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Abstract
Akinesia, a cardinal symptom of Parkinson’s disease, has been linked to abnormal activation in putamen and posterior
medial frontal cortex (pMFC). However, little is known whether clinical severity of akinesia is linked to dysfunctional
connectivity of these regions. Using a seed-based approach, we here investigated resting-state functional connectivity
(RSFC) of putamen, pMFC and primary motor cortex (M1) in 60 patients with Parkinson’s disease on regular medication
and 72 healthy controls. We found that in patients putamen featured decreases of connectivity for a number of cortical
and subcortical areas engaged in sensorimotor and cognitive processing. In contrast, the pMFC showed reduced
connectivity with a more focal cortical network involved in higher-level motor-cognition. Finally, M1 featured a
selective disruption of connectivity in a network specifically connected with M1. Correlating clinical impairment with
connectivity changes revealed a relationship between akinesia and reduced RSFC between pMFC and left intraparietal
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lobule (IPL). Together, the present study demonstrated RSFC decreases in networks for motor initiation and execution in
Parkinson’s disease. Moreover, results suggest a relationship between pMFC-IPL decoupling and the manifestation of
akinetic symptoms.
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Introduction
Akinesia, the impairment to initiate spontaneous move-
ments (Hallett et al. 1991), is one of the cardinal symptoms of
Parkinson’s disease critically affecting patients’ quality of life
(Schrag et al. 2000; Chapuis et al. 2005). James Parkinson
described akinesia as the inability of the patient to performmove-
ments “with the promptitude that the will directs” (Parkinson
1817). Later, Kinier Wilson referred to akinesia as a “paralysis of
the will”, suspecting its pathomechanism at the “highest level” of
motor control (Wilson 1925). Since then, considerable progress
has been made in the discovery of the neural mechanisms under-
lying motor symptoms of Parkinson’s disease at the systems
level. Current pathophysiological models of the disease suggest
that akinesia arises from dysfunctional cortico-striatal processing,
induced by a functional imbalance between direct and indirect
basal-ganglia pathways (Wichmann and DeLong 2002; Grafton
2004; Wichmann et al. 2011; Jellinger 2014). Here, the putamen is
most prominently affected by the deprivation of dopaminergic
input originating from the substantia nigra (Bernheimer et al.
1973; Hornykiewicz and Kish 1987; Morrish et al. 1995; Forno 1996;
Rajput et al. 2008). These findings are in line with in vivo neuroim-
aging studies, showing decreased activation of the putamen in
Parkinson patients (for a recent meta-analysis see Herz et al.
2013). At the cortical level, the posterior medial frontal cortex
(pMFC) has been suggested to contribute to patients’ impairment
in voluntary movement initiation (e.g.MacDonald ; Grafton 2004).
This region is considered a central interface mediating cognitive
(Ridderinkhof et al. 2004; Dosenbach et al. 2007, 2008; Nachev
et al. 2008), motivational, and motor processes (Bush et al. 2002;
Rushworth et al. 2004).

In the context of Parkinson’s disease, neuroimaging studies
have indicated abnormal activity in the pMFC during self-initiated
movements (Playford et al. 1992; Jahanshahi et al. 1995; Haslinger
et al. 2001), which ameliorated under dopamine replacement
(Jenkins et al. 1992; Rascol et al. 1992; Haslinger et al. 2001) or deep
brain stimulation (Davis et al. 1997; Limousin et al. 1997; Fukuda
et al. 2001). Moreover, single cell recordings in the macaque pMFC
revealed specific neural responses to movement instructions
(Escola et al. 2003), which were distorted after inducing akinesia by
lesioning this region. Correspondingly, clinical case reports in
humans also noted akinetic symptoms resulting from lesions
affecting the pMFC (Dick et al. 1986; Meador et al. 1986;
Haussermann et al. 2001). Together, these findings suggest that
akinesia might arise from a dysfunctional interaction between the
pMFC and basal ganglia, especially the putamen (Grafton 2004;
Vercruysse et al. 2014).

Of note, both of these regions’ have been described as key
nodes in a larger network linked to volitional behavior (Jahanshahi
1998; Hallett 2007; Brass and Haggard 2008; Kranick and Hallett
2013) and self-generated movements (Hoffstaedter et al. 2013,
2014). This cortical network includes lateral and medial prefron-
tal cortex, mid- and anterior cingulate cortex, insula as well
as posterior parietal regions. Recently, an increasing number of
fMRI studies have begun to investigate resting-state functional
connectivity (RSFC) in Parkinson’s disease (for a systematic

overview on RSFC studies in Parkinson’s disease see Tahmasian
et al. 2015). However, most of these studies have focused on sub-
cortical seeds, revealing that striatal seeds feature reduced RSFC
with the sensorimotor cortex (Helmich et al. 2010; Wu, Long,
et al. 2011; Sharman et al. 2013; Luo et al. 2014; Müller-Oehring
et al. 2015) and subcortical nuclei including thalamus, subthala-
mic nucleus, and midbrain (Hacker et al. 2012; Wu et al. 2012). In
contrast, the cortical network for movement initiation remains
poorly understood with respect to RSFC alterations in Parkinson’s
disease.

