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Abstract 

Efficient de no v o motif disco v ery from the results of wide-genome mapping of transcription factor binding sites (ChIP-seq) is dependent on the 
c hoice of bac k ground nucleotide sequences. T he f oreground sequences (ChIP-seq peaks) represent not only specific motifs of target transcription 
factors, but also the motifs overrepresented throughout the genome, such as simple sequence repeats. We performed a massive comparison 
of the ‘synthetic’ and ‘genomic’ approaches to generate background sequences for de no v o motif disco v ery. T he ‘synthetic’ approach shuffled 
nucleotides in peaks, while in the ‘genomic’ approach selected sequences from the reference genome randomly or only from gene promoters 
according to the fraction of A / T nucleotides in each sequence. We compiled the benchmark collections of ChIP-seq datasets for mouse, human 
and Arabidopsis, and performed de novo motif discovery. We showed that the genomic approach has both more robust detection of the known 
motifs of target transcription factors and more stringent e x clusion of the simple sequence repeats as possible non-specific motifs. The advantage 
of the genomic approach o v er the synthetic approach was greater in plants compared to mammals. We de v eloped the AntiNoise web service 
( https://deno v osea.icgbio.ru/antinoise/) that implements a genomic approach to extract genomic background sequences for twelve eukaryotic 
genomes. 
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Introduction 

Transcription factors (TFs) are proteins that control gene tran-
scription by sequence-specific DNA binding. Chromatin im-
munoprecipitation (ChIP)-based high throughput technique
ChIP-seq allows genome-scale mapping of TF binding sites
(TFBS) ( 1 ,2 ). Peak calling is the primary processing of raw
ChIP-seq data. It produces thousands of genomic loci or peaks
enriched by protein binding ( 3 ,4 ). Each peak is usually at least
several hundred base pairs long; it usually has a clear point of
a number of maximum number of reads (‘summit’), presum-
ably correlating with positioning of motifs of target TFs ( 5 ,6 ).
The term target TF refers to the TF studied in the ChIP-seq ex-
periment. The most important task of secondary processing is
to detect in the peaks specific motifs that are responsible for
biological functions of the target TF. A motif represents the
short, recurring pattern that is thought to have a biological
function of sequence-specific binding sites for TF ( 7 ,6 ). Con-
ventionally, a motif varies in length from 6 to 20 bp ( 8–10 ).
The motif enrichment analysis, and above all, de novo motif
discovery, is the required step to map exact positions of poten-
tial TFBS in peaks ( 3 ,11 ). An aim of motif discovery consists
in exact definition of all parameters of a motif model. 

Over the last few years, thousands of uniformly processed
ChIP-seq datasets for hundreds of target TFs for major model
species, including mammals, plants, insects, worms, and fungi
have been collected in several focused databases (Cistrome
DB, ReMap and GTRD, 12–14). Also, the massive applica-
tion of in vitro technologies such as PBM (Protein Binding
Microarray) and HT-SELEX (High-Throughput in vitro Se-
lection) detected specific sequence motifs for several hundreds
of TFs ( 15–18 ). As a result, the public databases JASPAR ( 19 ),
Cis-BP ( 20 ) and HOCOMOCO ( 10 ) provided TF binding mo-
tifs from large-scale studies both in vivo and in vitro . 

A series of studies proposed the hierarchical classification
of mammalian TFs based on their DNA-binding domains
(DBDs) (TFClass, 21–24). Thus, hundreds of TFs representing
nine specific superclasses and several dozens of the most abun-
dant classes were defined. Later, the TFClass framework has
been applied to other eukaryotic taxa in the JASPAR database
( 19 ), and the focused study has detailed the results for plants
(Plant-TFClass database ( 25 )). This advance promotes bioin-
formatics analysis in plants, as no new TF superclasses have
been identified at the highest level of the hierarchy in plants
compared to the nine currently known superclasses in mam-
mals ( 24 ). As previously expected ( 26 ), about half of all TF
classes are common to mammals and plants. 

