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Gauss curvature‑based unique 
signatures of individual large 
earthquakes and its implications 
for customized data‑driven 
prediction
In Ho Cho

Statistical descriptions of earthquakes offer important probabilistic information, and newly 
emerging technologies of high-precision observations and machine learning collectively advance our 
knowledge regarding complex earthquake behaviors. Still, there remains a formidable knowledge 
gap for predicting individual large earthquakes’ locations and magnitudes. Here, this study shows 
that the individual large earthquakes may have unique signatures that can be represented by 
new high-dimensional features—Gauss curvature-based coordinates. Particularly, the observed 
earthquake catalog data are transformed into a number of pseudo physics quantities (i.e., energy, 
power, vorticity, and Laplacian) which turn into smooth surface-like information via spatio-
temporal convolution, giving rise to the new high-dimensional coordinates. Validations with 40-year 
earthquakes in the West U.S. region show that the new coordinates appear to hold uniqueness for 
individual large earthquakes ( M

w
≥ 7.0 ), and the pseudo physics quantities help identify a customized 

data-driven prediction model. A Bayesian evolutionary algorithm in conjunction with flexible bases 
can identify a data-driven model, demonstrating its promising reproduction of individual large 
earthquake’s location and magnitude. Results imply that an individual large earthquake can be 
distinguished and remembered while its best-so-far model can be customized by machine learning. 
This study paves a new way to data-driven automated evolution of individual earthquake prediction.

By virtue of the immense efforts of scientists, the statistical and probabilistic description of collective earth-
quakes bears meaningful fruits in understanding earthquake behaviors1–3 and precursory patterns for long-term 
earthquake forecast or small-scale events4–6. Statistical and geophysical knowledge are embodied by earthquake 
forecasting methods such as7–9, holding practical and scientific importance10–15. Combining a number of mechan-
ics-/physics-based rules, researchers can reproduce “virtual” earthquakes on computer16–18. The advent of new 
high-precision observation technologies provides a valuable top-down viewpoint to explaining the fault, fracture, 
and slip behaviors19–21. Recently, newly emerging machine learning (ML) methods gradually play an important 
role in searching for hidden complex patterns of earthquakes, e.g., deep neural networks2,22,23, convolutional 
networks24, the gradient boosted regression trees25 or the random forest26. Despite meaningful contributions of 
the aforementioned approaches, we have little understanding regarding the prediction of individual large earth-
quakes’ location and magnitude. Collective statistical and probabilistic approaches are not directly applicable to 
individual earthquake prediction whereas the ML-driven exploration of earthquakes is in its infancy since the 
so-called black-box nature of ML methods poses challenges to the interpretability and generality. How can we 
fill such a formidable knowledge gap? This study seeks to address the daunting question.

This study hypothesizes that individual large earthquakes have unique signatures that can be represented by 
new high-dimensional features—Gauss curvature-based coordinates. In particular, this study proposes that the 
observed earthquake catalog data can be transformed into a number of pseudo physics quantities (i.e., energy, 
power, vorticity, and Laplacian) which turn into smooth surface-like information via spatio-temporal convolu-
tion, giving rise to new high-dimensional coordinates. Validations with 40-year earthquakes catalog data show 
that the Gauss curvature-based coordinates appear to hold uniqueness for individual large earthquakes (i.e., 
with moment magnitude Mw ≥ 7.0 ). Also, the pseudo physics quantities may help build a customized prediction 

OPEN

CCEE Department, Iowa State University, Ames, IA 50011, USA. email: icho@iastate.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12575-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8669  | https://doi.org/10.1038/s41598-022-12575-w

www.nature.com/scientificreports/

model. As an interim candidate for the model, a customized prediction model is proposed by the Bayesian evo-
lutionary algorithm in conjunction with flexible bases functions, demonstrating a promising reproduction of 
individual large earthquakes’ locations and magnitudes. This study’s outcome holds an important implication 
for data- or ML-driven earthquake prediction research. An individual large earthquake can be uniquely distin-
guished and remembered by ML, and its best prediction model can be customized so that data-driven automated 
training and evolution can take place.

Data preparation.  Before presenting results, it is instructive to touch upon how the earthquake catalog 
data are processed for this research. This study collected and processed raw earthquake catalog data availa-
ble in27 between January 1980 and October 2019 as summarized in Table S1. Without any prejudice, all the 
recorded earthquakes within the 40 years’ period are considered, and the total number of earthquakes amounts 
to 1,895,190, i.e., nearly two-million raw data points. Herein, one epoch is defined as a calendar-based, non-
overlapping, one-month time frame. In detail, epoch 10000 stands for January 1980, epoch 10001 for February 
1980, . . . , epoch 10477 for October 2019. Due to the stochastic nature of seismicity, each epoch contains a dif-
ferent number to total earthquakes, e.g., epoch 10000 has 1601 data points (earthquakes) while epoch 10477 has 
6886 data points. All these data sets from epoch 10000 through 10477 are made publicly available at28.

Results
This paper proposes to transform the raw earthquake catalog data into new ML-friendly scalar features (denoted 
as convoloved information index (II)) via spatio-temporal convolution processes, of which details and procedures 
are presented in “Methods” section. Figure 1 illustrates the key definitions of convolved II. Then, the convolved 
spatio-temporal IIs are used to engender a number of pseudo physics quantities, i.e., the released energy, power, 
vorticity, and Laplacian (see details in “Methods” section).

Gauss curvature‑based unique signatures of individual large earthquakes.  If there exists a 
unique signature before the onset of an individual large earthquake and also if the signature can be detectable 
and learnable, it can facilitate the prediction of an individual large event’s magnitude and location. This study 
seeks such unique signatures from the Gauss curvatures of the pseudo physics quantities. Since the spatio-tem-
poral convolution process endows sufficient smoothness to the pseudo physics quantities (i.e., released energy, 
power, vorticity, and Laplacian), they can be regarded as a smooth surface at each depth. In lieu of simple values 
of the quantities, the Gauss curvature—maximum and minimum principal curvature ( κ1, κ2)—can be used as 
informative new features (coordinates) at the event location prior to the onset of a large earthquake. To assess the 
uniqueness, this study calculates eight-dimensional vector K ∈ R

8 consisting of the principal Gauss curvatures 
from the four pseudo physics quantities:

where subscripts E, P, V and L stand for the pseudo released energy, the pseudo power, the pseudo vorticity’s 
first term, and the pseudo Laplacian’s first term, respectively. Eqs. 50–68 in29 explain the detailed calculation 
procedure of the Gauss curvatures using the pseudo physics quantities. Figure 2 presents the example plots of the 
smooth pseudo physics quantities and the associated principal Gauss curvatures near the peak magnitude zone 
marked by red box in Fig. 2A–D. Similar plots of the smooth pseudo physics quantities and associated principal 
Gauss curvatures of other large magnitude events ( Mw ≥ 7.0 ) are presented in Fig. S13 and Fig. S14. K s of the 
eight large earthquakes of Mw ≥ 7.0 from 1991 through 2019 in the West U.S. region are summarized in Table 1.