Hence, the present study aimed at analyzing RSFC of both
striatal as well as pMFC seeds and their relation to akinesia in
Parkinson’s disease. To this end, 3 seeds in bilateral putamen
and pMFC (comprising both hemispheres) were functionally
defined based on a coordinate-based meta-analysis of neuroim-
aging experiments that included the free timing of movements
(Hoffstaedter et al. 2014). Furthermore, 2 seeds were placed in
bilateral primary motor cortices (M1) to compare RSFC of pMFC
and putamen with connectivity in systems related to direct
motor execution. All of the aforementioned regions are known
to play a crucial role in motor function and were expected to
show abnormal connectivity patterns in Parkinson’s disease.
However, we hypothesized that akinesia was particularly related
to connectivity changes with regions involved in motor initiation,
especially the pMFC. To test this hypothesis, we first analyzed
RSFC between seeds in Parkinson patients and healthy controls,
assessing the configuration of the preselected network in both
groups. Next, whole-brain RSFC was computed for each of the 5
seeds in control subjects to identify extended resting-state net-
works specifically connected to the putamen, M1, and pMFC.
These networks, were used to allocate the subsequently assessed
aberrations of RSFC in patients. Finally, every seed’s RSFC was
tested for correlations with clinical scores of akinesia. In sum, the
present study analyzed RSFC of bilateral putamen, bilateral M1,
and pMFC to characterize seed-specific resting-state networks in
healthy controls, their alterations in Parkinson’s disease, and
their potential roles in the manifestation of akinesia.

Materials and Methods
Subjects

Resting-state fMRI data of 60 patients with idiopathic Parkinson’s
disease (mean disease duration 6.5 ± 5.5 [SD] years) and 72
healthy participants were included in the analysis. Patients and
healthy participants were matched for age, gender, and head
movements within the MRI-scanner (please see Table 1 for fur-
ther sample characteristics). Data were acquired at 2 sites,
Aachen University Hospital (31 patients, 32 healthy controls) and
Düsseldorf University Hospital (29 patients, 40 healthy controls).
Overall disease durations ranged from 0 to 21 years (Düsseldorf:
9.3 ± 5.9, range 0–21 years, Aachen: 3.9 ± 3.5, range 0–15 years).
All patients were examined while on their regular dopaminergic
medication (mean levodopa equivalent dose 786 ± 517mg per
day, estimated based on Tomlinson et al. 2010). Patients’ general
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motor impairment was quantified by part III of the Unified
Parkinson’s Disease Rating Scale (UPDRS, Movement Disorder
Society Task Force on Rating Scales for Parkinson’s Disease 2003).
Across all patients, the average UPDRS III (on their regular dopa-
minergic medication) score was 19.6 ± 13.1. As part of this score,
item 31 assesses the global spontaneity of movements on a scale
from zero (no symptoms) to 4 (severe symptoms). This item was
used to rate clinical severity of akinesia and relate it to RSFC
alterations in the fMRI analysis. Examinations at all data acquisi-
tion sites as well as pooled analysis were approved by the local
ethics committees and carried out in accordance with the
Declaration of Helsinki. All participants gave informed written
consent before entering the study.

Regions of Interest

Five spherical regions of interest (ROI, 5mm radius) were chosen
for the RSFC analysis, centered around Montreal Neurological
Institute (MNI x y z) coordinates based on the previous literature.
The goal of the present study was to examine ROIs consistently
associated with motor initiation with respect to Parkinson’s dis-
ease. Therefore, coordinates in the pMFC (0 14 48) and bilateral
centromedial putamen (left: −28 −2 2; right: 24 2 −2) were derived
from local maxima of an activation likelihood estimation meta-
analysis examining 103 neuroimaging experiments on volitional
hand movements (Hoffstaedter et al. 2014). These seeds were moti-
vated by the observation that movement initiation tasks (i.e., tasks
with a free choice of movement initiation) are associated with
increased activation in the aforementioned cortico-striatal network
formed by the putamen and pMFC. Importantly, the pMFC was not
only associated with self-selected timing, but also choice of move-
ment (e.g., between different movement effectors), indicating the
region’s central role in different aspects of movement initiation
(Hoffstaedter et al. 2013). For comparison, the 4th and 5th ROIs in
bilateral primary motor hand areas (M1, left: −34 −26 56; right: 34
−24 52; cf. Roski et al. 2014) were included as control seeds, since

M1 is known to be one of the least affected areas by neurodegener-
ative processes in Parkinson’s disease (Braak et al. 2004).

Seed-Based Resting-State fMRI Analysis

BOLD signal time series were measured using Siemens
MAGNETOM TIM Trio 3 Tesla whole body scanners (Erlangen,
Germany) at both study sites. For each participant, whole-brain
volumes of gradient-echo EPI pulse sequences were acquired
(details for each acquisition site are provided in Table 1).
Preprocessing was conducted using the SPM8 software package
(http://www.fil.ion.ucl.ac.uk/spm). The first 4 scans served as
“dummy” images to allow for magnetic field saturation and
were discarded prior to further preprocessing. The remaining
EPI images were first corrected for head movement by affine
registration using a 2-pass procedure, first creating a mean EPI
and then realigning all scans to it. The mean EPI image of each
participant was then spatially normalized to the MNI non-
linear average FSL template using the “unified segmentation”
approach (Ashburner and Friston 2005). The ensuing deforma-
tion was then applied to the individual EPI volumes. Then,
images were smoothed by a 5-mm FWHM Gaussian kernel to
account for residual anatomical variation and to meet the
requirements of normal distribution of the residuals for
Gaussian random field inference to correct for multiple com-
parisons. Movement effects in the scanner were corrected via
regression of 24 movement parameters including the 6 motion
parameters derived from the image realignment and their first
derivative from the realignment as first and second order term
(Power et al. 2012) before band pass filtering between 0.01 and
0.08 Hz (Cordes et al. 2001).

