure  8A,B). In addition, patients with high 
risk had more CD8+ T cells, helper T cells, mast cells, and 
follicular helper T (Tfh) cells but less Treg cells compared 
to those with low risk. Interestingly, patients with low risk 

had more CD56bright cell infiltration than patients with 
high risk (Figure 8C–H).

4   |   DISCUSSION

Lung cancer is the leading cause of cancer-related death 
worldwide. Based on the histological differences, lung 
cancer is broadly classified into two subtypes: SCLC and 
NSCLC. SCLC comprises about 15% of all lung cancer 
cases.11 Given that SCLC is an incurable cancer type, it 
is essential to develop immune-related biomarkers to 

F I G U R E  6   Difference test of risk 
score between different pathological 
stages. (A) Comparison of risk score 
between small cell lung cancer (SCLC) 
patients who were above 60 years old 
and those at or below 60 years old. 
(B) Comparison of risk score between 
male and female SCLC patients. (C) 
Comparison of risk score between SCLC 
patients at different pathological stages
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identify patients who have a good prognosis and might 
benefit more from immunotherapy.12 Here, we con-
structed a prognostic immune-related signature for pre-
dicting SCLC patients' survival. The 10-gene prognostic 
immune-related signature was enriched in growth factor 
activity and immune-related TGF-β signaling pathway. 
Furthermore, increased CD56dim NK cells and reduced 
pDC infiltration were significantly associated with sur-
vival prolongment. However, according to the present 

prognostic immune-related signature, SCLC patients with 
low risk presents more CD56bright NK cells but less CD8+ 
T cells, mast cells, and helper T cells infiltration compared 
to those with high risk. Our findings indicate that the pre-
sent study developed immune-related signature that may 
help predict the prognosis of SCLC patients, and SCLC 
has an unappreciated level of heterogeneity of SCLC im-
munophenotype that determines the diverse prognosis for 
specific subsets.

F I G U R E  7   Hazard ratio analysis of score values of immune cells. The relationship between abundance of immune cells and overall 
survival was investigated. NK56dim cells (p = 0.035) and pDC (p = 0.044) were significantly related to the prognosis in multivariate Cox 
regression model. APM, antigen-presenting machinery; DC, dendritic cell; HR, hazard ratios; NK, natural killing cell; Tcm, central memory 
T cells; Tem, effector memory T cells; Tfh, follicular helper T cells; Treg, regulatory T cells
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The immune-related signature consisted of 10 
immune-related genes with prognostic ability. Three 
(NR3C1, Sp1, and PML) of the genes in the 10-gene sig-
nature were previously reported to be associated with 
SCLC. NR3C1 (nuclear receptor subfamily three group 
C member 1) gene encodes glucocorticoid receptor (GR). 
GR displays anti-inflammatory effects through transcrip-
tional activation of glucocorticoid-induced leucine zipper 
genes13 or transrepression via interferences with the ac-
tivity of many other immune-related transcription factors, 
including nuclear factor-κB, nuclear factor of activated T 
cells, activator protein 1, interferon regulatory factor 3, 
cyclic-AMP response binding protein, T-box transcription 
factor 21, GATA binding protein 3,14 and higher NR3C1 
expression in high-risk group patients who have worse 
OS might compromise pro-inflammatory and antitumor 
immune response in vivo. Sp1 gene encoded Sp1 protein 
which is a well-known zinc finger transcription factor.15 
Zhu et al. have reported Sp1 directly regulate decoy re-
ceptor 3 (DcR3) expression in hepatocellular carcinoma 
which promotes Th2 and Treg cell differentiation but in-
hibits Th1 cell differentiation.16 DcR3 expression was also 
significantly higher in SCLC cancer tissues compared to 
normal lung tissue,17 thus inhibition of DcR3 expression 
by interfering with upstream Sp1 pathway may provide 
a novel immunotherapeutic target to restore antitumor 
immune response in low-risk group SCLC patients. PML 
(promyelocytic leukemia) gene was originally identified 

in acute PML.18 PML and the PML nuclear domain have 
been regarded as a tumor-suppressive role in several dif-
ferent types of cancer.19 Zhang et al. have found decreased 
PML protein expression in SCLC. Furthermore, there is 
evidence that PML was involved in regulation of innate 
immune response through affecting interferon and tar-
geting cytokines secretion, such as pro-inflammatory cy-
tokines IL-1β and IL-6,20,21 thus OS difference between 
high-  and low-risk patients might be partly ascribed to 
the regulatory role of PML on innate immune signaling 
in these groups. Besides, the roles of seven genes (NR1D2, 
TANK, LRSAM1, PLXNA1, INHBE, HDGF, and ARAF) in 
SCLC have not been reported, however those genes have 
been reported to play a vital role in other type cancer.22

Furthermore, we attempted to investigate the potential 
molecular background of the prognostic immune-related 
signature. Go and KEGG pathways were further analyzed 
and proved the robust connection of the signature with 
growth factor activity and immune-regulatory TGF-β sig-
naling pathway. Unlike NSCLC, SCLC had different ex-
pression levels of TGF-β and its receptors. Autocrine and 
paracrine growth inhibition by TGF-β has been found in 
SCLC because of the inhibitory synthesis of TGF-β iso-
forms and TGF-β II.23 In addition, SCLC cell lines sup-
pressed IL-2-dependent T cell growth via secreting active 
TGF-β1.24 A specific anti-TGF-β1 antibody or a recently 
developed novel bifunctional anti-PD-L1/TGF-β check-
point inhibitor, the fusion protein M7824, decreased tumor 

F I G U R E  8   Difference in immune cell score in patients with high- and low-risk score. The abundance of different immune cell 
infiltration status between high- and low-risk populations is analyzed, and results are shown in box plots. p < 0.05 was considered 
statistically significant
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burden and increased survival in mice through promoting 
CD8+ T cell and NK cell activation and blocking the im-
munosuppressive activity induced by the SCLC cells.24,25 
Therefore, blockade of TGF-β pathway represents a novel 
therapeutic strategy for SCLC in terms of combination 
immunotherapy.