However, enriched motifs identified by de novo motif search
do not necessarily imply TF binding specificity. Although
peaks are generally assumed to represent genomic loci with
motifs of some TFs, de novo motif discovery tools can iden-
tify not only such motifs but also motifs enriched across the
genome as a whole. These motifs are unlikely biologically rel-
evant, and hereinafter they are referred to as non-specific. The
most known examples of non-specific motifs are polyA tracts.
Such motifs refer to simple sequence repeats (SSRs), short tan-
dem repeats with a monomer length of 1–6 bp ( 27 ). All pro-
cessing steps of ChIP-seq data analysis, including peak calling
and de novo motif search require careful filtration of possible
false positive non-specific motifs ( 28 ). 

Long before the era of massive genome sequencing, the sizes
of DNA sequence sets were very small and motif search tools
took only one set of training sequences, putatively enriched
with specific TFBS motifs (the generative learning principle 
( 29 )). Later, the principle of discriminant learning was pro- 
posed in much more advanced tools designed to analyze whole 
genomes ( 30–32 ). This principle took two sets of sequences,
the first one still implied specific TFBS motifs (foreground 

set, peaks), while the second (background set) had to neu- 
tralize false enrichment of non-specific motifs from the fore- 
ground set. Therefore, the choice of background sequences is 
a key step required to estimate the significance of motifs en- 
richment in peaks ( 32 , 33 , 11 ). Formally, the specific and non- 
specific motifs are correct results of de novo motif discovery.
Occasionally, due to missing or inadequate selection of back- 
ground sequences, enrichment of non-specific motifs can com- 
pete with and even exceed enrichment of specific motifs. 

So far, many studies have promoted the concept of the syn- 
thetic sequences as efficient for evaluation of the performance 
of motif finding in ChIP-seq data. This concept implied the 
generation of synthetic sequences by Markov chains of vari- 
ous orders ( 33–36 ), or these sequences were taken as a com- 
plete dictionary of k -mers, i.e. equal frequencies of nucleotides 
were presumed ( 6 ). Markov modeling of expected word fre- 
quencies has been very popular since the k- th order Markov 
chain captures compositional biases represented at the level 
of all words of lengths from 1 to k + 1. However, for dif- 
ferent word lengths, spectra of word frequencies in different 
genomes showed behaviors, strikingly diverse from those ex- 
pected in Markov modeling ( 37 ). In accordance with this,
a benchmarking analysis of distinct de novo motif finding 
tools demonstrated that the synthetic approach gave too opti- 
mistic estimates of performances ( 32 ). This review suggested 

that background sets consisting of genomic sequences were 
needed to rigorously test hypotheses. This option implies ran- 
domly chosen genomic regions with basic properties of se- 
quences (such as length, nucleotide composition, location in 

the genome, etc.) that match those from the foreground se- 
quences ( 31 ,38–41 ). 

Although several tools allowed the generation or at least ap- 
plication of either genomic or synthetic background sequences 
( 38 , 40 , 42–45 ), none of them recommended one option as su- 
perior to the other. For example, in addition to the option of 
a custom user-defined set of background sequences, the popu- 
lar de novo motif search tools, Homer ( 38 ) and STREME ( 43 ),
offer the generation of genomic and synthetic background se- 
quences, respectively. Therefore, the discrepancy in the overall 
results of various popular de novo motif search tools is re- 
lated not only to the peculiarities of their algorithms, but also 

to different options for selecting background sequences. The 
application of the most reasonable approach for generating 
background sequences by each tool will certainly improve the 
quality of its results. 

To date, only one study ( 39 ) has attempted to compare 
systematically the synthetic and genomic approaches generat- 
ing background sequences for subsequent de novo motif dis- 
covery; a relatively small benchmark collection of 43 ChIP- 
seq datasets for several TFs was considered. Since last five 
years brought several specific databases focused on the uni- 
form processing of ChIP-seq data (Cistrome DB, ReMap and 