In order to compare the configuration of the predefined net-
work between patients and healthy controls, pairwise RSFC was
estimated between all seeds. Therefore, partial temporal correla-
tions were computed using the FSLNets toolbox (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLNets). For each pairwise connection,

Table 1 Sample characteristics

HHU Düsseldorf RWTH Aachen Overall sample

Parkinson patients Healthy controls Parkinson patients Healthy controls Parkinson patients Healthy
controls

Age [years] 59.8 ± 9.2 57.1 ± 10.0 63.3 ± 10.9 62.7 ± 5.6 61.6 ± 10.2 59.6 ± 8.8
P (t-test) 0.262 0.749 0.216

Gender (m/f)a (18/11) (22/18) (19/12) (20/12) (37/23) (42/30)
P (χ2-test) 0.557 0.921 0.697

Movement (FDb) 0.41 ± 0.18 0.36 ± 0.16 0.36 ± 0.17 0.34 ± 0.15 0.39 ± 0.17 0.35 ± 0.16
P (t-test) 0.226 0.597 0.242
UPDRS III (ON) 14.7 ± 7.5 24.3 ± 15.5 20.0 ± 13.2

L-Dopa equivalent dose 1113.4 ± 400.1 395.9 ± 402.2 725.9 ± 532.9
Disease Duration [years] 9.3 ± 5.9 3.9 ± 3.5 6.6 ± 5.5
Laterality indexc −0.03 ± 0.43 0.23 ± 0.50 0.13 ± 0.47
MMSE n.a. 28.6 ± 1.2
MDRS 136.8 ± 5.8 n.a.
Measurement Parametersd 3 T / 300 / 2.2 / 30 / 90° / 3.1 × 3.1 ×

3.1mm3

3 T / 165 / 2.2 / 30 / 90° / 3.1 × 3.1 ×
3.1mm3

HHU, Heinrich Heine University; RWTH, Rheinisch–Westfälische Technische Hochschule.

Mini-Mental State Examination; MDRS, Mattis Dementia Rating Scale.
am = male, f = female.
bFD: Framewise displacement (within scanner movement).
cLaterality index: Right minus left UPDRS III scores, divided by the sum of right and left scores (Tomer et al. 1993).
dMeasurement parameters: Magnetic field strength/volumes/repetition time [s]/echo time [ms]/flip angle/voxel size.
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Fisher’s z-transformed FC values were submitted to one-
sample t-tests. The resulting t values, reflecting connection
strength as well as consistency across the sample, were
z-transformed (i.e., into units of the standard normal distri-
bution) and then fed into an agglomerative hierarchical
cluster analysis. Cluster analysis was based on Ward’s
method as implemented in Matlab. Although this method
does not reveal a finite parcellation (into a specific number
of clusters), it aims at the heuristic identification of func-
tionally interpretable subclusters within a given network.
Data from healthy controls and patients were analyzed sep-
arately to assess network configurations of each group.

After the between-seed RSFC analysis, whole-brain RSFC
was computed for each ROI in both patients and healthy con-
trols to account for connectivity alterations in extended
resting-state networks of each region. Accordingly, for each
subject, linear (Pearson) correlation coefficients were computed
between each seed’s time series and those of all other gray
matter voxels in the brain. Voxel-wise correlation coefficients
were then transformed into Fisher’s z-scores, and tested for
consistency across subjects by a second-level analysis of vari-
ance (ANOVA). Therefore each seed’s RSFC was entered in a gen-
eral linear model (GLM), as implemented in SPM8. Additionally, to
assess akinesia-related RSFC changes across the whole-brain for
each ROI, UPDRS item 31 was introduced as a covariate for each
seed’s RSFC in the GLM. Additionally, measurement site (Aachen,
Düsseldorf) was added as a covariate of no interest for all analy-
ses to account for site-related effects.

To identify Parkinson patients’ connectivity changes in the
context of physiological resting-state networks, we first exam-
ined RSFC of the healthy participants. Based on healthy sub-
jects’ RSFC, conjunction analyses were used to delineate 3
networks specifically connected to bilateral putamen, bilateral
M1, and pMFC.

That is, specific RSFC with the pMFC was obtained by con-
trasting RSFC of this region to the RSFC of all remaining seeds:
(RSFCpMFC) ∧ (RSFCpMFC – RSFCbilateral putamen) ∧ (RSFCpMFC –

RSFCbilateral M1). Resting-state networks specifically connected
with bilateral putamen and M1 were computed in analogous
fashion. Similar analyses have been employed in previous
studies, aiming at disentangling specific connectivity maps
related to different ROIs (i.e., Cieslik et al. 2012; Eickhoff et al.
2016; Genon et al. 2017). In sum, the ensuing networks from
these conjunctions comprise those regions that were specifi-
cally stronger connected with a particular seed, as opposed to
the other ones. It is important to note, however, that each seed
may feature RSFC and possibly Parkinson-related changes in all
3 networks, which was tested in the following analysis.

In the next step, the 3 maps derived from healthy con-
trols were used to assign connectivity alterations related to
Parkinson’s disease. Altered connectivity in patients tested by
comparing RSFC of each seed between patients and controls. For
example, patients’ connectivity decreases of the putamen were
computed using the conjunction: (healthy RSFCbilateral putamen) ∧
(healthy RSFCbilateral putamen – patients’ RSFCbilateral putamen). In
turn, increased RSFC with the putamen in Parkinson’s disease was
tested in the conjunction: (healthy RSFCbilateral putamen) ∧ (patients’
RSFCbilateral putamen – healthy RSFCbilateral putamen). These conjunc-
tions were likewise applied to contrast patients’ changes in bilat-
eral M1 and pMFC. Besides testing for altered connectivity in
Parkinson’s disease, we probed co-variation between akinesia-
scores and every ROI’s RSFC. All of the ensuing disease- and
symptom-related connectivity maps were then masked by each
of the 3 networks, previously derived from healthy controls. This

allowed for dissociating pathological connectivity patterns in
putamen-, M1-, or pMFC-specific resting-state networks.