Uniqueness of the Gauss curvature‑based coordinates.  This study hypothesizes that the Gauss cur-
vature-based coordinates K of the large earthquake are unique in the past 30 years. To prove the uniqueness of 
K , this study calculates comprehensive K s of all target epochs from 10119 (i.e., December 1989) through 10477 
(October 2019). To calculate a K of one target epoch, prior 10 years’ earthquakes data are needed (precisely, 119 
months) for the spatio-temporal convolution. For instance, the K of target 10119 requires the information con-
volution using all the prior earthquakes from 10000 (January 1980) to 10118 (November 1989).

As Table 3 summarizes the algorithms, the algorithm first calculates the Gauss curvature-based coordinates 
K at the center points of the entire reference volumes in all epochs (Step-I in Table 3). At the beginning of Step-
II of Table 3, K(k)

, (k = 1, . . . , 8) at the hypocenters of the eight large earthquakes (Table 1) are calculated as a 
reference coordinate set. The number of reference earthquakes is 8 since only they meet the magnitude criterion 
( Mw ≥ 7.0 ), within the 30-years time frame and in the West U.S. region under consideration. Then, a comprehen-
sive comparison follows. In each target epoch, entire K s of all reference volumes are compared to the eight refer-
ence earthquakes’ K(k)

, (k = 1, . . . , 8) in terms of L1 norm. This comparison quantitatively asserts whether there 
is a similar K to any known large earthquake’s K . Figure 3A confirms that the eight large earthquakes’ K appear 
to be unique, at least within the 40-year earthquakes used in this study. Results confirm that there are no events 
similar to the eight large events in terms of the Gauss curvature-based coordinates. Importantly, the L1 norm of 
K distance between any two individual large earthquakes is noticeably large (Fig. 3B), i.e., ( ||K−K||1 > 0.1 ). 
And the large eight reference earthquakes remain uniquely distinguishable by their Gauss curvature-based 
coordinates. Still, it is premature to generalize this finding, calling for in-depth future investigations. However, 
the unique representation of individual large earthquakes via physically meaningful new coordinates may cast a 
new light on the “customized” prediction of an individual large earthquake as explained in the following section.

(1)K := ((κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)V , (κ1, κ2)L))
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Figure 1.   Illustration of definitions of the convolved II. (A,B) 3D point cloud of the recorded magnitudes of 
two example epochs (months) of the West region in the U.S. (C) Definition of the convolved spatial (3D) II. One 
reference volume accumulates the impacts of earthquakes during one epoch with the 3D Gaussian weights. (D) 
Convolved spatio-temporal (4D) II. Using the half Gaussian weight, all the past earthquakes are incorporated 
with time-decaying impacts.
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Implication to customized prediction of individual large earthquakes.  The best‑so‑far identified 
rule of magnitude prediction..  In hopes of being independent of any prior knowledge of existing magnitude 
prediction models4–6,30, or earthquake forecasting methods5–8,10,12–15,31, this study seeks to use a purely data-
driven prediction model customized for individual large earthquakes. To this aim, this study developed a Bayes-
ian evolutionary algorithm, of which overall architecture is illustrated in Fig. S15. The central notion in Fig. S15 
is in alignment with the author’s recent application to the identification of hidden models behind nano-scale 
phenomena32 as well as complex heterogeneous structures33,34. In pursuit of the data-driven individual predic-
tion model, many possible candidates of physics quantities are explored by the developed framework: the pseudo 
released energy Er and many forms of physical variants of Er including the three components of the spatial gra-
dient vector ∇gE

(t)
r  , the local maximums and minimums of ∇gE

(t)
r  , the time derivative ∂∇gE

(t)
r /∂t meaning the 

power, the pseudo vorticity (Eq. 12), and the pseudo Laplacian (Eq. 14). From the comparative investigations, 
the best-so-far prediction rule identified by the Bayesian evolutionary algorithm suggests including the follow-
ing pseudo physics quantities: (1) the pseudo released energy (the corresponding best-so-far cubic regression 

Figure 2.   Example plots of pseudo physics quantities generated with 10 years data up to one month before the 
epoch 10237 (i.e., 1999/10/16): (A–D) The pseudo released energy ( Er ), the pseudo power ( ∂Er/∂t ), the first 
term of pseudo vorticity ω� , and the first term of the pseudo Laplacian ∂2Er/∂�2 . Red box indicate the ±1◦ zone 
near the peak magnitude ( Mw = 7.1 ) covering (−116.25◦ ± 1◦, 34.65◦ ± 1◦) at depth 12.5 km; (E–H) Enlarged 
plots of the peak zone (red box in A–D) and calculated principal Gauss curvatures (κ1, κ2).
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spline (CRS) LF is denoted by LE ), (2) the power, i.e., the time derivative of the pseudo released energy ( LP ), (3) 
the pseudo vorticity of the pseudo released energy flow ( Lω ), and (4) the pseudo Laplacian ( LL ). The best-so-far 
rule of magnitude prediction is identified as the multiplicative combination of these CRS LFs of these physics 
quantities as

where E∗(t)r  is the best-so-far pseudo released energy at epoch t and at the reference volume ξ j . The free param-
eters associated with the best-so-far CRS LFs LE ,LP ,Lω , and LL are denoted by θE , θP , θω , and θL , respectively. 
All terms of the pseudo physics quantities in Eq. (2) are with respect to the geodetic coordinate system, and the 
details regarding definitions and derivations are presented in “Methods” section. Sg(.) stands for a typical sigmoid 
function, Sg(x) = 1/(1+ e−x) , for brevity. The power term’s LF LP uses the sigmoid function to transform 
∂E

(t)
r (ξ j)/∂t ∈ R[−∞,∞] to R(0, 1) which is compatible with the input range of CRS bases. A slightly modified 

sigmoid with a scaling-up factor e2 is used since it appears to outperform against a typical sigmoid case. This 
scheme applies to the pseudo vorticity’s LF Lω since ωh ∈ R[−∞,∞] . Amongst many candidates for Lω , e.g., 
ω�,ωφ ,ωh, or

