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TCR-epitope pair binding is the key component for T cell regulation. The ability to predict
whether a given pair binds is fundamental to understanding the underlying biology of the
binding mechanism as well as developing T-cell mediated immunotherapy approaches.
The advent of large-scale public databases containing TCR-epitope binding pairs enabled
the recent development of computational prediction methods for TCR-epitope binding.
However, the number of epitopes reported along with binding TCRs is far too small,
resulting in poor out-of-sample performance for unseen epitopes. In order to address this
issue, we present our model ATM-TCR which uses a multi-head self-attention mechanism
to capture biological contextual information and improve generalization performance.
Additionally, we present a novel application of the attention map from our model to
improve out-of-sample performance by demonstrating on recent SARS-CoV-2 data.
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1 INTRODUCTION

The hallmark of the adaptive immune system is the T cells’ ability to distinguish foreign invaders
from host cells. T cells carry out this important task by utilizing their surface protein complex, called
the T cell receptor (TCR) to bind to foreign peptides presented by major histocompatibility complex
(MHC) molecules (also known as HLA molecules if the host is human) on host cells’ surface
(illustrated in Figure 1A). The epitope is a specific region on a peptide to which a TCR binds to. The
recognition of epitopes is a critical mechanism in immune response regulation. Therefore,
unraveling the underlying principles of the TCR-epitope binding process is fundamental to
developing novel clinical applications in immunotherapy (1).

One important application area is in cancer immunotherapy. Since cancer is a disease caused by
many random genetic mutations, tumor cells produce “neoantigens” that are different from those
produced by a patient’s healthy cells (2). Determining which TCRs bind to patient-specific
neoantigens is an important question for therapy design. Also, with the current pandemic of
SARS-CoV-2, the value of rapid screening for suitable candidate TCRs binding to peptides
originating from infectious diseases has become clear.

Assessing which TCRs will bind to target epitopes is challenging, as there are over 1015

rearrangements of the VDJ genes in T-cells, each possible recombination resulting in a distinct
TCR (3). Furthermore, the relationship between TCRs and epitopes is many-to-many, meaning it is
possible for TCRs to bind to multiple epitopes while epitopes can also bind to multiple TCRs (4)
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With such an extremely large search space, manually testing
candidate TCRs against a particular epitope becomes an
infeasible solution. The ability to computationally infer the
binding affinity of TCR-epitope pairs is crucial in rapid
development of truly personalized immunotherapy.

The advent of large-scale public databases containing
epitope-specific TCR sequences such as VDJdb (5), McPAS-
TCR (6), and the Immune Epitope Database (IEDB) (7) has
opened a door to computational methods for determining the
immunogenicity of given epitope sequences. Machine learning
based solutions such as NetTCR (8), TCRex (9), TCRGP (10),
Frontiers in Immunology | www.frontiersin.org 2
and ERGO (11) have been proposed to utilize these large
datasets. The aforementioned methods aim to predict binding
affinity of TCR-epitope pairs as a binary classification problem.
Currently all available computational methods focus only on
linear epitopes and do not consider conformational epitopes
(epitopes consisting of multiple change of residues that are
discontinuous). NetTCR utilizes convolutional neural networks
followed by multiple dense layers to learn interaction between
TCRs and epitopes presented by the most common human allele
HLA-A*02:01. TCRex builds an epitope-specific prediction
model using the random forest classification algorithm
A B

D E

C

FIGURE 1 | Overview of ATM-TCR. (A) T-cell epitope recognition. The T-cell receptor (TCR) is a protein complex on the surface of a T-cell. It recognizes epitopes
displayed by MHC complex on cell surface. (B) The training and testing datasets consist of TCR-epitope pairs known to bind collected from VDJdb, McPAS-TCR,
and IEDB. The three databases are combined into a single dataset containing unique binding pairs. The same number of negative pairs is generated through random
recombination. (C) Each of the TCR and epitope sequences are aligned via IMGT approach where the paddings are inserted into the middle of each sequence until
its length reaches a pre-defined value. (D) Model architecture of ATM-TCR. It takes a pair of TCR and epitope sequences as an input and predicts the binding affinity
between the two. It consists of two parts where a TCR and epitope are processed separately. TCR and epitope are 20 and 22 amino acids long, respectively,
including paddings in the middle. Each sequence is passed through a separate embedding layer which maps the sequence of one-hot amino acid vectors to a
sequence of continuous feature vectors with the size 25. These features are then passed into a corresponding encoder. Each encoder makes use of the multi-head
attention mechanism which allows five self-attention layers are learned in parallel. Outputs of the five self-attention layers are then concatenated and linearly
transformed to obtain an encoded sequence representation. The encoded TCR and epitope sequences are then concatenated together and passed into a decoder
with three linear layers of size 2048, 1024, and 2 which determines the final binding affinity score between the two. (E) The multi-head attention layer makes use of
multiple self-attention layers called scaled dot-product attention. It utilizes the input sequence for each of its three inputs: key (K), query (Q) and value (V). It uses a
scaled dot-product between keys and queries to obtain an attention map relating different positions of the sequence. The attention map is then used to weight
values and compute a new sequence representation, denoted as self-attention features T*.
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composed of a series of decision trees. TCRGP focuses on
utilizing the TCRa and TCRb regions in a Gaussian process
method to determine which CDRs are important for epitope
recognition. Similarly, ERGO utilizes LSTM and autoencoder
models on multiple input features including the TCRa and
TCRb sequences as well as the V and J genes for each TCR (11).