Finally, conjunction analyses were used to test whether
altered RSFC patterns of the different seeds were localized in con-
verging brain regions. For example, overlap of RSFC decrease
between putamen and pMFC was tested by the conjunction:
(healthy RSFCbilateral putamen) ∧ (patients’ RSFCbilateral putamen –

healthy RSFCbilateral putamen) ∧ (healthy RSFCpMFC) ∧ (patients’
RSFCpMFC – healthy RSFCpMFC). All results were whole-brain,
cluster-level (P < 0.05) corrected for multiple comparisons.

Principal Component Analyses on the UPDRS III

RSFC was further related to the remaining UPDRS III (motor)
items, including items which are used to assess bradykinesia,
rigor and tremor. In this alternative approach, we aimed to
reduce dimensionality of UPDRS III items using a principal
component analysis as implemented in Matlab. Patients’ scores
of the ensuing components explaining most variance across
UPDRS items were then related to each seed’s RSFC, analogous
to the connectivity analysis on akinesia, described in the previ-
ous paragraph. Methods and results of these analyses are in
detail provided in the online Supplementary Material.

Anatomical Localization

The SPM Anatomy Toolbox v2.0 (Eickhoff et al. 2005, 2007) was
used to allow for investigator-independent anatomical localiza-
tion of the results. By means of maximum probability maps,
activation clusters were automatically assigned to the most
likely cytoarchitectonic area.

Results
Hierarchical Clustering Based on RSFC Between Seeds

Cross-correlations between all seeds’ time series (bilateral
putamen, bilateral M1, pMFC) enabled us to group seeds based
on their connectivity strengths between each other. This hier-
archical clustering analysis was separately performed for
healthy controls and patients (Fig. 1). In both groups, strongest
connectivity was found for interhemispheric interactions
between anatomically homolog regions, leading to their consis-
tent clustering as pairs. Moreover, in the healthy control group,
bilateral putamen and pMFC were clustered in one group, sepa-
rated from bilateral M1. In contrast, Parkinson patients featured
stronger connectivity between pMFC and M1, clearly separated
from bilateral putamen. Hence, we observed a distinct hierar-
chical clustering between regions of movement initiation and
execution in patients compared to controls.

RSFC Networks in Healthy Participants

For each ROI, brain regions showing strongest connectivity esti-
mates compared to all other seeds were isolated in healthy
controls. For example, the analysis of specific RSFC of bilateral
putamen only yielded those brain regions, that were (1) func-
tionally connected to bilateral putamen, and (2) stronger con-
nected to bilateral putamen than to bilateral M1 and pMFC
seeds. This putamen-specific network comprised bilateral basal
ganglia, midbrain, thalamus, left amygdala, right posterior
insula, and bilateral cerebellum (bilateral lobules IV and V;
Diedrichsen et al. 2009) (Fig. 2).

Equivalent contrast analyses identified specific resting-state
networks for bilateral M1 (regions stronger connected with
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Figure 1. Hierarchical clustering of ROIs. Hierarchical clustering of ROIs based on their RSFC in healthy participants (top) and Parkinson patients (bottom). Using

FSLNets, seeds with relatively strong RSFC were grouped first as illustrated by lower branches in the cluster trees. The qualitative comparison of both hierarchies indi-

cates a shift of pMFC connectivity from homolog putamen to homolog M1 ROIs in Parkinson’s disease.

Figure 2. Resting-state functional connectivity networks in healthy controls. Differentiation of 3 resting-state networks in healthy participants: these yielded stronger

connectivity to bilateral putamen (yellow), bilateral M1 (red), and pMFC (blue), as contrasted to the respective other seeds. All results were cluster-level corrected at

P < 0.05. Images were rendered into a T1-weighted MNI single subject template using mango (http://ric.uthscsa.edu/mango/).
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bilateral M1 than bilateral putamen and pMFC seeds) and pMFC
(regions stronger connected with pMFC than with bilateral
putamen and M1 seeds). The M1-specific network comprised
the medial and lateral primary motor cortex, the posterior por-
tion of the supplementary motor area (SMA; Geyer 2004), the
dorsal premotor cortex (dPMC), primary somatosensory cortex
(S1), superior parietal lobule (SPL), the medial bank of the intra-
parietal sulcus (IPS), extrastriate visual cortex, and right parie-
tal operculum.

Finally, the resting-state network specifically connected
with pMFC contained bilateral inferior frontal gyri (IFG; areas 44
and 45), perigenual anterior cingulate cortex (pACC), and poste-
rior cingulate cortex (PCC; Vogt et al. 2004; Palomero-Gallagher
et al. 2009), pMFC, dPMC, dorsolateral prefrontal cortex (DLPFC),
anterior insulae, inferior parietal lobules (IPL), the lateral bank
of the IPS, posterior areas of the SPL (7 P, 5 Ci; Scheperjans et al.
2008), precuneus, inferior temporal gyri, right orbitofrontal cor-
tex, and right cerebellum (lobule VIIa crus I).

In summary, 3 networks specifically connected to putamen,
M1 and pMFC were dissected by contrasting seeds’ RSFC (Fig. 2).
Importantly, these networks were solely derived from healthy
participants’ data. Thus, they provided representative func-
tional connectivity maps to test for pathological connectivity
changes.