√

ω2
�
+ ω2

φ  , comparative investigations suggest that ω� appears to give the most plausible perfor-
mance, as finally included in Eq. (2). Physically, ω� may describe the slow rotational motion of the energy flow 
about the longitudinal axis. This study’s training data are from the West U.S. region of which plate motions and 
the known major faults are roughly parallel or normal to the longitudinal axis. This coincidence may underpin 
the relatively important role of ω� in the identified rule of magnitude prediction. As mentioned earlier, the best-
so-far prediction model in Eq. (2) includes the separate term of the pseudo Laplacian ∂

2E
∗(t)
r

∂�2
 . Compared to the 

predictions using other separate terms, ∂
2E

∗(t)
r

∂φ2 , ∂
2E

∗(t)
r

∂h2
 or the resultant pseudo Laplacian ∇2

g E
(t)
r (ξ j) (here, subscript 

g indicates the geodetic coordinate system-based derivatives), the prediction only with ∂
2E

∗(t)
r

∂�2
 appears to 

(2)M
(t+1)
pred (ξ j) = LE(E

∗(t)
r )LP

(

Sg

(

e2
∂E

∗(t)
r

∂t

))

Lω

(

Sg
(

e2ω�

))

LL

(

Sg

(

10−4 ∂
2E

∗(t)
r

∂�2

))

Table 1.   Gauss curvature signatures of the eight large earthquakes, Mw ≥ 7.0 (Subscripts E, P, L, and V 
correspond to the pseudo released energy, the pseudo power, the pseudo Laplacian’s first term, and the pseudo 
vorticity’s first term, respectively).

Target (Date) Mw (κ1, κ2)E (κ1, κ2)P (κ1, κ2)L (κ1, κ2)V

10149 (1992/6) 7.3 (− 0.0159, − 2.7294) (− 0.3504, − 2.5231) (0, − 2.1864) (0.5891, − 0.8117)

10139 (1991/8) 7.0 (− 0.7975, − 0.951) (− 0.1786, − 0.418) (0, − 0.4257) (2.3608, − 3.7852)

10147 (1992/4) 7.2 (− 2.7935, − 6.139) (1.1266, 0.4616) (2.1454, 0) (− 4.3867, − 8.9133)

10176 (1994/9) 7.0 (− 0.3237, − 1.349) (0.5608, 0.036) (0.3435, 0) (0.2519, − 6.8133)

10237 (1999/10) 7.1 (− 0.1238, − 1.3966) (− 0.1488, − 0.663) (0, − 2.3078) (1.8028, − 5.7792)

10305 (2005/6) 7.2 (4.2802, − 0.0505) (0.9443, − 0.1868) (1.1751, 0) (0.051, − 6.7134)

10363 (2010/4) 7.2 (− 1.2262, − 3.4105) (− 0.432, − 1.4082) (26.5676, 0) (8.2219, 2.2942)

10474 (2019/7) 7.1 (− 0.0471, − 1.8071) (0.2346, − 0.0354) (18.9517, 0) (1.276, − 2.5747)

Figure 3.   Uniqueness of large earthquakes’ Gauss curvature coordinates K of the pseudo physics quantities: (A) 
L1-norm distance of K of each epoch’s largest earthquake (i.e. largest event in one month) to the closest large 
earthquakes among the eight known earthquakes ( Mw ≥ 7.0 ). (B) L1 norm distance of K among the eight large 
earthquakes ( Mw ≥ 7.0 ) within 30 years. The closest two large events (epochs 10237 and 10139) are 0.73 apart 
in L1 norm of K , and the farthest two large events (epochs 10147 and 10363) are 6.99 apart.
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outperform other cases. The scaling down factor 10−4 in Eq. (2) is due to the large range 104 ∼ 105 of the calcu-

lated ∂
2E

∗(t)
r

∂�2
 . This is another interesting coincidence with the best-performing role of ω� of the pseudo vorticity. 

The regional characteristics of the West U.S. plate’s motions may be the potential rationale behind this data-driven 
finding. Figure 2A–D present example plots of the smooth surface of the pseudo physics quantities. As expected, 
the distributions of the pseudo physics quantities are noticeably different from each other and preserves smooth-
ness, which facilitates the calculation of the geometric quantities such as Gauss curvature.

Feasibility test results of individual large earthquake predictions.  To conduct a feasibility test of the custom-
ized data-driven prediction of individual large earthquakes, this study used the ML-identified best-so-far model 
given in Eq. (2). It should be noted that the proposed ML-identified prediction model uses the same set of 
pseudo physics quantities as that is used in the generation of the Gauss curvature-based coordinates. The role 
of Gauss curvature-based coordinates is to offer a unique signature to individual large events, not directly to 
predict location and magnitude. The subsequent prediction model may use the same set of pseudo physics quan-
tities; this study denotes such a prediction as the “associated” prediction model. Or one may choose to adopt 
other advanced prediction methods using other ML methods (e.g.,22–24), being independent of the pseudo phys-
ics quantities used in the Gauss curvature-based coordinates; this study denotes the general predictions as the 
“unassociated” prediction models. In this context, the present one is “associated” prediction model. The best-so-
far prediction model is applied to the large reference events ( Mw ≥ 7.0 ) in the West U.S. region (i.e., longitude 
and latitude in (− 130, − 110) and (30, 45) [deg], respectively, and depth (− 5, 20) [km]) from 1990–2019. The 
model uses the observed 10-year data, 30 days before the event without any physics mechanisms or statistical 
laws. The best-so-far model appears to be successful in reproducing the next-month earthquake’s location and 
magnitude as shown in Fig. 4. In some cases, the ML-identified model appears to reproduce the global peak 
event noticeably well with little false peaks (e.g., Fig. 4C–D). In other cases, the ML-identified rules reproduce 
reasonably the global peak’s location and magnitude with a few false peaks (e.g., Figs. 4A,B,E,F). Table 2 sum-
marizes the prediction results of individual eight large earthquakes using the best-so-far data-driven prediction 
model. Individual event’s location and magnitude are reasonably reproduced by the customized data-driven 
model.