GTRD) ( 12–14 ), a larger study comparing the results of differ- 
ent background sequence generation approaches is now pos- 
sible. Nevertheless, no systematic large-scale studies compar- 
ing the sensitivity and specificity of applying genomic or syn- 
thetic background sequences for the de novo motif discovery 
in ChIP-seq data have been performed so far. 
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In the current study, we compiled the benchmark collec-
ions of ChIP-seq datasets for plants ( A. thaliana ) and mam-
als ( M. musculus and H. sapiens ). We applied these collec-

ions to compare the synthetic and genomic approaches gen-
rating the background sequences for de novo motif discov-
ry. The ‘synthetic’ approach destroys the significant enrich-
ent of any motifs through the shuffling of nucleotides pre-

erving only the nucleotide composition. The ’genomic’ ap-
roach selects sequences from the reference genome or certain
ts part randomly, using for each peak its A / T nucleotide con-
ent, thereby modeling the expected content of non-specific
otifs. We aimed to clarify in massive tests which of two ap-
roaches was more sensitive in detecting the known motifs of
arget TFs, and simultaneously was more specific in restriction
f non-specific motifs of SSRs as possible false positives. 
For each ChIP-seq dataset, we generated the background

ets with the genomic and synthetic approaches, and per-
ormed de novo motif discovery. We ranked the enriched mo-
ifs according to the significance of their enrichment. Then, we
arked enriched motifs that were significantly similar to the
nown motifs of target TFs, as well as those for the motifs
f SSRs. We concluded that the genomic approach, compared
o the synthetic one, showed more reliable detection of the
nown motifs of target TFs and more rigorous exclusion of
he SSR motifs as possible false positives. Finally, we devel-
ped the AntiNoise command-line software package and its
eb service. They applied the genomic approach to extract
ackground sequences for the foreground sets from ChIP-seq
ata of several popular in massive analysis eukaryotic species
rom fungi to plants and mammals. The AntiNoise command-
ine software package and its web service provide the oppor-
unity for fast extraction of the sets of background sequences
hat in subsequent de novo motif search, through careful es-
imation of motif enrichment, potentiates deeper insight into
et hidden mechanisms of gene transcription regulation. 

aterials and methods 

hIP-seq data preparation 

e extracted processed ChIP-seq data for A. thaliana , M. mus-
ulus and H. sapiens target TFs from GTRD ( 14 ). We selected
hIP-seq datasets that were preprocessed by the MACS2 peak
aller ( 46 ) and had input control experiments in the primary
rocessing pipeline. For A. thaliana , we extracted all available
atasets, and for M. musculus and H. sapiens , we randomly se-

ected only part of all available datasets to ensure large enough
ollection sizes (see Supplementary Tables S1 –S3 ). The func-
ionality of murine and human TFs were supported by their
urated status ( 47 ). The high homology between human and
urine TFs enabled this filtration ( 23 ). We used PlantRegMap

 48 ) and TAIR ( 49 ) to validate Arabidopsis TFs. For each
hIP-seq dataset, we defined 1000 top-scoring peaks as the

oreground set for subsequent analysis. Each background set
onsisted of 5000 sequences, i.e. five background sequences
or each foreground sequence were required. Next, we ap-
lied ‘genomic’ and ‘synthetic’ approaches to generate back-
round sets. The genomic approach chose sequences in the ref-
rence genome randomly: we allowed only the maximum de-
iation of 1% in the fraction of A / T nucleotides in each back-
round sequence compared to the corresponding foreground
ne. The scheme in Figure 1 represents the algorithm of the ge-
omic approach. Genomic sequence extraction requires either
an unmasked or masked reference genome. The extraction of
background sequences from the original unmasked version of
the whole genome is designated as ’No masking’. A masked
genome version can be prepared by the ‘Exclusion of black-
listed regions’ or ‘Retention of whitelisted regions’ options.
The blacklisted option excludes certain genomic loci from the
entire reference genome; the extraction procedure is applied
to the remaining loci. The whitelisted option allows the ex-
traction of background sequences only from certain specified
regions; all other loci are excluded from the analysis. The
synthetic approach performed the shuffling of nucleotides in
each peak, exactly preserving its nucleotide content. Both ap-
proaches kept the lengths of sequences in the foreground and
background sets unchanged. 