The major challenge for this computational problem is that
the number of epitopes documented in these databases is far
smaller in comparison to the actual number of epitopes arising in
nature. In addition to this, interesting novel epitopes
continuously rise, such as neoepitopes from cancer, and ones
from new strains of pathogens. Epitope-specific models such as
TCRGP and TCRex cannot be used for a novel or rare epitope
because they can build a model for each epitope when a sufficient
number of cognate TCRs are available. General models such as
NetTCR, ERGO and our own ATM-TCR can make predictions
for novel or rare epitopes but they all perform poorly (see Section
3.2-3.3). In order to address this issue, a computational model
should be designed to learn cues that pinpoints the underlying
biology of binding. Additionally, more efforts in embedding
interpretability in model design should be given in order to
provide further clues about novel epitope’s binding affinity.

In this paper, we present ATM-TCR, a novel computational
solution to predict binding affinity between TCR and epitope. It
uses a multi-head self-attention network (12) to obtain
contextual representations of each sequence by considering
how amino acid residues interact with each other within TCR
and epitope sequences. Such learned representations may be
more relevant in determining the physical binding logistics
between the two molecules. One of the network outputs, called
the attention map, provides interpretable information about how
amino acid residues are correlated with each other. This
information can be used to further validate the binding
prediction score. We trained our model on a dataset of TCRb
CDR3 and epitope sequence pairs where positive pairs were
collected from the three databases and negative pairs were
generated by random recombination of existing positive pairs.
We show that the prediction performance of ATM-TCR
outperforms the state-of-the-art binding affinity prediction
models (improvements of 2% in AUC and 6.3% in recall). We
also present a novel use of attention maps obtained from our
model as a binding confidence score to further improve the
model’s prediction on rare or out-of-sample epitopes using
Frontiers in Immunology | www.frontiersin.org 3
SARS-CoV-2 dataset (improvements of 41.11% in accuracy
and 25% in recall).
2 MATERIALS AND METHODS

2.1 Data and Preprocessing
Our dataset consists of binding TCR-epitope pairs collected from
publicly available databases: VDJdb, McPAS-TCR, and IEDB.
The collected data was processed into a unified format and then
filtered down to pairs which contain human MHC class 1
epitopes and TCRb sequences. Additional quality control filters
were applied to the remaining data. Pairs with linear epitope
sequences were retained. Pairs containing wildcards such as * or
X in sequences were also filtered out. Pairs reported in VDJdb
have a confidence score that describes the verification processes
used to ensure that pair binds. This confidence score ranges from
0-3 indicating low to high confidence. A confidence score of 0
indicates that a critical aspect of sequencing or validation for that
pair is missing, so we removed pairs with a score of 0.

As summarized in Figure 1B, after the initial data processing
and quality control, the resulting dataset consisted of 6,388
VDJdb pairs, 11,936 McPAS-TCR pairs, and 169,223 IEDB
pairs. This was further reduced to a total 150,008 binding
TCR-epitope pairs after removal of duplicates. We further
filtered the dataset to keep only pairs where the epitope
consisted of 17 or fewer amino acids as it has been suggested
that linear epitopes only consist of up to 17 amino acids (13).
This resulted in the primary dataset containing 128,142 unique
TCR-epitope pairs, with 931 unique epitopes and 119,984 unique
TCRs. We also created a secondary dataset of 150,008 binding
pairs that included epitopes longer than 17 residues to test if
those longer epitope sequences cause any significant
performance changes. It contains 982 unique epitopes and
140,675 unique TCRs. Further details about the primary and
secondary datasets are outlined in Table 1. Since TCR-epitope
pairs known to not bind are not readily available, we generated
negative pairs using random recombination. The primary and
secondary datasets both consisted of a 1:1 ratio of positive and
negative data (see Section 2.2 for more details).

In addition to the primary and secondary datasets used to
build and evaluate our model, we additionally sourced an out-of-
sample dataset from IEDB to evaluate a more generalized
TABLE 1 | Data summary.

Name Source Unique Epitopes Unique TCRs Unique TCR-epitope Pairs Overlapping Pairs with IEDB

Primary and Secondary VDJdb* 187 3,915 4,047 1,208 (29.85%)
McPAS-TCR 301 9,822 10,156 5,526 (54.41%)
IEDB 1,189 136,492 145,678 145,678 (100%)

Total (Primary)** 931 119,984 128,142
Total (Secondary)*** 982 140,675 150,008

Out-Of-Sample IEDB (SARS-CoV-2) 2 332 332
July 202
*VDJdb pairs with the score larger than 0 were used. **Total number of epitopes, TCRs, and TCR-epitope pairs prior to pairs with epitope sequences greater than 17 amino acids in length
being filtered out. ***Total number of unique epitopes, TCRs, and TCR-epitope pairs in union of the three sources without the length filter.
The number of unique epitopes, TCRs, and TCR-epitope pairs in each source, and their overlap with IEDB.
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performance and to analyze benefits of using the self-attention
mechanism. This dataset consisted of 332 TCR-epitope binding
pairs from two unique SARS-CoV-2 epitopes not present in
either the primary or secondary datasets. The first epitope,
YLQPRTFLL, has 304 cognate TCRs and the other epitope,
RLQSLQTYV, has 28 cognate TCRs.

2.2 Negative Sample Generation
We generated negative pairs via random recombination of the
binding pairs with the same epitope distribution. For each
positive pair, a negative pair is created by replacing the TCR
with a randomly selected TCR from the same dataset. If the
newly created pair is already present in the dataset, it is discarded
and the process is repeated until a unique pair is generated. This
creates a 1:1 ratio of binding and non-binding pairs. The
exception to this rule is the out-of-sample (SARS-CoV-2)
dataset which contained a limited number of epitopes. To
generate non-binding pairs, TCRs from VDJdb are randomly
selected and recombined with the out-of-sample epitopes.

2.3 Training and Testing Set Splitting
There is a tremendous number of novel TCRs and epitopes that
have not been documented. Generalized prediction performance
on novel TCRs and epitopes, however, cannot be properly
measured by random splitting of training and testing sets.
Random splitting usually generates training and testing sets
which have common TCRs and epitopes, hence it can
overestimate prediction performance. In order to precisely
measure the prediction performance on unseen TCRs and
epitopes, we designed two strategies to split the data into
training and testing sets.