Discussion
A high‑level analogy of the pseudo quantities to the Helmholtz’s theorem.  The data-driven 
prediction selects out the pseudo physics quantities, i.e., pseudo released energy, power, vorticity, and Lapla-
cian, as new important features in terms of the Gauss curvatures. The new features inherit the surface-invariant 
strength of the Gauss curvatures, being independent on how the surface is embedded in 3D space. It is physically 
clear that the released energy and its time derivative, power, appear to hold importance for large earthquakes. 
But, a natural question remains—why the pseudo vorticity and Laplacian quantities emerge as new important 
features? This section suggests a plausible mathematical answer to this question based on a high-level analogy to 
the Helmholtz theorem—in particular, the Helmholtz decomposition of the three-dimensional vector fields. The 
Helmholtz decomposition states that a smooth, differentiable, and rapidly decaying 3D vector field F ∈ R

3 can 
be decomposed into the curl-free irrotational scalar potential � ∈ R and the divergence-free solenoidal vector 
potential A ∈ R

3 as

With the assumption of the fast decaying F , the potentials are given by

where terms with ()′ is about r′ . In principle, the Helmholtz decomposition helps elucidate complex vector 
fields in terms of two physically meaningful irrotational (i.e., � ) and rotational (i.e., A ) quantities. If we regard 

the gradient of the pseudo power as the 3D vector field by F(r) = ∇g
∂E

(t)
r (r)
∂t  , the pseudo vorticity provides a 

divergence-free rotational quantity by Eq. (12),

Here, the pseudo released energy Er is obtained by a combination of link functions by Eq. (11) which takes the 
convolved spatio-temporal information index IIST as input. The convolution processes (Eq. 9 and Eq. 10) are 
re-written in a concise form as

(3)F = −∇�+∇ × A

(4)�(r) =
1

4π

∫

R3

∇′ · F(r′)

|r − r′|
dV ′

(5)A(r) =
1

4π

∫

R3

∇′ × F(r′)

|r − r′|
dV ′

(6)∇g × F(r) = ∇g ×

(

∇g
∂E

(t)
r (r)

∂t

)

(7)IIST (r, t) =

∫

R+

∫

R3

ω(r′, t′)II(r′, t′)dt′dV
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where the Gaussian weighting function ω(r′, t′) in the 3D space and 1D time space is 
ω ∝ exp

(

−|r − r′|2 − |t − tpast |
2
)

 which is similar to the simple distance-dependent decaying function |r − r′|−1 
in Eq. (5). Across the given (spatial and/or temporal) domain, the proximity-dependent integration process is 
commonly used in the Helmholtz decomposition Eqs. (4–5) and the proposed Eq. (7). Since ∇ · (∇ × A) = 0 
for ∀A ∈ R

3 , the pseudo vorticity appears to highlight the divergence-free rotational information of the vector 
field under consideration.

Now, focusing on the pseudo Laplacian in Eq. (14), and regarding F(r) = ∇gE
(t)
r (r) , we have

(8)∇g · F(r) = ∇g ·

(

∇gE
(t)
r (r)

)

Figure 4.   Reproduction of large magnitude events Mw > 7.0 by using the customized ML-identified data-
driven prediction model: (A,B) Observed real and simulated earthquake events on August 1991 (epoch 10139); 
(C,D) June 1992 (epoch 10149); (E,F) October 1999 (epoch 10237).



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8669  | https://doi.org/10.1038/s41598-022-12575-w

www.nature.com/scientificreports/

As mentioned earlier, Er uses the Gaussian weighting function with exp
(

−|r − r′|2
)

 which is comparable to the 
distance-dependent decaying function |r − r′|−1 in Eq. (4), and also the spatial integration is commonly done 
in Eqs. (4), and (9). Since ∇ × (∇φ) = 0 for ∀φ ∈ R , the pseudo Laplacian appears to highlight the curl-free 
irrotational information of the vector field under consideration. Therefore, the proposed usage of the pseudo 
vorticity and Laplacian can efficiently elucidate and convey the rotational and irrotational physical information 
of the past earthquakes, at least indirectly. It should be noted that this high-level analogy to the Helmholtz theo-
rem is not the starting point of the adoption of the pseudo vorticity and Laplacian. Reversely, the present data-
driven training and prediction process selects out the pseudo vorticity and Laplacian as relatively outstanding 
quantities—i.e., the inclusion of them in prediction outperforms the cases without them. The data suggests first, 
and the analogy to the Helmholtz theorem comes later. It appears to underpin the purely data-driven approach 
of this paper, in lieu of physics principle-driven approach.

Remaining challenges and potential solutions by future research.  It is important to remark the 
two challenges—data scarcity and overfitting. To overcome the data scarcity, one immediate solution would be 
to release the non-overlapping definition of epochs and shorten the epoch-to-epoch interval to one day from a 
month. One epoch is still defined as 30-day time range. As explained in Fig. 5D, if the interval between consecu-
tive two epochs is defined by one day, we can dramatically increase the number of total epochs to 14,600 from 
480 with the same 40-years earthquake catalog data. Although thorough confirmation is needed with more data 
sets, Fig. 5A,B support that the uniqueness of Gauss curvature-based signatures of individual large earthquakes 
appears to hold with the refined epoch definitions. This refinement may add a valuable means to an existing 
research branch regarding the precursory signals of large earthquakes4–6. While being unique from other earth-
quakes’ signatures, there appears to exist interesting temporal variations of the Gauss curvature-based signatures 
as shown in Fig. 5C as getting close to the onset of a large earthquake. It is premature to draw any conclusion 
from this variation of the Gauss curvatures, but in the future extension the variations may be used for sequence-
oriented ML methods35,36. For interested researchers, data sets of the refined epochs with one-day interval are 
shared on28.

Next, since the extreme earthquakes are rare, the data-driven prediction model most likely suffers from the 
overfitting problem. A successful prediction model may not generalize to other future earthquakes. But this issue 
may be tackled by the separation of two tasks—classification of large earthquakes and improvement of data-
driven prediction models. With new data accumulate, the unique Gauss curvature-based signatures of individual 
large earthquakes can help reveal the difference or similarity of large earthquakes by using unsupervised ML 
techniques. Since an earthquake prediction model is customized for individual event, the separate classification 
task may inform us which prediction model should be used. Thereby, a prediction model can continue improv-
ing as being specialized for a class of large earthquakes, and there can be many different customized prediction 
models, in lieu of a single model. Moreover, the separate tasks of classification and model improvement can 
be performed by a high-level ML method such as a reinforcement learning37, which may facilitate ML-driven 
autonomous evolution.