We required for each ChIP-seq dataset that a target TF re-
spected the known motifs (as position frequency matrices) in
its class (or subfamilies only for mammalian C2H2 ZF TFs)
from JASPAR ( 19 ), Hocomoco ( 10 ), or Cis-BP ( 20 ). In mam-
mals, all TFs from the class C2H2 zinc finger factors were
classified according to their subfamilies, due to the highest
variability of motifs in this class ( 47 ,19 ). For each class or sub-
family, we required the presence of at least one member motif
possessing the significant enrichment ( P < 0.05) in the fore-
ground set compared to the corresponding background set,
AME tool ( 50 ). Finally, human / murine / Arabidopsis bench-
mark ChIP-seq collections included 1032 / 706 / 119 datasets
for 127 / 213 / 58 target TFs, respectively (see Supplementary 
Tables S1 - S3 ). 

ChIP-seq data analysis pipeline 

For each pair of foreground and background sets we per-
formed de novo motif discovery with the traditional motif
model of a position weight matrix (PWM), STREME tool,
( 43 ).We used the default parameters of the STREME tool, the
motif length varied from 8 to 15 nt. For each ChIP-seq dataset,
the input data of this tool included a foreground set consist-
ing of peaks and a background set generated from peaks us-
ing a synthetic or genomic approach; the output data were
a ranking of the top ten enriched motifs according to the
significance of their enrichment. We estimated the sensitiv-
ity and specificity of de novo motif discovery for all pairs of
foreground / background sets and all enriched motif as follows.
To estimate the sensitivity for a particular enriched motif, we
tested its significance of similarity ( P < 0.05) to all known
motifs of TFs from the same class / family / subfamily (JASPAR,
Hocomoco and cis-BP) as that of the target TF ( 51 ). To es-
timate the specificity for the same enriched motif, we tested
whether the similarity of this enriched motif to any of the SSRs
motifs was significant. We proposed that the SSR motifs are
false positive results of de novo motif search. We considered
following SSRs motifs: mono-, di-, and trinucleotide repeats,
i.e. two motifs of mononucleotide repeats A 8 and G 8 , 10 and
32 motifs of di- and trinucleotide repeats, (XY) 4 and (XYZ) 3 ,
respectively. We used the T omT om tool ( 51 ) to assess the sig-
nificance of similarity between motifs. 

We applied Fisher exact test to estimate the significance of
the difference between the numbers of ChIP-seq datasets that
had enriched motifs with certain ranks. First, we compared the
number of datasets with enriched motifs with certain ranks be-
tween the genomic and synthetic approaches; these enriched
motifs corresponded to motifs either of known TFs or SSRs
(Table 1 ); we performed these tests separately for each collec-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
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Figure 1. The algorithm of the genomic sequence extraction. ( A ) Layout of the algorithm. Blue / green color mark input / output data. First, input 
(foreground) sequences are used to compute the distributions of peak length and A / T content. Second, the reference genome is used to select proper 
background sequences. Hence, the output background sequences exactly match the foreground ones in length, while their A / T content allows only very 
small v ariation. ( B ) Scheme e xplaining tw o alternativ e masking options (gre y). W e either took the ref erence genome as is (the pathw a y ‘No masking’), or 
apply ‘Exclusion of blacklisted regions’, removing from the reference genome particular regions, and using all remaining loci in subsequent analysis, or 
apply another ‘Retention of whitelisted regions’, preserving in the reference genome certain specific regions and removing all remaining loci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion. Second, we compared for each approach the ranking of
enriched motifs of target TFs or SSRs motifs in A. thaliana
and mammalian ( M. musculus ) benchmark collections (Table
2 ); we performed these tests separately for the genomic and
synthetic approaches. 

We used the hierarchical classification of TFs by their DBDs
to study the relationship between the structure of DBDs of
target TFs and efficacy of the genomic / synthetic background
sequences application (TFClass, Plant-TFClass) ( 22–25 ). For
plant TFs we also used annotations from PlantRegMap ( 48 )
and JASPAR ( 19 ). Supplementary Tables S4 - S6 show for all
classes of target TFs and three benchmark collections ranks
of enriched motifs in the lists deduced by de novo motif dis-
covery; these ranks are represented separately for the genomic
and synthetic background dataset generation approaches. The
third option ‘promoter’ means application of the whitelisted 

region option in the genomic approach (see Figure 1 ). 