RSFC Changes in Parkinson’s Disease

Connectivity changes in Parkinson’s disease were analyzed
within the 3 seed-specific networks. There were only connec-
tivity decreases in patients compared to healthy controls
(Fig. 3), whereas no significant increases were found. The puta-
men seeds showed RSFC decreases in all 3 examined networks,
that is the putamen-, pMFC-, and M1-specific network. First, in
the putamen-specific network, we identified decreased putam-
inal RSFC with bilateral thalamus, putamen, and pallidum.
Second, in the M1-specific network, putamen exhibited reduced

connectivity with bilateral SMA, S1, M1, SPL, IPS, extrastriate
visual cortex, and right dPMC. Third, in the pMFC-specific net-
work, putamen showed reduced RSFC with bilateral IPS, pMFC,
left DLPFC, and left IPL.

Likewise, the pMFC was tested for RSFC abnormalities in
Parkinson’s disease. Within the M1-specific network, the pMFC
seed showed decreased connectivity to bilateral S1 and right
SPL. Additionally, in the pMFC-specific network, the pMFC seed
exhibited decreased RSFC with bilateral anterior insulae and
left DLPFC.

Furthermore, pathological connectivity changes were tested
in M1 as a control region. RSFC decreases with bilateral M1
were mainly found in the M1-specific network including SMA,
dPMC, M1, S1, SPL, IPS, and extrastriate visual cortex. In addi-
tion, an M1 connectivity decrease was observed in the pre-
SMA. As revealed by the RSFC analysis in healthy controls, this
region is part of the pMFC-specific network, which includes
medial frontal regions rostral to the SMA. In contrast to the M1-
and pMFC-specific networks, M1 did not show significantly
altered connectivity in the putamen-specific network.

Finally, the aforementioned RSFC alterations in Parkinson’s
disease were tested for overlapping effects across seeds (Fig. 4).
Convergent connectivity reductions were especially found for
putamen and M1. Both regions featured reduced connectivity
with the SMA, dPMC, and M1 in the right hemisphere as well as
bilateral S1, SPL, IPS, and extrastriate visual cortex. Putamen
seeds furthermore showed overlapping RSFC changes with the
pMFC seed, namely in bilateral S1 and right SPL. No significant
overlap was found when conjoining patients’ RSFC reductions
of M1 and the pMFC.

Akinesia-Related RSFC Changes in Parkinson’s Disease

To analyze the relationship of akinesia and RSFC alterations in
Parkinson’s disease, akinesia scores were included in the GLM
for each seed. Thus, RSFC with every seed was tested for

Figure 3. Resting-state functional connectivity decrease in Parkinson’s disease. RSFC decrease in Parkinson patients assigned to the 3 resting-state networks as

defined in the healthy group. These networks were rendered in yellow (putamen-specific network), red (M1-specific network), and blue (pMFC-specific network). Left

column: RSFC with bilateral putamen was reduced in regions from all 3 networks. Middle column: RSFC with bilateral M1 declined most selectively in the M1-related

network. Right column: Focal reductions of RSFC with the pMFC seed were found in pMFC- and M1-related networks. All results were cluster-level corrected at P < 0.05.
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correlations with akinesia. While no association between akine-
sia and RSFC could be found within the putamen-, or M1-specific
networks, connectivity within the pMFC-specific network was
related to akinesia in Parkinson’s disease. That is, RSFC between
pMFC and right IPL (PF, PFm, Caspers et al. 2006) showed a nega-
tive correlation with akinesia scores. That is, higher impairment
was correlated with a decline of RSFC between the pMFC seed
and right IPL (Fig. 5).

Discussion
The pMFC and putamen are considered key regions for the
spontaneous initiation of movements, which is critically
impaired in Parkinson’s disease. The present study elucidated
abnormal RSFC changes of these regions, and 2 control seeds in
bilateral M1, in a cohort of 60 Parkinson patients and 72 healthy
controls. First, the examination of RSFC between the 5 seeds
indicated disturbed connectivity between putamen and pMFC
seeds in patients. Alterations of RSFC were further examined in
3 seed-specific resting-state networks, reflecting preferential
connections with a given seed (relative to the others) in the

healthy control group (Fig. 2). In Parkinson’s disease, all seeds
showed reduced RSFC within their respective network. For
example, M1 showed a RSFC decrease mainly in the M1-specific
sensorimotor network, pMFC lost RSFC with both anterior insu-
lae and left DLPFC (pMFC-specific network), and bilateral puta-
men showed marked RSFC loss within the putamen-specific
subcortical network (Fig. 3). Finally, decreasing RSFC between
pMFC and right IPL correlated with higher scores of akinesia in
Parkinson’s disease.

Network Hierarchy Amongst Seeds

Based on inter seed correlations, hierarchical clustering analy-
ses yielded different network hierarchies in healthy controls as
compared to Parkinson patients (Fig. 1). In controls, pMFC and
putamen were clustered in one group, separate from bilateral
M1 seeds. This network configuration is consistent with the
seeds’ different functional implications: While putamen and
pMFC have been associated with the initiation of movements
(Goldberg 1985; Deiber et al. 1999; Jenkins et al. 2000;
Cunnington et al. 2002; Hoffstaedter et al. 2013, 2014), the pri-
mary motor cortex is mainly related to motor execution (Chen
et al. 1991; Tanji and Mushiake 1996; Roski et al. 2014). The
strong functional connectivity between pMFC and centromedial
putamen seeds, as observed during motor initiation tasks, fur-
thermore parallels their structural interconnectivity, indicated
by probabilistic tractography in diffusion weighted imaging
data (Draganski et al. 2008; Helmich et al. 2010; Tziortzi et al.
2014; Neggers et al. 2015). Interestingly, RSFC across seeds
yielded a different network hierarchy in Parkinson’s disease.
That is, patients’ pMFC was less connected with putamen than
M1. This separation of cortical and subcortical seeds in patients
(Fig. 1) indicates dysfunctional cortico-striatal connectivity,
which has been frequently observed in functional connectivity
studies (Helmich et al. 2010; Kwak et al. 2010; Luo et al. 2014;
Michely et al. 2015; Müller-Oehring et al. 2015). In relation to
the decreased cortico-striatal connectivity, the hierarchical
clustering suggested stronger connectivity between cortical
seeds (M1, pMFC) in patients. In line with this observation,
neuropathological changes in Parkinson’s disease are known to
start subcortically, whereas cortical regions are affected at later
stages of the disease (Braak et al. 2004). By quantitatively com-
paring RSFC between patients and HC, the following para-
graphs provide a detailed analysis of altered cortico-striatal
and cortico-cortical connectivity in Parkinson’s disease.