The ML-identified best-so-far prediction model is not the final version but an interim candidate, being subject 
to substantial improvement and evolution. Since it is purely data-driven, the improvement of the earthquake data 
sets22,24,38 will positively influence the prediction accuracy. As long as the reliability and precision of the relevant 
data is ensured, further inclusion of more physics (e.g., thermal instability1, pore pressure39, fluid injection2) into 
the present framework would lead to a positive improvement, which will be straightforward in view of clear inter-
pretability and extensibility of the present framework. There is ample room for further sophistication. It would 
be beneficial to consider more flexible, versatile bases40 for LFs, an extensive library of possible mathematical 
expressions41, powerful symbolic regression methods42, or stochastic optimizer43. Consistent evolution or auto-
mated optimization of many hyper-parameters of the framework may be done by inheriting the reinforcement 
learning paradigm37. This study may spark new research directions for seismogenesis. The smooth surface-like 
convolved information may catalyze the image-based deep learning methods. Gauss curvature-based signatures 
of large earthquakes may be clustered by unsupervised ML methods for better prediction models tailored for 
each category. Unique classifications of individual large earthquakes may advance the existing earthquake fore-
casting methods5–8,10,12–15,31. In light of the multifaceted nature of earthquake phenomena, enabling imminent 

Table 2.   Individual large earthquake reproductions using the best-so-far customized data-driven models.

Target Epoch Real Real Peak location Predicted Predicted Peak location

(Year/Month) Mw (� [◦],φ [
◦
], h [km]) Mw (� [◦],φ [

◦
], h [km])

10149 (1992/6) 7.3 (− 116.45, 34.25, − 2.5) 7.39 (− 116.35, 34.25, 2.5)

10139 (1991/8) 7.0 (− 125.85, 41.65, 2.5) 6.94 (− 125.85, 41.85, 7.5)

10147 (1992/4) 7.2 (− 124.25, 40.35, 7.5) 7.21 (− 124.35, 40.35, 12.5)

10176 (1994/9) 7.0 (− 126.35, 40.45, 2.5) 6.99 (− 127.75, 40.35, 17.5)

10237 (1999/10) 7.1 (− 116.25, 34.65, 12.5) 6.92 (− 116.55, 34.25, 12.5)

10305 (2005/6) 7.2 (− 125.95, 41.25, 17.5) 7.21 (− 126.25, 40.95, 7.5)

10363 (2010/4) 7.2 (− 115.25, 32.25, 7.5) 7.14 (− 115.25, 32.35, 12.5)

10474 (2019/7) 7.1 (− 117.55, 35.75, 7.5) 6.48 (− 117.75, 36.05, 12.5)



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8669  | https://doi.org/10.1038/s41598-022-12575-w

www.nature.com/scientificreports/

individual earthquake predictions will require comprehensible collaborations44, and the outcome of this study 
will promote such a broad endeavor.

In essence, the primary novelty of this paper lies in the new feature generation processes, which first trans-
form raw earthquake catalog data into spatio-temporal convolved information, then transform the convolved 
information into a number of pseudo physics-based features, and further transform the pseudo physics into 
smooth surface-like features using Gaussian curvatures. All these new features are then utilized by a transparent 
ML method (here, Bayesian evolutionary algorithm) to help identify unique signatures and to unravel hidden 
rules for prediction of large individual earthquake’s magnitude and location. Thereby, this paper’s outcome adds 
a new data- and ML-oriented dimension to the existing research paradigm for seismogenesis as well as natural 
hazards science and engineering.

Figure 5.   Preliminary investigation results with refined epochs with one-day interval. 10-years data one 
month before target earthquake (EQ) are used. (A) Radial plot of the principal Gauss curvatures of the pseudo 
physics quantities. Orange and yellow lines nearly overlap each over and indicate mutual similarity due to the 
same target EQ (8/17/1991) whereas dashed gray line corresponds to different target earthquake (4/25/1992) 
showing a noticeable discrepancy. (B) Average L1 norm of large earthquakes showing the relative similarity 
among 30 epochs before the same target EQ and the difference from epochs associated with other target EQs. 
(C) Temporal variations of 8 principal Gauss curvatures of the refined epochs before EQ (8/17/1991). (D) Visual 
explanation of the refined one-day interval of consecutive epochs.

Table 3.   Algorithm—Searching the closest large earthquake using Gauss curvature coordinates.

[Step-I] Calculate Gauss Curvature Coordinates

Loop i over all target epochs

Loop j over all reference volumes

Write the calculated principal Gauss curvature coordinates

K
(i)
j = [(κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)L , (κ1, κ2)V ]

(i)
j

End Loop i and j

[Step-II] Compare Distances from the Reference Earthquakes

Get ready K(k)

where k ∈ the set of epoch numbers of known large earthquakes (i.e. 8 events in Table 1)

Loop i over all target epochs

Calculate the mean absolute distance via L1 norm over all reference volumes

k
(i)
min := argmink in∀j ||K

(i)
j −K

(k)
||1/8

Store the found L1 norm and k(i)min for each target epoch

End Loop i
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Methods
Earthquake data homogenization within one‑month epoch.  Within one epoch (1 month), the spa-
tial coordinates of every earthquake hypocenter available on the catalog are checked to determine which refer-
ence volume (i.e., a discretized volume in the lithosphere) the earthquake event belongs to. In particular, this 
study assumes that the hypocenter’s spatial coordinates (�,φ, h) determine the associated reference volume. If an 
earthquake’s hypocenter resides in the jth reference volume’s domain ( �j ± 0.1◦,φj ± 0.1◦, hj ± 5 km ), it belongs 
to the reference volume. To some extent, this process homogenizes all the earthquake events within the reference 
volume in one epoch (1 month). All the impacts (e.g., the pseudo energy, power, vorticity, Laplacian, etc.) of the 
earthquakes within one reference volume in one epoch are homogenized and represented by the quantities at 
the center of the reference volume.