2.3.1 TCR Split
The data is split such that any TCRs in the testing set are not
found in the training set, meaning a TCR in the testing set has
never been seen by the model. This strategy aims to evaluate
prediction performance on out-of-sample TCRs. In order to split
samples, a list of unique TCRs in the data is created and
randomly divided into five distinct groups. Each TCR group is
used to split samples into training and testing sets. For example,
for the first fold, all TCR-epitope pairs whose TCRs belong to the
first group are used as the testing set and all other pairs as the
training set. All the other folds are created in a similar fashion.

2.3.2 Epitope Split
The data is split such that any epitopes in the testing set are not
found in the training set, meaning an epitope in the testing set
has never been seen by the model. This strategy aims to evaluate
prediction performance on out-of-sample epitopes. The epitope
split is made similarly to the TCR split while using a list of
unique epitopes instead of unique TCRs.

Since the number of cognate TCRs for each epitope varies and
vise versa, the strategies do not always result in identically sized
folds but produce the folds having similar sizes. Additionally, due
to the amount of unique TCRs, the TCR splits tends to be similar
to a random split of the data in practice.
Frontiers in Immunology | www.frontiersin.org 4
2.4 Multi-Head Self-Attention Model for
Binding Affinity Prediction
ATM-TCR, our binding affinity prediction model, consists of
two encoders separately for TCR and epitope sequences and a
linear decoder for determining the binding affinity between the
two encoded sequences (Figure 1D). The most distinctive
characteristic of our model is the multi-head self-attention
mechanism (12) used by the two encoders to process TCR and
epitope sequences. The mechanism was originally proposed in
the natural language processing (NLP) field to learn contextual
representations of words by accounting for their interactions
within a sentence. ATM-TCR takes advantage of the mechanism
to learn contextual representations of each amino acid residue
within a sequence. The new representation of an amino acid
residue is obtained by a weighted average over the other residues
based on how strongly they interact with it. This helps the model
learn the interactions among amino acids within TCR and
epitope sequences by considering both the residue itself and
positional information. Such learned representation is
meaningful as residue interaction is the key to peptide-
protein interaction.

Before the training, each TCR and epitope sequence is aligned
using IMGT methodology (14) as shown in Figure 1C. The
methodology uses two hyperparameters representing the
maximum length allowed for TCR and epitope sequences,
denoted as pT and pE respectively. If a sequence is shorter than
the maximum, it adds paddings to the middle of the sequence
until the maximum length is achieved. If a sequence is longer
than the maximum, it removes amino acids from the middle of
the sequence until the maximum length is achieved. These
alignments become the inputs to ATM-TCR described in
Figure 1D. Each amino acid in the aligned sequences is
encoded as a one-hot vector. The one-hot encoded sequences
are fed into an initial embedding layer to compute a sequence of
embedding vectors with the size p. The sequence embeddings
T ⋲ RpT×p and E ⋲ RpE×p are then fed into corresponding
encoders, which are denoted as ft and fe respectively. Each
encoder uses multi-head self-attention mechanism that
quantifies the strength of relationships between amino acids in a
sequence and learns a contextual representation of the TCR and
epitope. The new representation is given by an average of (linearly
transformed) input embeddings weighted by the strength of the
relationship. This process is illustrated in Figure 1E. In detail, a
TCR sequence T is fed into three linear layers returning key (K)
query (Q), and value (V) matrices as follows:

K = TWK ,Q = TWQ,V = TWV

where WK,WQ, andWV are p×pmatrices of which each element
is a model parameter to be learned. The strength of relationship
between i-th amino acid and the other residues, denoted as
wi ⋲ RpT, is determined by the scaled dot-product of the i-th
row of with all rows of as follows:

wi = Softmax
qiK

Tffiffiffiffiffi
pT

p
� �
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where qi is the i-th row of Q. W is defined by a matrix having wi

for the i-th row vector and called as attention map. The
contextual representation of the i-th amino acid is then defined
as a linear sum of all amino acid vectors weighted by the
attention map.

t∗i = wiV = wi1v1 +⋯+wipT vpT ,T
∗ = WV

where wi is the i-th row of W. Each element of wi reflects an
amino acid’s relative importance for determining the new
representation of the i-th amino acid. Similarly, an epitope
sequence is processed through the epitope encoder to obtain a
new representation matrix. Such attention mechanism is called
self-attention, and the new representation obtained by the
mechanism is called a self-attention feature. Multi-head self-
attention allows multiple self-attention heads to work in parallel
and attend to sequence positions differently to spread out
cognitive load of the attention mechanism. The multiple self-
attention outputs are then concatenated, flattened, and fed into a
single dense layer. Finally, the TCR (or epitope) encoder returns
a sequence of representation vectors for the TCR (or epitope).

Then, the decoder fd determines the binding affinity between
the TCR and epitope representation vectors. The encoded
representation vectors, ft(T) and ft(E), are concatenated and fed
into three linear layers each followed by a batch normalization
layer, dropout layer, and activation (SiLU) function. The output
of decoder is fed into a Sigmoid activation function to obtain a
binding affinity score:

Score T , Eð Þ = 1
1 + exp −fd ft Tð Þ, fe Eð Þð Þð Þ

The binding score predicted by ATM-TCR is a continuous value
between 0 and 1 where 0 represents non-binding and 1
represents binding for a given TCR and epitope pair.