Subcortical and Cortico-Striatal Connectivity in
Parkinson’s Disease

In healthy subjects, a subcortical network was identified by its
specific RSFC to bilateral putamen, in contrast to M1 and pMFC
(Fig. 2). This putamen-specific network included bilateral cau-
date nuclei, pallidum, midbrain, thalamus and subthalamic
nuclei, which are known to be also structurally interconnected
(Kalil 1978; Albin et al. 1989; Nakano et al. 1990; Redgrave et al.
2010). Within this subcortical network, Parkinson patients
showed reduced RSFC of bilateral putamen with pallidum and
thalamus. Moreover, subcortical connectivity reductions were
related to symptoms of bradykinesia as shown in detail in the
online Supplementary Material of this article (Supplementary
Fig. 4S). This is in line with previous studies reporting
decreased RSFC between subcortical nodes, for example
between putamen and thalamus (Hacker et al. 2012; Wu et al.
2012). Notably, these regions are predominantly involved in

Figure 4. Overlap in resting-state connectivity decrease across seeds.

Overlapping patterns of RSFC decrease were observed between M1 and puta-

men (left) as well as M1 and pMFC (right). All results were cluster-level cor-

rected at P < 0.05.

Figure 5. Connectivity decrease related to patients’ global spontaneity of move-

ments. Decreased RSFC between the pMFC seed and the inferior parietal lobule

(IPL, areas PF/PFm) correlated with impaired spontaneity of movement initia-

tion in Parkinson’s disease. Resting-state networks from healthy controls were

rendered in yellow (putamen-related regions), red (M1-related regions), and

blue (pMFC-related regions). All results were cluster-level corrected at P < 0.05.
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cortico-striatal circuits, which play a crucial role in pathophysi-
ological models of Parkinson’s disease (Alexander et al. 1986;
Redgrave et al. 2010). Accordingly, dopaminergic depletion in
the putamen arises from the degeneration of dopaminergic
neurons in the substantia nigra pars compacta (Hornykiewicz
and Kish 1987; Morrish et al. 1995; Forno 1996). This, in turn,
affects intrinsic basal-ganglia processing but importantly also
its interaction with cortical regions (DeLong 1983; Jahanshahi
1998; Wichmann and DeLong 2002; Grafton 2004; Wichmann
et al. 2011). Well in line, the present results not only show
reduced putamen RSFC with subcortical nodes, but also exten-
sive decoupling across cortical regions that are functionally
stronger connected with M1 or pMFC (Fig. 3), including the pri-
mary and secondary motor- and somatosensory cortex, SMA,
pre-SMA, right dPMC, extrastriate visual cortex, and left DLPFC.
The former regions participate in cortico-striatal loops, whose
dysfunction may explain sensorimotor and habitual dysfunc-
tion in Parkinson’s disease (Abbruzzese and Berardelli 2003;
Graybiel 2008; Redgrave et al. 2010). Correspondingly, previous
RSFC studies in Parkinson patients have reported cortico-
striatal decoupling mainly with sensorimotor regions, espe-
cially when selecting seeds in the posterior putamen (Helmich
et al. 2010; Luo et al. 2014). The centromedial putamen exam-
ined in the present study is located between posterior and
anterior aspects of the putamen, as it was defined by its
involvement in voluntary motor initiation (Hoffstaedter et al.
2014). As opposed to posterior putamen seeds, central regions
of the putamen feature stronger structural connections to fron-
tal premotor regions and more rostral putamen seeds have
been shown to connect with prefrontal areas in humans
(Lehericy, Ducros, Krainik, et al. 2004; Lehericy, Ducros, Van de
Moortele, et al. 2004; Draganski et al. 2008; Tziortzi et al. 2014).
In agreement with the subregional organization of the puta-
men, the presently used seeds in the putamen show RSFC
reductions with bilateral pre-SMA, dPMC, and left DLPFC. This
network has been associated with cognitive motor functions
such as action selection (Rowe et al. 2010) and planning
(Nachev et al. 2005; Tanji and Hoshi 2008). Thereby, the
observed dysconnectivity between central parts of the putamen
and prefrontal systems for motor-cognition complements pre-
vious analyses on posterior versus anterior putamen in
Parkinson’s disease (Helmich et al. 2010; Luo et al. 2014). In
sum, the centromedial putamen shows a widespread decou-
pling from subcortical and cortical regions involved in both
movement initiation and execution in patients. In sum, the
present findings outline dysfunctional circuits between aspects
of the putamen usually involved in motor initiation, and corti-
cal networks, associated with sensory, motor, and cognitive
processing.