Generation of new features using spatio‑temporal information convolution.  The raw data of 
earthquake hypocenters are assumed to be distributed over the lithosphere domain and thus constitute a sort of 
irregular 3D point cloud (Fig. 1A,B). This point cloud of hypocenters is used for all the following new features 
using the spatial and temporal convolutions. The observed earthquake hypocenter data sets adopted herein27 are 
processed into a text-based matrix form of {�,φ,−h,M}

(t)
i  , i = 1, . . . , n(t) and t = 1, . . . , nep where n(t) means 

the number of total hypocenters recorded during one epoch (one month) in [(t − 1), t] and nep means the num-
ber of total epochs (Table S1 summarizes the processed data from 1980 through 2019). One epoch is assumed 
to be one month, which may be adjustable for a specific scientific reason. The coordinates {�,φ} in [deg] stand 
for the longitude and latitude, respectively. The ground-normal h is in [km], being positive above the ground 
datum. The magnitude M ∈ [0, 10) means the observed moment magnitude. To facilitate the spatial convolu-
tion, the geodetic coordinates {�,φ,−h,M}

(t)
i  are transformed into the earth-centered rectilinear coordinate 

{x, y, z,M}
(t)
i  (see29). A point-wise information index (II) is denoted as “local” II, IIlocal ∈ R[0, 1] and calculated 

as IIlocal(t)(x
(t)
i ) = M

(t)
i /10 where x(t)i = (x, y, z)

(t)
i  . The local II maps real earthquake magnitudes to the range 

of [0,1). Figure S1 shows the calculated point-wise information index during the periods between epoch 10465 
and epoch 10476 (i.e. from October 2018 to September 2019;27). For comparison, the raw recorded magnitudes 
of relatively quiet epoch (10470) and active epoch (10474) are compared in Fig. 1A,B. Fault zones are inherently 
multiscale2 with a core being surrounded by the damaged zone of which macro-fractures decay with distance 
from the core45. Thus, an individual earthquake’s impact may not be described by a point-wise index, requiring 
a comprehensive means to capture a spatial impact on the surrounding. Complex spatial influences of many 
earthquakes are accounted for by the spatial convolution presented herein. If convolution is done over a spatial 
domain, ML can better understand the interaction of spatially distributed information and hidden patterns 
while applied to the temporal domain, the interactions between past and present information may be elucidated. 
This study seeks to spatially integrate the local II over the 3D point cloud, i.e., myriad earthquake events in the 
lithosphere. The key difference from the deep learning is that this study “externalizes” the multi-layered convo-
lutions by conducting multiple convolutions at the information level, not in the opaque network layers. Rather 
than a uniform integration, we adopt a weighted integration using the Gaussian weight function (denoted ω ) 
to realize the proximity-proportionate importance of information. This process generates the “convolved spatial 
II;; denoted as II(t)S  . Figure S2C illustrates the derivation of the convolved spatial II. The physical meaning of the 
convolved spatial II is that II(t)S (ξ j; Lk) quantifies how much the jth reference volume experiences earthquakes 
during one epoch (t) while the closer events the higher impact on the volume. The “reference volume” is defined 
as a discretized volume in the lithosphere with fixed spatial coordinate which is needed for spatial and temporal 
convolution (see details in “Methods” section and29). This study’s reference volume has dimensions of (0.1 deg, 
0.1 deg, 5 km) due to the limit of computational resources. For a higher resolution, a finer reference volume 
may be adopted. If the earthquakes during the epoch took place nearby (i.e. within or close to the Lk ) the failure 
directly affects the jth reference volume whereas earthquakes occurred at distance (i.e. much larger than Lk ), the 
reduced impact is recorded in the jth reference volume via the II(t)S (ξ j; Lk) . This is a time-dependent quantity 
and thus defined at an epoch (t) and calculated as

where ω(ξ j , x
(t)
i ; Lk) = (Lk(2π)

1/2)−N exp

(

−
|x

(t)
i −ξ j |

2

2L2k

)

= N (x
(t)
(i) , L

2
k) ; ξ j stands for the position vector of the 

center of jth reference volume and ∀x(t)i ∈ V , and V means the entire lithosphere domain under consideration. 
In this research, the 3D lithosphere domain is discretized into reference volumes—a fixed Eulerian 3D grid 
system. Thus, Eq. (9) is calculated by the discrete summation in lieu of continuous integration, of which details 
are presented in29. In Eq. (9), Lk ∈ R

+ , k = 1, . . . , nL stands for the radius of influence range. With a larger value 
of Lk , the earthquake events across a broad space can be incorporated at the expense of over-smoothing effect; 
with a smaller Lk , higher priority on the adjacent earthquakes to the current reference volume at the expense of 
local spikes or over-fitting effect. For the weighting function, there is no restriction to the use of other weightings. 
The dimension parameter N = 3 is used for the spatial convolution over the 3D point cloud whereas N = 1 is 
used for the temporal convolution over time which shall be explained later. Fig. S2 shows three cases of the 
convolved spatial II with different influence ranges. All three cases used the procedures given in Eq. (9). Still, 
with a larger L > 50 km such as Fig.S2C, theover-smoothing effect is notable. In heterogeneous materials or 
composite structures, this spatial convolved II may help ML understand internal complexity as scientistsdo32–34,46,].

(9)II
(t)
S (ξ j; Lk) =

∫

V
ω(ξ j , x

(t)
i ; Lk)II

(t)
local(x

(t)
i )dx
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A reference volume in the lithosphere experiences incessantly many events over time. By extending convolu-
tion to the time domain, we can incorporate such transient information about how one reference volume has 
been being affected by past earthquakes. Performing convolution over time creates “convolved spatio-temporal 
II” (denoted as II(t)ST ). This convolved spatio-temporal II accounts for all the past earthquakes up to the present 
epoch t. Figure 1D illustrates the calculation procedure of the spatio-temporal II. The one-dimensional ( N = 1 ) 
Gaussian weighting is used, being centered at the present time t. Being not certain about the optimal temporal 
influence ranges, here we allow in total nT temporal influence ranges, denoted by Tl , l = 1, . . . , nT . For a temporal 
influence range Tl , we have

where ω(τ ;Tl) = (Tl(2π)
1/2)−1 exp

(

− τ 2

2T2
l

)

= N (t,T2
l ) ; τ = |t − tpast |, t ≥ tpast , meaning the time gap 

between the current and the past time, all given in [epoch]. This convolved spatio-temporal II is calculated at 
the jth reference volume center, ξ j . As the 3D lithosphere domain is discretized into a fixed Eulerian grid system 
of reference volumes, the continuous time space is discretized into non-overlapping epochs (one month each). 
Like the spatial convolved information Eq. (9), the spatio-temporal convolved information Eq. (10) is calculated 
by the discrete summation, of which details are presented in29.

As expected, the convolved spatio-temporal II appears to successfully quantify earthquake events (Fig. S5) 
and effectively distinguish the low and high seismic activities. The required numerical normalization and proofs 
of upper and lower bounds of the convolved IIs are provided in29.