CD56dim NK cells possess a strong cytolytic capacity, 
but with low levels of cytokines production.26,27 Picard 
et al. have found that lower rate of the cytotoxic CD56dim 
CD16+ NK cells was observed in NSCLC patients com-
pared with healthy control, indicating CD56dim NK cells 
play an important role in cancer immunosurveillance.28 
NanoString transcriptomic analysis of melanomas re-
vealed that there was a trend of increased CD56dim NK cell 
gene signature expression associated with better clinical 
outcome.29 In the sophisticated, genetically engineered 
mouse models, Best et al. found that the lack of NK cells, 
but not CD8+ T cells, substantially promote metastatic 
dissemination of SCLC tumor cells in vivo,30 indicating 
that NK cells play a vital role in the prognosis of SCLC 
patients. In our study, in total population we observed that 
the abundance of CD56dim but not CD56bright NK cells is 
positively associated with the increased survival of SCLC 
patients, and the abundance of pDC is inversely associ-
ated with the increased survival. Therefore, CD56 dim and 
CD56 bright NK cells might differentially affect the progno-
sis of SCLC patients. It has been reported that CD56bright 
NK cells inversely correlate with the survival of melanoma 
patients, also IFN-γ production from CD56bright NK cells 
correlated inversely with the OS of patients,31 however, 
the comprehensive role of the subpopulation of NK cells 
in SCLC has not yet been clarified.

It has been widely observed that tumor-associated 
pDCs are associated with an increase in Tregs and the de-
crease in OS in gliomas,32 ovarian,33 and breast cancer,34 
and lung cancer. Sorrentino et al. have found that deple-
tion of pDCs with a specific antibody (m927) in a mouse 
model of Lewis lung carcinoma cell-induced lung cancer 
reversed the immune-suppressive microenvironment, in-
cluding decreased tumor burden, activation of mDC and 
CD8+ T cells, and Th1-  and Th17-like cytokine produc-
tion.35 Additionally, Munn et al. have found that a sub-
set of pDCs in mouse tumor-draining lymph nodes that 
constitutively expressed immunosuppressive indoleamine 
2,3-dioxygenase suppressed T-cell responses and induced 
T anergy.36 Thus, these results indicate an unappreciated 
level of heterogeneity of SCLC immunophenotype associ-
ated with diverse clinical outcome.

We also analyzed the immune cell infiltration profile for 
both low-risk and high-risk patients. We failed to observe a 
significant difference in CD56dim NK cells and pDC subset 
between low-risk and high-risk groups. However, patients 
with high risk had more CD8+ T cells, helper T cells, mast 

cells, and Tfh cells but less Treg cells compared to those 
with low risk. Although some studies showed that tumor-
associated CD45-positive cells,37,38 tumor-infiltrating lym-
phocytes,37 and CD8+ T cells39 in SCLC specimens were 
a good clinical marker to identify patients with favorable 
prognosis, but there was no significant association between 
CD45-positive cell counts and advanced disease stage.40 In 
addition, high-risk patients had a high level of mast cells 
that have been found to relate to unfavorable survival.41 
Interestingly, our results demonstrated that patients with 
low risk had more CD56bright cell subset that were respon-
sible for large amounts of pro-inflammatory cytokines pro-
duction but not cytotoxic ability than patients with high 
risk. Thus, at least the present cohort reflected a different 
immunological microenvironment in SCLC patients with 
diverse prognosis.

Taken together, unlike NSCLC and other solid tumors, 
the immune microenvironment of SCLC is characterized 
as few tumor-infiltrating lymphocytes and low PD-L1 ex-
pression. Nevertheless, immunotherapy with immune-
checkpoint inhibitors still holds promise for SCLC patients 
independent of PD-L1 expression status.42 Therefore, it is 
essential to characterize SCLC patients who have a poor 
prognosis or benefits from immune checkpoint blockade, 
and the future research focusing on the identification of 
predictive biomarkers of prognosis and efficacy of immu-
notherapy and the characteristics of the SCLC immune 
microenvironment is urgently needed.42 In this study, 
we constructed the 10-gene signature which successfully 
predict patients’ prognosis and validated its accuracy in 
SCLC.

Our research has certain limitations. First, this study 
was based on bioinformatics analyses from one public 
database with a limited number of patients, which in-
deed weaken the strength of our findings. Second, of 10 
immune-related genes in our study, the role of three genes 
in SCLC has been investigated; however, the roles of other 
seven genes in SCLC have not been identified. Third, it is 
hard to validate the predictive value of our model in immu-
notherapy for SCLC patients as a lack of treatment-related 
information. In future, the expression and function of 
immune-related genes in SCLC tumor cells or infiltrated 
immune cells within tumor should be elucidated. The 
predictive value of this immune-related signature should 
be further validated using different or real-word SCLC 
cohorts with larger patient size, especially with detailed 
information on immunotherapy for SCLC patients. Flow 
cytometry and real-time quantitative PCR as alternative 
tools should be used to verify our findings.
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