2.5 Attention Map for Improving Out-of-
Sample Prediction
In this section, we propose a novel approach to further validate
and improve the out-of-sample prediction using attention maps
of ATM-TCR. The attention map obtained from the TCR
encoder enables the inferring of inter-relationships between
amino acids in a TCR sequence. We assume that two TCR
sequences have similar positional inter-relationships in their
amino acid sequences if they bind to the same epitope. Those
pair of TCRs, hence, are more likely to have similar attention
maps. By extension, we assume the same for the pair of TCRs
that bind to similar epitopes. On the other hand, if a pair of TCRs
bind to two distant epitopes, they would have distinct attention
maps. These assumptions were used to generate a new
hypothesis. Previous predictions for epitopes with known
cognate TCRs can be used to validate future predictions on
similar out-of-sample epitopes by comparing attention maps of
their TCR sequences.

Figure 2 demonstrates our approach to validate and improve
the prediction using the attention map. Here is an example of
such application. Given a positively predicted (binding affinity
score > 0.5) pair of a novel epitope (YLQPRTFLL) and TCR
Frontiers in Immunology | www.frontiersin.org 5
(CASSLDIEAFF) by ATM-TCR, we want to further validate the
prediction outcome. We first obtain the attention map of TCR
(CASSLDIEAFF) from the TCR encoder (Figure 2A). The
attention map is compared to that of true and false positive
TCRs of an epitope similar to the novel epitope present in the
dataset. This is denoted as reference epitope. We pick a reference
epitope (YYVGYLQPRTFLL) from the dataset that has the
maximal longest common subsequence with the novel epitope
(Figure 2B). We evaluate the binding affinity of the reference
epitope and TCRs present in the dataset using ATM-TCR
(Figure 2C). The reference epitope’s paired TCRs are then
sorted into one of four confusion matrix categories based on
ATM-TCR’s binding affinity predictions and real values: true-
positive (TP), false-positive (FP), true-negative (TN), and false-
negative (FN) (Figure 2D). For each of these categories, a
reference attention map is calculated by averaging the attention
maps of TCRs in that particular category. Since the TCR
(CASSLDIEAFF) is predicted to positively bind to the novel
epitope, its attention map should be compared to the true-
positive and false-positive reference maps. If the attention map
of the TCR is similar to the true-positive reference map, then it
can be affirmed that it is a binding TCR. If it shares more
similarity with the false-positive reference map, it should be
reconsidered as a non-binding TCR. As seen in Figure 2E, we use
the Euclidean distance to calculate the similarity of the attention
maps and reference maps. In order to systematically determine
the similarity, we define binding confidence score as D2 -D1

where D1 is the Euclidean distance between a TCR attention
map and the true-positive reference map, and D2 is that between
a TCR attention map and the false-positive reference map. We
determine there is high confidence that the positive prediction is
correct if D2 -D1≥ k where k is a real value. On the other hand, if
D2 - D1< k, then we have low confidence in the positive
prediction and it should be reconsidered as false positive.
Similarly, a TCR predicted as non-binding to the novel epitope
should be compared to the true-negative and false-negative
reference attention maps. It follows that, similarity with the
true-negative matrix will affirm the prediction as non-binding,
while similarity with the false-negative matrix indicates the TCR
should be reconsidered as binding. In other words, if D2-D1≥ k,
then the negatively predicted TCR should be reconsidered as
false negative.

2.6 Hyperparameter Tuning
We optimized the model with the following hyperparameter
search space (the bold indicates the choice for our final model):
embedding matrix initialization – {Blosum45, Blosum50,
Blosum62, Random}, padding– {Left, Middle Right}, dropout
rate for the first dense layer – {50%, 60%}, dropout rate for the
second dense layer – {25%, 30%, 50%}, the maximum length
limit for TCR – {10, 15, 18, 20, 22}, the maximum length limit of
epitope – {10, 15, 18, 20, 22}, the number of heads in the
attention layer – {1, 5}, the dimensions of the first dense layer
– {256, 512, 1024, 2048, 4096}, and the dimensions of the second
dense layer – {256, 512, 1024, 2048}. We used the Adam
algorithm (15) with the learning rate of 0.001, the batch size of
32, the coefficients to compute running averages of the gradient
July 2022 | Volume 13 | Article 893247
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(b1, b2) = (0.5, 0.999), and its square ϵ = 10-8. All models were
trained for 200 epochs. We tuned the hyperparameters via
exhaustive grid search and chose the hyperparameter values
that yield the best AUC on the validation sets of 5-fold nested
cross validation as shown in Figure S1. ATM-TCR is
implemented using PyTorch, an open source deep learning
platform (16).

2.7 Baseline Methods
We compared ATM-TCR against state-of-the-art binding
affinity prediction models. Namely we trained three models:
NetTCR (8), ERGO-AE, and ERGO-LSTM (11). All three of
the models were trained on our collected datasets using the best
performing hyperparameters reported in their corresponding
Frontiers in Immunology | www.frontiersin.org 6
literature. The same TCR and epitope splits were also utilized
across all models to ensure consistency of training and testing
sets between the models. The performance for each model is
reported as an average of their AUC, recall, and precision across
the 5 folds.