Pseudo released energy in terms of the convolved information.  Earthquakes leave behind a foot-
print on energy2,45. The pseudo released energy (denoted as E(t)r (ξ j) ∈ R

+ ) of the jth reference volume at current 
time t may be represented in terms of the convolved spatio-temporal IIs. It should be noted that this paper does 
not adopt the well-known laws since the present goal is to pursue purely data-driven learning. Owing to the 
accumulated influences of adjacent earthquakes over time, it is plausible to consider that the pseudo released 
energy at a reference volume is increasing. Thus, the simple exponential form is preferred for the unknown 
expression of the pseudo released energy ( Er ) in terms of the convolved spatio-temporal IIs ( IIST ). To iden-
tify the hidden expression of Er(IIST ) , this paper leverages the Bayesian evolutionary algorithm in which an 
advanced evolutionary algorithm searches the vast space of parameters of the expression while the Bayesian 
update enables the probabilistic distributions of parameters to evolve as training proceeds with new data (see 
section “Combination of the Bayesian update and evolution algorithm” in29). Amongst many possible combina-
tion operations (e.g., + or × ), the additive operation is found to be favorable. The best-so-far expression of the 
pseudo released energy identified by the Bayesian evolutionary algorithm is given by

where θ(k,l) is the best-so-far free parameters of the associated link function L(k,l) . Role of the link function 
L(k,l) is to transform the convolved spatio-temporal information index II(t)ST (ξ j; Lk ,Tl) into a smooth, nonlinear 
output—here the pseudo released energy. In spirit, Eq. (11) resembles multiple layers of deep neural network 
as a nonlinear transformation route. Example plots using the exponential link functions (LFs) with the additive 
combination are shown in Fig. S7. The flexibility and expressibility of the LFs are explained in “Methods” and29. 
And the best combination of the spatial and temporal influence ranges is identified as Lk = (10, 25) [km] and 
Tl = (3, 6) [epoch = month]. This combination of short- and long-range influence ranges appears to outperform 
the other rules with a single L or T or many L’s and T’s. As shown in Fig. S8, the relative contribution of different 
influence ranges appears complicated but interpretable. In the higher II ranges ( IIST > 0.8), the spatio-temporal 
II with (L1,T2) = (10 km, 6 epochs) and (L2,T1) = (25 km, 3 epochs) to the pseudo released energy are significant 
(see Figs. S8B-C). In contrast, the contribution of II with (L1,T1) = (10 km, 3 epochs) are uniform regardless of 
IIST and thus important in the low and mid ranges of II ( IIST < 0.8; Fig. S8A). Although this identified rule of 
the pseudo released energy may not be close to the “exact” one, the clear interpretability of the pseudo released 
energy’s expression is still meaningful, conveying physically sound implications. For instance, Fig. S8A implies 
that nearly all the earthquakes in close distance and recent time retain their influence. Contrarily, Figs. S8B-C 
imply that only larger earthquakes ( IIST >0.8) retain influence because they are far away or old enough to allow 
post-earthquake curing.

Pseudo power, vorticity and Laplacian of the pseudo released energy.  Other important physics 
quantities would be the spatial gradients of the pseudo released energy over the lithosphere and “power.” The 
time derivative of energy is physically related to the power. The calculation procedure of the time derivatives of 
the energy-related terms is presented in29. Figs. S9 and S10 present example plots of the spatial gradients and 
time derivative of the pseudo released energy at depth 2.5 km and 12.5 km, respectively. These plots are with 
respect to the earth-centered coordinate system before transformation to geodetic coordinates. The spatial gradi-
ent with respect to the geocentric coordinate system may convey weak physical and geometrical information in 
view of the curved structure of the earth lithosphere. Thus, it is meaningful to transform the geocentric gradient 
(denoted as ∇E

(t)
r  ) to the geodetic gradient (denoted as ∇gE

(t)
r  ), i.e., the spatial gradient with respect to the geo-

(10)II
(t)
ST (ξ j; Lk ,Tl) =

∫

ω(τ ;Tl)II
(tpast )
S (ξ j; Lk)dtpast

(11)E∗(t)r (ξ j) = max

[

nL=2
∑

k=1

nT=2
∑

l=1

L
(k,l)(II

(t)
ST (ξ j; Lk ,Tl); θ

(k,l)), 0.0

]
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detic coordinate system ( �,φ, h ). This can be done by the Jacobian J (details are in29): ∇gE
(t)
r (ξ j) = J∇E

(t)
r (ξ j) . 

Fig. S11 shows example plots of the gradient field vector at depth z = 12.5 km with respect to the geodetic coor-
dinate system. By observing the transient change of the spatial gradient of the pseudo released energy, this study 
derives the pseudo “vorticity” ω = (ω�,ωφ ,ωh) as

In Eq. (12), ∇g = (∂/∂�; ∂/∂φ, ∂/∂h);“× ” is the curl operator; E′r =
∂E

(t)
r (ξ j)

∂t  . Fig. S12 presents example plots of 
the calculated vorticity vector. The vorticity of the pseudo released energy flow is considered as another phys-
ics quantity since the vorticity may hint at the temporal rotation of the strain energy field which may play an 
important role in rupture initiation. There is no direct definition of the velocity field needed for vorticity calcula-

tion, and thus the spatial gradient of the time derivative of the pseudo released energy ( ∇g
∂E

(t)
r (ξ j)

∂t  ) is regarded 
as a “pseudo velocity” in Eq. (12). Physically, this pseudo velocity field may describe the spatial distribution of 
how the pseudo released energy is changing over time. Although the time increment is large (here, one month) 
compared to the mathematical derivative, the slow motion of the earth plate (e.g., 8–10 cm/year21) may justify 
the use of such a large time interval for the pseudo velocity.

This study found that the higher-order gradient of the pseudo released energy also helps improve the pre-
diction accuracy. In fact, such an important role of higher-order gradients can be easily found in many physics 
phenomena. For instance, in the heat transfer, the Laplacian of the externally observed temperature (T) is directly 
related to the temporal evolution of the internal heat energy, i.e., ∂T/∂t = κ∇2T where κ is the thermal diffusiv-
ity. This study calculates the “pseudo Laplacian” as

In addition to the resultant Laplacian in Eq. (14), this study compared individual term’s impact on prediction 

performance, i.e., prediction with ∂
2E

′

r

∂φ2 ,
∂2E

′

r

∂�2
 , or ∂

2E
′

r

∂h2
 . The comparative study found that the inclusion of the sepa-

rate term of ∂
2E

′

r

∂�2
 in the prediction model showed a better accuracy.