pMFC-Related Connectivity in Parkinson’s Disease

In healthy participants, the pMFC seed featured strongest RSFC
with the DLPFC, IFG, anterior insulae, pre-SMA, anterior mid-
cingulate cortex, IPS, and IPL (Fig. 2). These regions have been
consistently related to cognitive, i.e., higher motor control
(Jenkins et al. 2000; Boecker et al. 2008; Brass and Haggard 2008;
François-Brosseau et al. 2009; Rowe and Siebner 2012;
Hoffstaedter et al. 2013) as well as to non-motor tasks, and
motivational processing (Niendam et al. 2012; Rottschy et al.
2012, Chong et al. 2017). Within this network, the pMFC has
been suggested to play a key role in movement initiation
(Deiber et al. 1999; Cunnington et al. 2002; Hoffstaedter et al.
2013). Correspondingly, subdural stimulation of this region has

been reported to trigger motor responses, often with the experi-
ence of an “urge” to move (Fried et al. 1991). Moreover, clinical
case reports have described akinetic symptoms after pMFC
lesions (Dick et al. 1986; Meador et al. 1986; Haussermann et al.
2001). Importantly, functional neuroimaging studies on volun-
tary movements performed by Parkinson patients have identi-
fied abnormal activation not solely in the pMFC, but also areas
like the DLPFC, insulae, and IPL (Playford et al. 1992; Jahanshahi
et al. 1995; Samuel et al. 1997; Kikuchi et al. 2001). Yet, it is
unclear whether—and how—pathological interactions between
the pMFC and these regions relate to akinesia. Interestingly,
although the present findings show a relatively preserved
pMFC connectivity, focal reductions were found within the
pMFC-specific network. In this network, the pMFC showed focal
reductions of RSFC with bilateral anterior insulae as well as the
left DLPFC. This suggests dysfunctional processing in a core
network for multiple cognitive demands, including working
memory, attention, and inhibition (Alvarez and Emory 2006;
Duncan 2010; Müller et al. 2015). Atrophy within this network,
specifically in the pMFC and anterior insulae, has been com-
monly observed across several neuropsychiatric disorders
(Goodkind et al. 2015). With respect to Parkinson’s disease,
these regions are known to be amongst the first neocortical
regions showing disease-specific neurodegeneration (Braak
et al. 1996, 2004, 2006), and neurotransmitter dysfunction
(Pavese et al. 2010; Christopher et al. 2014, 2015). Recently, PET
studies have increasingly linked reduced dopamine receptor
binding in anterior insulae with Parkinson patients’ cognitive
symptoms (Christopher et al. 2014, 2015). Moreover, reduced
cerebral blood flow in the right insula has been associated with
higher UPDRS scores (Hsu et al. 2007).

Besides motor initiation, pMFC, DLPFC, and insula have also
been linked to motivational processing, motor vigor and the
integration of effort costs and rewards during decision making
(Walton et al. 2003; Schweimer and Hauber 2006; Croxson et al.
2009; Chong et al. 2017). Both motivational and motor deficits
have been shown to respond to dopaminergic modulation in
PD, indicating an overlapping neural system underlying apathy
and akinesia (Chong et al. 2015; Le Bouc et al. 2016; Le Heron
et al. 2018). Although the present study did not assess patients’
motivational deficits, it suggests decreased connectivity in sys-
tems associated with higher-level motivational processing.

Further, DLPFC dysfunction in Parkinson patients has been
associated with deficits in attention demanding tasks (Brown
et al. 1998; Dirnberger et al. 2005; Zgaljardic et al. 2006; Trujillo
et al. 2015), as well as compromised cognitive motor control
(Rowe et al. 2002). Rowe et al. (2002) observed that during action
monitoring healthy individuals’ effective connectivity between
DLPFC and pMFC increases, whereas patients failed to show
this attention-modulated increase. Dopaminergic medication,
however, led to an increase of DLPFC-pMFC connectivity, which
correlated with the improvement of motor performance
(Michely et al. 2015). Based on resting-state fMRI data, the pres-
ent study suggests a decoupling between DLPFC and pMFC in
Parkinson patients, also in the absence of a task. In sum, the
pMFC shows reduced RSFC with regions that are commonly
involved in both higher cognitive, motivational and basic motor
functions and their decline.

Interestingly, reduction of pMFC connectivity with the right
IPL (areas PF, PFm, Fig. 5) was related to the degree of akinesia
in the patient group. Evidence from functional neuroimaging
studies in humans (Corbetta et al. 2008; Seghier 2013) and sin-
gle cell recordings in monkeys (Fogassi 2005) has consistently
highlighted the IPL’s role in integrating multimodal perceptual
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information and higher-order conceptual representations
(Caspers et al. 2012). Further, fMRI (Farrer et al. 2008) and lesion
studies (Sirigu et al. 2004) in humans suggest that the IPL
strongly contributes to the awareness of self-generated actions.
While healthy individuals are able to report their intention to
move about 250ms before movement onset, patients with IPL
lesions were impaired in this ability (Sirigu et al. 2004). This
suggests a key role of the IPL in the subjective experience of
voluntary movement initiation before its onset. This suggestion
is supported by electrophysiological work by Desmurget et al.
(2009), who showed that direct electrical stimulation of the IPL
triggered the conscious sense of “wanting to move” (Desmurget
et al. 2009). However, in striking contrast to pMFC stimulation
(Fried et al. 1991), IPL stimulation did not result in muscular
responses, even at stronger stimulation intensities. A recent
review of electrophysiological, clinical, and behavioral studies
therefore indicated that the IPL may process earlier stages of
intentional movement generation, whereas the pMFC regulates
responses shortly before their execution (Desmurget and Sirigu
2012). Interestingly, akinesia in Parkinson’s disease has been
suggested to arise from an impaired conversion from inten-
tional motor plans into “overt actions” (Jahanshahi 1998). The
present results suggest that this impairment is associated with
a reduction of RSFC between right IPL and pMFC, thereby
highlighting the importance of functional interaction between
these regions with respect to the manifestation of akinesia in
Parkinson’s disease.