2.8 Statistical Tests
In this section, we enumerate and detail the statistical tests performed
in our analysis. In Section 3.2-3.3 and 3.5, we performed the one-
sided paired t-test to statistically compare the prediction performance
(AUC, recall, and precision) between ATM-TCR and the other
models. The performances were measured from the 5-fold testing
sets, so the sample size for the test was 5. In the first test, a smaller p-
value (< 0.05) means our model significantly performs better than the
FIGURE 2 | Improvement of out-of-sample prediction using attention maps. (A) We have a positively predicted (binding affinity score > 0.5) pair of a novel epitope
(YLQPRTFLL) and TCR (CASSLDIEAFF) by ATM-TCR. In order to further validate the prediction, we utilize the attention map and determine its binding confidence
level by comparing it with two reference attention maps for true and false positives. (B) We identify a reference epitope (YYVGYLQPRTFLL) from the dataset having
the maximal longest common subsequence with the novel epitope. (C) We then evaluate the binding affinity between the reference epitope and each TCR in the
data, and obtain the attention maps for the TCRs predicted as positive. (D) The TCRs are placed in two categories: one for true positive and another for false
positive TCRs. The attention maps in each category are averaged together to create true positive and false positive reference attention maps. (E) If the Euclidean
distance between the TCR’s (CASSLDIEAFF) attention map and the true positive representative map (D1) is closer then that of the false positive representative map
(D2) it can be affirmed that there is high confidence that the positive prediction is correct. It follows that, if D2 -D1 >= k, then we have high confidence in the positive
prediction. On the other hand, if D2 -D1< k, then we have low confidence in the positive prediction and it should be reconsidered as a false positive.
July 2022 | Volume 13 | Article 893247
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others. In the second test, a smaller p-value (< 0.05) means ourmodel
significantly performs worse than the others. If none of the tests
yielded significant p-values, we concluded that no significant
difference between two models was found. In Section 3.2, we
performed the Pearson correlation test to measure the association
between each epitope’s log-scaled frequency and the epitope-specific
AUC. The epitope frequency was calculated from the primary dataset.
The epitope-specific AUC was calculated as the average AUC of
epitope in the TCR-split of the primary dataset. A smaller p-value (<
0.05) and greater correlation coefficient indicate epitope-specific AUC
and frequency are significantly correlated. In Section 3.4, we
performed the one-sided t-test to compare the binding confidence
scores between the true and false positive (or negative) predictions on
the out-of-sample dataset. A smaller p-value (< 0.05) indicates a
significant difference in the binding confidence scores between the
true and false positive predictions. In Section 4.5, we performed the
two sample t-test to compare AUC of our models trained on the
primary and secondary datasets to assess the effect of the epitope
length filter that removed epitope sequences greater than 17 amino
acids on the prediction performance of themodels. A small p-value (<
0.05) indicates a significant difference in the prediction performances.
3 RESULTS

3.1 Data
We compiled the primary dataset (128,142 unique binding pairs)
and the secondary dataset (150,008 unique binding pairs)
sourced from VDJdb, McPAS-TCR, and IEDB (see Section 2.1
for details). The primary dataset was further refined from
secondary dataset by filtering out long epitope sequences (> 17
amino acids long). Figure 3B shows several outlier epitopes
longer than 17, which were filtered out. All epitopes are at least 8
amino acids long. We did not filter the TCRs as no outliers were
observed (Figure 3C). The out-of-sample dataset had 332 unique
binding pairs, with two SARS-CoV-2 epitopes that are not
present in the primary or secondary dataset. The primary
dataset was used to train models and perform most of the
analysis, unless otherwise specified. The secondary dataset was
used to compare the performance of the models on data that
included the longer sequence lengths to determine if the quality
control process had any significant impact on the model
performance, reported in Section 3.5. Finally, we used the out-
of-sample dataset to evaluate the applicability of the model’s
attention map for improving the binding affinity prediction,
reported in Section 3.4. As shown in Figure 3A, a few epitopes
were far more frequently observed than others in the primary
dataset: 38% of the pairs in the data contain one of seven
epitopes, each of which has more than 3,000 examples of
binding TCRs within the dataset.

3.2 ATM-TCR More Accurately Predicts
the Binding Affinity of Unseen TCRs Than
the State-of-the-Art Models
In order to evaluate the prediction performance for unseen
TCRs, we trained and evaluated the models on the TCR split
Frontiers in Immunology | www.frontiersin.org 7
(TCRs in the testing set do not appear in the training set, see
Section 2.3 for more details). As seen in Figures 4A, B, ATM-
TCR achieves the highest average AUC, recall, and precision
among all the models in binding affinity prediction for unseen
TCRs. We statistically evaluated the performance differences
using the one-sided paired t-test, and observed our method
significantly outperforms all the other methods in AUC and
precision, and NetTCR in recall with 0.05 significance level (i.e.,
95% confidence level).

We observed ATM-TCR more accurately makes binding
affinity predictions for highly frequent epitopes than for rare
epitopes. In our dataset, several epitopes were observed in less
than 10 pairs while others were observed in more than 10,000
pairs (Figure S3). The most frequently observed epitopes with >
10,000 pairs usually achieved higher AUCs—the average of the
top six most frequent epitopes was 0.842 which is higher than
the overall AUC of 0.773 (Table S1). We statistically assess the
association between an epitope’s prediction performance and
frequency using the Pearson correlation test. The test was
performed on the (log-scaled) frequency and the epitope-
specific AUC obtained by averaging the epitope’s AUC in the
5-fold TCR-split testing sets. The AUC and (log-scaled)
frequency showed a significant linear relationship with a
Pearson correlation coefficient of 0.852, and a p-value of < 2.2
×10-16 as seen in Figure S4. A better prediction performance is
expected for a more frequent epitope because the training set has
richer information about them. The rare epitopes were poorly
predicted because the training set does not have enough
information about them. This is a common limitation of
typical machine learning prediction models. Unlike other
methods compared, ATM-TCR’s attention mechanism
provides attention maps for TCRs and epitopes, allowing us to
perform additional analysis to address such limitations. An
application of the attention mechanism of ATM-TCR is
demonstrated in Section 3.4.