Calculation of the Gauss curvatures of the pseudo physics quantities.  By regarding the distribu-
tion of a physics quantity at a certain depth as a smooth surface, this study can calculate the Gauss curvature at 
the maximum earthquake events. At a fixed depth h, let u stand for � and v for φ . Let Z(u, v, h) stand for a physics 
quantity calculated at the depth h and the horizontal coordinates (u, v). Z can be any pseudo physics quantities 
such as the pseudo released energy, power, vorticity, and the Laplacian terms. Then, we can conceive a smooth 
surface X(u, v,Z) at depth h. According to geometry, we can call X as a map X : � → E

3 where � is some 
open subset of plane (u, v) ∈ R

2 and E3 is the Euclidean space where the standard inner product holds. And we 
assume X to be C3-continuous, i.e., all the partial derivatives up to the 3rd order exist and are continuous. This 
may be assured by the smoothness of all the pseudo physics quantities endowed by the spatio-temporal convo-
lution process, and a rigorous mathematical proof is deferred to future extension. It is well known [e.g.,47] that 
the (total) Gauss curvature K is defined with the principal curvatures κ1 and κ2 as K := κ1κ2 of which detailed 
calculation procedures are presented in29. Using these Gauss curvature-based coordinates, the unique signature 
of individual large earthquake can be found by an exhaustive searching algorithm in Table 3.

Reference volumes in the Earth lithosphere domain.  This study defines reference volumes of the 
given domain in the Earth lithosphere. To generate 4D convolved spatio-temporal information index (II) by 
performing spatial and temporal convolutions, it is efficient to define a fixed location in the space and time, 
which is the central reason for adopting the Eulerian 3D grid system of reference volumes. Admittedly the Earth 
lithosphere is not a simple spherical structure, and the earthquake hypocenters are often recorded on longitude, 
latitude, and depth, (�,φ, h)(t)i , i = 1, . . . , n(t) . Therefore, this study processes raw data to the earth-centered 3D 
coordinates, (x, y, z)(t)i , i = 1, . . . , n(t) . 

1.	 Transform Raw Hypocenter Data to Geocentric Coordinates: At current epoch (t), the first step is to read 
each hypocenter’s raw coordinate (�,φ,−h)

(t)
i  where the longitude x� ∈ [−180, 180] is in [deg], the latitude 

φ ∈ [−90, 90] in [deg], and the depth h in [km]. Here, h means the ellipsoidal height along its normal, being 
positive outward normal to the reference ellipsoid. Note the earthquake catalog data use the reversed sign 
convention of h. Transform them to the earth-centered 3D spatial coordinate (x, y, z)(t)i  (i.e. geocentric rec-
tangular coordinates) as described in48 

(12)ω := ∇g ×

(

∇g

∂E
(t)
r (ξ j)

∂t

)

(13)=

(

∂
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′

r
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∂
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′
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∂
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 where a = 6378.1370 km and b = 6356.7523 km according to the 1984 World Geodetic System (WGS 84) 
revision.

2.	 Reference Volumes: Given the ranges of longitudes, latitudes, and depths, this study defines uniformly dis-
tributed grid system, and each cell is denoted as a reference volume. The total number of reference volumes 
nrv is simply calculated by nrv = n� × nφ × nh where n� = |�max − �min|/�� , nφ = |φmax − φmin|/�φ , and 
nh = |hmax − hmin|/�h . Here (��,�φ,�h) are user-defined increments of longitude, latitude, and depth, 
respectively. The index of reference volume is ordered by �,φ, and h. Thus, the coordinates or the jth refer-
ence volume’s center, denoted as ξ j ∈ R

3 , is represented by 

 where j = j� + jφ × n� + jh × (n� × nφ), j� ∈ Z[0, n� − 1], jφ ∈ Z[0, nφ − 1], and jh ∈ Z[0, nh − 1]. After 
calculating the center coordinates in ([deg], [deg], [km]), we can easily transform them to the geocentric 
rectangular coordinates using the same formulae in Eqs. (15–17). Whenever using Eq. (17), the outward 
normal is used for the positive sign of the depth. Another important quantity about the reference volume is 
the actual volume of individual reference volume element. In view of the curved ellipsoidal lithosphere, the 
volume of the jth reference volume element Vj [ km3 ] is calculated by 

Computational implementation of proposed algorithms.  The spatio-temporal convolution of 
earthquake catalog data to generate the convolved II is computationally expensive. This study developed a paral-
lelized Bayesian evolutionary algorithm framework with C++ and OpenMPI. All other learning, evolutionary 
algorithm and Bayesian update scheme are implemented on the parallel program. The developed program is 
made available upon request to the author. Iowa State University’s high-performance computing facility, Condo 
cluster is used for this study.

Flexible and transparent link functions.  Placing top priority on the interpretability, this study proposes 
to adopt an expressive link function (LF) using transparent, flexible basis that can describe a mathematical 
expression between the convolved spatio-temporal II, IIST and the hidden physical rules. LF is denoted as 
L(IIST ; θ) where θ is a set of free parameters prescribing the LF. This study used an evolutionary algorithm cou-
pled with the Bayesian update scheme to enable LF to continue to learn, train, and evolve. There is little restric-
tion of choice of other forms of LFs. For balancing the efficiency and interpretability, one may choose the cubic 
regression spline (CRS)-based LF with high flexibility40,49 or two-parameter based exponential LF with its simplicity. 
First, the CRS-based LF has a general form as L(k,l)(II

(t)
ST

(ξ
j
; L

k
,T

l
); θ

(k,l)) =
∑p

i=1

a
(k,l)

i
b
(k,l)

i
(II

(t)
ST

(ξ
j
; L

k
,T

l
)) 

where θ(k,l) = {a, x∗}(k,l) with a(k,l) = {a1, . . . , ap}
(k,l) , the knots x∗(k,l) = {x∗1 , . . . , x

∗
(p−2)}

(k,l) , and the cubic 
spline basis b(k,l)i  given in Eq. (33) in29. Next, the two-parameter exponential LF has a simpler form as 
L

(k,l)(II
(t)

ST
(ξ

j
; Lk ,Tl); θ

(k,l)) = exp

(
a
(k,l)

II
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ST
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; Lk ,Tl)
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)
− 1 where θ

(k,l)
= {a

(k,l)
, b

(k,l)
; k = 1, . . . , n

L
, l = 1, . . . , n

T
} , 

and “-1” is to make the minimum of the LF near zero. It should be noted that the exponential LF is always non-
zero, positive, and monotonically increasing while preserving the concave or convex shape (see Fig. S6 in29).

Data availability
The processed 40-years data sets consisting of the month-based epochs and the refined day-based epochs are 
shared on a cloud storage28. Other supplementary data and parallel programs supporting other findings of this 
paper will be available upon request to the author.
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