Web service architecture 

We proposed the web service AntiNoise promoting the ge- 
nomic approach of background sequences extraction. The 
kernel of the web service was implemented in the C++ lan- 
guage. The kernel searched background sequences in the 
reference genome sequences (see above). The user interface 
(input / output data) and running of the kernel scripts were 
implemented in PHP language (version 7.4.3). In addition,
Python code used matplotlib ( 52 ) and numpy ( 53 ) libraries 
to draw charts depicting distributions of the A / T content and 

dinucleotide frequencies. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
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Table 1. 2 × 2 contingency table ‘number of ChIP -seq datasets ’ versus 
‘background set generation approach’ 

Number of ChIP-seq datasets 

Motifs ha v e a 
rank or a range 
of ranks 

Motifs do not 
ha v e a rank or a 
range of ranks 

Background set 
generation 
approach 

Genomic N G+ N G −

Synthetic N S+ N S −
The table counts ChIP-seq datasets with enriched motifs derived from de 
novo motif searches. These motifs have (+) or do not have (–) significant 
similarities to either known motifs of target TFs or SSR motifs. The table 
estimates the significant differences in ranking of enriched within the lists 
of top-ranked enriched motifs derived by de novo motif search for ChIP- 
seq datasets with application of the genomic and synthetic background se- 
quences generation approaches. These tests were separately applied to the 
benchmark collections of M. musculus and A. thaliana . 

Table 2. 2 × 2 contingency table ‘number of ChIP -seq datasets ’ versus 
‘benchmark collection’ 

Number of ChIP-seq datasets 

Motifs ha v e a 
rank or a range 
of ranks 

Motifs do not 
ha v e a rank or a 
range of ranks 

Benchmark 
collection 

M. musculus N MM+ N MM −

A. thaliana N AT+ N AT −
The table counts ChIP-seq datasets with certain enriched motifs derived from 

de novo motif search. These motifs have (+) or do not have (–) significant 
similarities to either known motifs of target TFs or SSR motifs. Table es- 
timates the significant differences in ranking of enriched motifs within the 
lists of top-ranked enriched motifs derived by de novo motif search for ChIP- 
seq datasets from the benchmark collections of M. musculus (MM) and A. 
thaliana (AT). These tests were separately applied for the genomic and syn- 
thetic background sequences generation approaches. 
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ipeline for ChIP-seq data analysis 

e extracted ChIP-seq data for M. musculus , H. sapiens and
. thaliana target TFs from GTRD ( 14 ), we took each ChIP-

eq dataset as the foreground set and generated for it back-
round sets with the synthetic and genomic approaches (see
aterials and methods). Figure 1 explains the layout of the

lgorithm applied for the genomic approach of background
equences selection. For each set of foreground sequences, we
omputed the enrichment of the known motifs of target TFs
espective to either the genomic or synthetic set of background
equences (AME tool) ( 50 ); this left in analysis 1032 / 706 and
19 ChIP-seq datasets for H. sapiens , M. musculus and A.
haliana (see Materials and methods). Additionally, we ap-
lied the variation of the genomic approach. This option im-
lied the preliminary masking of the whole genome (Figure
 B, retention of whitelisted regions), so that the background
enomic sequences were extracted only from the promoter re-
ions of protein coding genes, –5000 / +1 relative to gene start
ositions. Below this option is designated as ‘Promoters’. Al-
ernatively, certain genomic loci can be excluded from analysis
Figure 1 B, exclusion of blacklisted regions). The command
ine version of the tool enables application of arbitrary anno-
ations in BED format as a set of whitelisted and blacklisted
egions. The web version of the tool implemented the species-
specific whole genome sets of promoters of protein coding
genes as one of two default options (see below). 