In order to look at how our model separated decision
boundaries, we performed t-SNE (17) on the output of the last
hidden layers of the TCR-epitope pairs. Figure 5A shows a t-
SNE plot for the five most frequently appearing epitopes, and
Figure 5B through F each shows a t-SNE plot for the five
epitopes individually with binding and non-binding pairs
indicated as different colors. As seen in Figure 5A, the final
hidden layer of ATM-TCR shows clear separation between pairs
that have different epitopes. This is likely because epitopes
sequences in the dataset were distinct from each other.
However, t-SNE plot of individual epitope reveals several
clusters and decision boundary was complex (Figures 5B–F).
This aligns with our observation from hyperparameter tuning,
that a more complex network achieves better performance. The
t-SNE plots also show that the epitope-specific performances and
decision boundaries vary in epitope. The decision boundary of
GILGFVFTL is clear cut (AUC 0.937) while that of
KLGGALQAK is not (AUC 0.662). Similar trends are observed
from all the other models (Table S2) the performances vary in
epitope and the models perform best on GILGFVFTL and worst
on KLGGALQAK.
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Although identical TCR-epitope pairs are not in both training
and testing sets, there are TCRs binding to an identical epitope
that share ranging sequence similarities. Highly similar TCRs
binding to an identical epitope across training and testing sets
may cause overestimation of prediction performance because
models may be able to infer information more easily, when
testing TCRs share higher sequence similarities to training TCRs.
We assessed how ATM-TCR performs when removing TCRs
that share sequence similarity from the TCR split testing sets in
the primary data while gradually changing the minimum
sequence similarity threshold value. The sequence similarity of
each testing TCR was measured by (1) the minimum hamming
distance between the testing TCR and all training TCRs (2),
average of the top 10 lowest hamming distances, and (3) average
of the top 5 lowest hamming distances. We gradually increased
the threshold value d = 1, ⋯, 6, to remove all TCRs of hamming
distances smaller than or equal to d from the test sets. The
measured performances (AUC) for varying threshold values are
shown in Figure S5 The performance measure decreases along
with the threshold and becomes stable at d = 4 and beyond. This
indicates that the prediction performance of unseen TCRs differs
by level of similarity with training TCRs.

3.3 All Models Including ATM-TCR
Perform Poorly on Binding Affinity
Prediction of Unseen Epitopes
In order to measure prediction performance for unseen epitopes,
we trained and evaluated the models on the epitope split (epitopes
in the testing set do not appear in the training set, see Section 2.3
for more details). All models including ATM-TCR failed to
achieve reasonably good performance on the epitope split. As
shown in Figures 4C, D, each model performs similarly to a
random classifier with an AUC score around 0.5. Notably, all
AUCs degraded on the epitope split compared to the TCR split.
This may be because the training and testing data were more
dissimilar to each other in the epitope split than in the TCR split.
As shown in Table 1, the number of unique TCRs (119,984) is
much larger than the number of unique epitopes (931) and
together they make up 128,142 TCR-epitope pairs. This
indicates that epitopes have many binding TCRs and most
TCRs appear once (bind to single epitope) in the dataset.
Frontiers in Immunology | www.frontiersin.org 8
3.4 ATM-TCR Can Improve the Poor
Generalization Performance for Novel
Epitope Using Attention Map
ATM-TCR, as well as the other models, demonstrated limited
performance on the epitopes rarely observed or never been
observed in the training sets. This inability to make predictions
on rare or unseen epitopes was also mirrored by ATM-TCR’s
results on the out-of-sample SARS-CoV-2 data, showing a recall
of 50.00%. In this section, we demonstrate that the attention map
obtained from the TCR encoder can help us to further validate
predictions and hence improve the poor generalization
performance. Our idea is based on the assumption that TCRs
binding to similar epitopes would have similar inter-
relationships between amino acids, and hence the model would
have similar attention mechanism on those TCRs.

We used the out-of-sample epitope YLQPRTFLL as an
example. Our TCR split model achieved an epitope-specific
recall of 46.05% for 664 TCRs (332 binding TCRs collected
from the out-of-sample dataset and 332 non-binding TCRs
collected from the primary dataset). In order to improve the
poor prediction, we followed the process illustrated in Figure 2
(see Section 2.5 for details). We identified a reference epitope
YYVGYLQPRTFLL from the primary dataset having the
maximum longest common subsequences with the novel
epitope YLQPRTFLL. We indeed observed that they were
binding to similar TCR sequences as shown in Figure 6A. We
generated reference attention maps for (1) true positive (2), false
positive (3), true negative, and (4) false negative TCRs. In order
to validate the prediction on the out-of-sample epitope, we
calculated the binding confidence score D2 -D1 of 664 TCRs
by comparing their attention maps to the reference maps.

The confidence score of the true positive TCRs of the novel
epitope was significantly higher than the false positive TCRs (p-
value < 2.2 × 10-16, paired t-test) as shown in Figure 6B. This
means that the confidence score can be used to distinguish the
true positives from the false positive. We observed that the
negatively predicted TCRs showed slight score improvement in
the false negatives than the true negatives, although it was not
statistically significant. These results gave us a hint to use the
confidence score to further improve the prediction performance.
We switched the positive prediction to negative if the score is
A B C

FIGURE 3 | (A) Frequency of epitopes in the primary dataset. Distribution of (B) epitope length and (C) TCR length in the primary dataset. Dashed vertical lines
indicate the maximum input sequence length hyperparameters chose by our model.
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smaller than k (i.e., D2-D1< k). Note that in order to avoid all
predictions from being changed from positive to negative, we
also switched the negative prediction to positive if the score is
equal to or larger than k (i.e., D2-D1 ≥ k). We measured the
accuracy, precision, and recall values by gradually changing the
threshold k that controls the number of switched decisions (k = 0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). In Figure 6C, we
observed all three metrics gradually increased as we switched
decisions using the attention map. The original recall value of
46.05% for our model increased to 71.05%. This value is even higher
than the recall value (56.25%) we obtained solely based on the
attention map.