M1-Related Connectivity in Parkinson’s Disease

The M1-specific resting-state network was delineated by con-
trasting M1 seeds’ RSFC to all other seeds’ connectivity in the
healthy control group. The resulting network comprised the
primary and secondary sensorimotor cortex, SMA, and dPMC,
IPS, SPL, as well as extrastriate visual areas (Fig. 2). Especially
the former regions are well known as a structurally intercon-
nected network (Cavada and Goldman-Rakic 1989; Krubitzer
and Kaas 1990; Dum and Strick 2005) engaged in sensorimotor
integration (Johnson et al. 1993; Caminiti et al. 1996; Corbetta
et al. 2000; Caspers et al. 2012) and motor execution (Kurata
and Tanji 1986; He et al. 1993; Dum and Strick 1996; Grèzes and
Decety 2001). Strikingly, M1 connectivity with all of these
regions was significantly reduced in Parkinson patients com-
pared to controls (Fig. 3). In contrast, patients’ M1 connectivity
with the subcortical, putamen-specific network was not signifi-
cantly different. M1 also featured normal connectivity with
most regions of the frontoparietal, pMFC-specific network,
except for the pre-SMA (Fig. 3). This finding agrees with previ-
ous studies (Wu, Long, et al. 2011; Michely et al. 2015), which
did not find significantly altered M1 connectivity with prefron-
tal regions in Parkinson’s disease, compared with healthy indi-
viduals (but see Wu, Wang, et al. 2011). Hence, the present
results suggest a selective decline of M1 connectivity with a
broader sensorimotor network, which normally features strong
RSFC with M1 in the healthy brain (Fig. 2). This finding might be
linked to previous behavioral (Abbruzzese and Berardelli 2003)
and electrophysiological (Lefaucheur 2005) evidence for dys-
functional sensorimotor processing in Parkinson’s disease. For
example, hand movements (Rickards and Cody 1997; Khudados
et al. 1999) and transcranial magnetic stimulation (TMS)-
induced motor responses (Sailer et al. 2003; Wagle Shukla et al.
2013) were less amenable to somatosensory input in Parkinson
patients. Such indicators for deficient sensorimotor processing
are in line with the marked RSFC decrease between M1 and the

adjacent sensorimotor cortex. Yet, disturbed RSFC in these
regions is in striking contrast to the histopathological distribu-
tion of Parkinson’s disease-related Lewy-body accumulation,
which are rarely observed in the primary motor cortex even
during late stages of Parkinson’s disease (Braak et al. 2003,
2004). It is therefore unlikely that the decreased connectivity
with M1 arises from this region’s neurodegeneration per se.
Rather, functional connectivity with M1 may be affected by dis-
tant regions that degenerate earlier in the course of Parkinson’s
disease, such as the putamen. Indeed, conjunction analyses
revealed that M1 and putamen share dysconnectivity in almost
all regions of the M1-specific network, including the right SMA
and dPMC as well as bilateral primary and secondary sensori-
motor cortex, IPS, SPL, and extrastriate visual areas (Fig. 4).
Assuming that these regions are primarily affected by an insuf-
ficient striatal facilitation in Parkinson’s disease (DeLong 1983;
Jahanshahi 1998; Wichmann and DeLong 2002; Grafton 2004;
Wichmann et al. 2011), their decoupling from M1 might develop
as a secondary effect. In sum, the present study demonstrates
a selective RSFC loss between M1 and a functionally related
sensorimotor network, possibly reflecting an extension of net-
work pathology from cortico-striatal to cortico-cortical connec-
tivity in Parkinson’s disease.

Limitations

A limitation of the present study is that all patients were
assessed under regular dopaminergic medication. Thus, drug
effects cannot be distinguished from neuropathological altera-
tions in patients’ functional connectivity. Unfortunately, a
differentiation of the latter underlies practical challenges espe-
cially in later disease stages, since dopamine replacement ther-
apies are known to induce long term effects, persisting under
dopamine withdrawal (Lesser et al. 1979; Chase 1998). While
some of the effects observed in the present study, such as the
reduction of cortico-striatal RSFC, has also been observed in
drug-naïve patients (Luo et al. 2014), longitudinal monitoring of
RSFC before and after dopaminergic treatment may further dis-
entangle effects induced by drugs and degeneration, respec-
tively. Moreover, the clinical assessment of akinesia was
limited to the UPDRS. Given the results of the present study, a
more detailed examination of akinetic symptoms appears
promising for future studies, allowing a more detailed analysis
of clinical deficits in relation to functional connectivity in
Parkinson’s disease.

Conclusion
The present study investigated altered connectivity in parkin-
son’s disease, analyzing seed-based RSFC of bilateral putamen
and pMFC, functionally defined by motor initiation tasks, as
well as M1, defined by motor execution. While, hierarchical
clustering based on inter seed connectivity indicated a decou-
pling between regions involved in motor initiation (putamen
and pMFC), an extended RSFC analysis in seed-specific net-
works revealed Parkinson-related connectivity alterations on
the subcortical and cortical level. In line with pathophysiologi-
cal models of Parkinson’s disease, putamen showed reduced
connectivity with basal ganglia, sensorimotor areas, but also
regions involved in higher-level cognitive functions such as the
left DLPFC. In contrast, altered connectivity with M1 was
restricted to a cortical sensorymotor network. Of note, pMFC
showed reduced connectivity in a core network for higher cog-
nitive demands and its decreased connectivity with the right
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IPL was related to patients’ impairment of spontaneous move-
ment generation. We thereby provide evidence that cortical
networks associated with cognitive motor control are involved
in the manifestation of akinesia in Parkinson’s disease.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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