3.5 ATM-TCR Performs the Best on the
Secondary Dataset Including Epitopes
Significantly Longer Than Others
Our dataset, which was sourced from the three databases, had
several epitopes whose lengths are longer than the others as
seen in Figure 3B. The primary dataset, that most of analysis
was performed on, filtered out epitopes consisting of longer
than 17 amino acids. In order to assess if the longer epitope
sequences affect the binding affinity prediction process, we
additionally trained all the models on the secondary dataset
which contained all epitopes regardless of length, and
statistically compared to those of the primary data. As shown
Frontiers in Immunology | www.frontiersin.org 9
in Figure S2, ATM-TCR also showed the best AUC and was
significantly better than NetTCR and ERGO-LSTM in the TCR
split in similar fashion to its performance on the primary
dataset. In the epitope split, all models had no significant
differences and failed to achieve reasonably good performance
as they did on the primary dataset.
4 DISCUSSION AND CONCLUSION

ATM-TCR is a computational model to predict whether a TCR-
epitope pair bind to each other. Predicting a TCR’s binding affinity
to a target epitope is the fundamental step to select a confident set of
potential therapeutic TCRs for T cell engineering (18, 19). Our
study is in line with previously proposed computational models to
predict binding affinities of TCRs to a target epitope, and eventually
provide TCR candidates to expedite the development of adaptive
treatments. The most distinctive component of our model is the
multi-head self-attention mechanism. It allows us to selectively
attend amino acids in a sequence based on how strongly they are
correlated with each other. Consequently learning the biological
contextual representations of TCRs and epitopes whose structure
and function are determined by how amino acids are arranged and
correlated with each other. We evaluated our computational model
on both in-sample (TCR split and epitope split) and out-of-sample
A B

DC

FIGURE 4 | Prediction performance of ATM-TCR and all other methods measured on the primary dataset. (A) ROC curve, (B) AUC, recall, and precision of the TCR
split. (C) ROC curve, (D) AUC, recall, and precision of the epitope split. The averages across the 5-fold testing sets were reported. For each fold Youden’s Index
was utilized on the ROC curve to determine the optimal cut-off point to measure recall and precision. One-sided paired t-test was performed to test if each AUC,
recall, and precision of ATM-TCR was significantly greater than the others, or the others were significantly greater than ATM-TCR. When ATM-TCR was significantly
better, we reported the p-value and indicated the two methods with solid line above the bar plots. When the others were significantly better, we reported the p-
values and indicated the two methods with dashed line above the bar plots. If none of the directions were significant, we did not indicate.
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(SARS-CoV-2) data and compared it to state-of-the-art methods.
We observed that ATM-TCR outperforms the state-of-the-art
models for the TCR split by up to 2% in AUC and 6.3% in recall.
We also showed that the learned attention map of our model can be
used as a confidence measure which can improve the recall of our
predictions on the out-of-sample dataset by up to 25%.

Many TCRs that bind to an identical epitope displayed high
similarities, differing only by one or two amino acid residues.
Therefore, in the TCR split, the binding TCRs of an identical
epitope are likely to appear both in testing and training sets,
allowing the models to easily infer information about the testing
set from the training set. However, in the epitope split, the
models struggled to make accurate predictions from the
information given from the training epitope. Most epitopes in
the entire dataset were distinct from each other with almost no
sequence similarity, making it difficult for models to extrapolate
the information learned from training data to epitopes in testing
data. This trend is in line with our observation about the rare
epitopes that were poorly predicted.

However, we observed the previously proposed models and our
model suffer from poor prediction performance on rare or out-of-
sample epitopes. To improve this performance, positive (or negative)
predictions made by ATM-TCRwere further validated by comparing
their attention maps to the true and false positive (or negative)
Frontiers in Immunology | www.frontiersin.org 10
reference maps. The reference maps were obtained from a reference
epitope to that of the out-of-sample epitopes. To determine the
reference epitope, we identified the longest common subsequences
(LCS) between each of the epitopes in the dataset and the out-of-
sample epitopes, and used the epitope with the longest LCS as a
reference epitope. We observed that our approach using the attention
map can significantly improve out-of-sample performance. However,
a sequence with an LCS longer than a few amino acids may not exist
in a user dataset. This potentially limits the extent of this analysis until
a greater amount of epitopes have been recorded or an alternative
epitope similarity measure is utilized.

Three hyperparameters had the greatest effect on model
performance (1): the dimension of the dense layer (2), number of
heads in the attention layer, and (3) the maximum length limit of
TCR and epitope. In particular, the combination of a large size of the
dense layer andmultiple attention heads greatly benefited themodel’s
performance, meaning ATM-TCR can be further improved if we use
a more complex structure. Increasing the model capacity, however,
can be detrimental to the generalization performance unless it is
trained on a greater number of samples than currently collected.
Additionally, ATM-TCR benefited from having length bounds on
sequences. Reducing either the TCR or epitope sequence size below
15 amino acids, however, was very detrimental to model
performance. We also observed that initializing the embedding
A B

D

E F

C

FIGURE 5 | Visualization of ATM-TCR’s last hidden layer using t-SNE plots. Each dot indicates a TCR-epitope pair (either binding or non-binding). Panel (A) displays
the t-SNE plot of the five most frequently appearing epitopes and the rest of the panels display t-SNE plots for (B) the most frequent epitope KLGGALQAK, (C) the
second epitope YVLDHLIVV, (D) the third epitope GLCTLVAML, (E) the fourth epitope HTTDPSFLGRY, and (F) the fifth epitope GILGFVFTL.
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with a BLOSUM matrix often had little to no effect compared to
utilizing a random initialization. The performance boosts were often
minimal, and no single BLOSUM matrix consistently outperformed
other matrices or the random initializationmethod. The performance
improvement by the binding confidence score was affected by a
choice of k. We observed that the best improvement was at k ≈ 0,
hence we recommend users to use the threshold 0 if no empirical
experiment is available to determine the best value.

We also trained NetTCR-2.0 (20), the latest version of NetTCR.
However, it performed worse than NetTCR: AUCs for the TCR and
epitope split were 0.7283 and 0.5052, respectively (average of the 5
folds). It may be because NetTCR-2.0 was designed for TCR
sequences having both the TCRa and TCRb chains, but our data
includes only TCRb chain. The architecture for NetTCR-2.0 is
extremely similar to NetTCR. The only difference is a slight
dimension change of the layer to account for the additional
information for TCRa chain. We focused on TCRb chain to secure
enough training data and mitigate overfitting problems. Only 15% of
our data has both TCRa and TCRb chain, which is not enough to
train neural network models having a large number of parameters.

There are several components of ATM-TCR that can be
improved in future. One potential area of improvement is that
most existing models including ATM-TCR utilize a naive alignment
method (IMGTmethod, see Figure 1C) that inserts paddings to the
middle of each sequence until it reaches a fixed parameter length.
Consequently, TCR and epitope sequences are always aligned the
same way regardless of the other sequence it is aligned against.
Changing this paddingmethod to align relevant sections of the TCR
sequence to its paired epitope sequence using biological domain
knowledge would aid in training and predictions. Embedding
positional information of amino acids, for example, using
positional encoding (12) may alleviate any problems rising from
paddings.We also saw improved AUC performance in the attention
model when training and testing our model on sequences within the
length limit of 17 or fewer amino acids. The TCR split showed
significant AUC improvement (p-value < 0.0001) and the epitope
split also showed AUC improvement (p-value < 0.170) but with no
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statistical significance. This performance boost was also noticeable
in the other baseline models that we tested. This may indicate
further curation of amino acid sequences is required in order to
train the models on the longer sequences without
performance degradation.

Furthermore, our method of obtaining the sequence
representations may also be improved through use of sequence
representation models such as DeepTCR (21). Since such models
can be trained on a dataset of amino acid sequences with no binding
information, we can use a large number of training samples and
hence obtain more sophisticated representations of TCR and
epitope sequences.

In summary, we proposed a computational model, ATM-TCR,
to predict the binding affinity between a given pair of TCR and
epitope sequences. Using attention as the primary structure of the
model significantly increased the prediction performance compared
to the state-of-the-art models. Furthermore, we demonstrated that
the attention map of ATM-TCR can be used as an independent
confidence measure for further correcting the out-of-sample
predictions. Our model provides a more precise computational
screening of a candidate pool of binding TCRs for a target epitope.
Such screening ability can speed up the design process of identifying
therapeutic TCRs in TCR gene therapy or other TCR engineering
applications and is the first step toward towards making TCR
therapy more accessible to the general public.
SOFTWARE

The source code for the model is publicly available at https://
github.com/Lee-CBG/ATM-TCR.
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The datasets analyzed for this study are publicly available and
can be found in VDJdb (https://vdjdb.cdr3.net), McPAS-TCR
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FIGURE 6 | (A) TCR sequence logos binding to the novel epitope YLQPRTFLL and the reference epitope YYVGYLQPRTFLL. (B) The binding confidence score (D2 -D1) of
TCRs predicted as positive (left) and negative (right) in regard to the SARS-CoV-2 novel epitope YLQPRTFLL. The average scores of false positive and true positive TCRs
showed a significant difference (p-value < 2.2 × 10-16), while those of false negative and true negative showed no significant difference (p-value = 0.2859), indicating that the
binding confidence score can be used to further distinguish the false positive and true positive TCRs in out-of-sample prediction. (C) Prediction performance of the novel novel
epitope YLQPRTFLL achieved by changing ATM-TCR’s decision using the confidence score. The x-axis represents the percentage of samples for which we changed the
decisions and y-axis represents the prediction performance (accuracy, precision, and recall). When x is 70% (k = -0.01) it achieved the best performance improvement in
recall. This improved out-of-sample recall of 46.05% to 71.05%.
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a Body Maintain? J Theor Biol (2016) 389:214–24. doi: 10.1016/j.jtbi.2015.10.016

4. Sewell AK. Why Must T Cells be Cross-Reactive? Nat Rev Immunol (2012)
12:669–77. doi: 10.1038/nri3279

5. Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, et al.
VDJdb: A Curated Database of T-Cell Receptor Sequences With Known Antigen
Specificity. Nucleic Acids Res (2018) 46:D419–27. doi: 10.1093/nar/gkx760

6. Tickotsky N, Sagiv T, Prilusky J, Shifrut E, FriedmanN.McPAS-TCR: AManually
Curated Catalogue of Pathology-Associated T Cell Receptor Sequences.
Bioinformatics (2017) 33:2924–9. doi: 10.1093/bioinformatics/btx286

7. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res (2019) 47:
D339–43. doi: 10.1093/nar/gky1006

8. Jurtz VI, Jessen LE, Bentzen AK, Jespersen MC, Mahajan S, Vita R, et al. NetTCR:
Sequence-Based Prediction of TCR Binding to Peptide-MHC Complexes Using
Convolutional Neural Networks. bioRxiv (2018), 433706. doi: 10.1101/433706

9. Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, et al.
Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence
Repertoires. Front Immunol (2019) 10:2820. doi: 10.3389/fimmu.2019.02820

10. Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H. Predicting
Recognition Between T Cell Receptors and Epitopes with TCRGP. PLoS
Comput Biol (2021), 17(3):e1008814. doi: 10.1371/journal.pcbi.1008814

11. Springer I, Tickotsky N, Louzoun Y. Contribution of T Cell Receptor Alpha
and Beta CDR3, MHC Typing, V and J Genes to Peptide Binding Prediction.
Front Immunol (2021) 12:664514. doi: 10.3389/fimmu.2021.664514

12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention Is All You Need. CoRR Abs/1706.03762 (2017). doi: 10.48550/
arXiv.1706.03762.

13. Flaherty DK. Chapter 3 - Immunogenicity and Antigenicity. In: Immunology
for Pharmacy. Saint Louis: Mosby (2012). p. 23–30. doi: 10.1016/B978-0-323-
06947-2.10003-3
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