De novo motif discovery (STREME tool) ( 43 ) provided the
top ten enriched motifs for each pair of foreground and back-
ground sets. Then, we estimated the significances of similar-
ity between these enriched motifs and known motifs of TFs
from the same class / family as a target TF. We applied at this
step the JASPAR ( 19 ), cis -BP ( 20 ) and Hocomoco (mammals
only) ( 10 ). Similarly, we estimated the significance of simi-
larity between enriched motifs and the motifs of SSRs (see
Materials and methods). Supplementary Tables S1 –S3 for all
datasets provide ID of ChIP-seq datasets from GTRD, target
TF names, the enrichment p-value (AME), the ranks of en-
riched motifs, the significances of motifs similarity, and the
descriptions of the respective motifs from JASPAR / cis -BP and
Hocomoco. Finally, we compared the sensitivity and speci-
ficity between the genomic and synthetic approaches, as the
ranking of the motifs respecting the known motifs of target
TFs and the motifs of SSRs. We performed these comparisons
for the benchmark collections for M. musculus , H. sapiens and
A. thaliana . Supplementary Tables S1 –S3 for these collections
list the ranks of enriched motifs from de novo motif search
that ensured the significant similarity to known motifs of tar-
get TFs. Supplementary Tables S4 –S6 summarize the distribu-
tions of ranks for the classes of target TFs. Supplementary 
Tables S7 –S9 compile the distributions of ranks of enriched
motifs from de novo motif search that show the significant
similarity to motifs of SSRs. All Supplementary Tables present
three blocks of results for the synthetic, genomic approaches
and for genomic approach restricted to gene promoters. The
background sequences from whole genomes and promoters
have shown very similar trend (compare columns ‘Genomics’
and ‘Promoters’ in Supplementary Tables S4 –S9 ). Since the
results for human and mouse are very similar, below in the
manuscript we show the results for the murine collection due
to the higher number of distinct target TFs in it compared to
human collection (213 versus 127). Also, the term ‘genomic’
below means the genomic approach for the whole genome, the
results for promoters are shown in Supplementary Tables. 

ChIP-seq data analysis pipeline 

Figure 2 A displays the analyses of two example ChIP-seq
datasets for target TFs from M. musculus and A. thaliana (see
row titles). For each dataset we applied the genomic and syn-
thetic approaches (see column titles). Four plots show the sig-
nificances of the first ten enriched motifs from the results of
de novo motif discovery (axes Y) as a function of their A / T
content (axes X). For both examples the genomic approach
assigned the first ranks to the known motifs of target TFs,
but the synthetic approach displayed SSR motifs at the first
ranks, so that motifs of target TFs had lower enrichments and
subsequent ranks. These examples suggested that the genomic
approach showed both better sensitivity and specificity than
the synthetic approach. 

Next, we analyzed the benchmark collections of ChIP-seq
data for M. musculus and A. thaliana . Figure 2 B compare the
distributions of ranks for A. thaliana and M. musculus . The
distributions of ranks of the motifs of target TFs for these col-
lections confirmed the conclusions derived from the analysis
of two examples. The genomic approach retained motifs sig-
nificantly similar to known motifs of target TFs at the first
ranks in 69 and 579 datasets, correspondingly, out of total 119

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
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Figure 2. Abundances of motifs of target TFs and motifs of SSRs re v ealed b y de no v o motif disco v ery with application of the synthetic and genomic 
bac kground approac hes. ( A ) T he ranking of motifs of target TFs and SSRs in the results of de no v o motif disco v ery f or tw o e xample ChIP-seq datasets. 
Columns show the results of de no v o motif search for the synthetic and genomic background datasets. Rows represent the analysis of M. musculus and 
A. thaliana ChIP-seq datasets (TF MYC, GTRD PEAKS040291, GEO GSM2319228, lung cancer PB115 cells; TF SEP3, GTRD PEAKS042815, GEO 

GSM1142624, inflorescences). Axes X and Y imply A / T content of motifs and the significance of motif enrichment from the STREME tool, 
–L og 10 [p-v alue]. T his enrichment reflects the rank of a motif in the result of de no v o motif search. Arrows and logos mark motifs of target TFs and motifs 
of SSRs. ( B , C ) The distributions of ranks of enriched motifs that are significantly similar to either the known motifs of target TFs (B) or SSRs (C). The 
distributions derived from the results of de novo motif discovery with application of the synthetic or genomic approaches for the benchmark collections 
of M. musculus and A. thaliana ChIP-seq data. Axes X mark the number of datasets possessing certain ranks of enriched motifs in the lists from de no v o 
search; axes Y imply the synthetic and genomic background approaches. Red / blue colors mark the distributions computed for genomic / synthetic 
background sets; the darker / lighter shades of colors show the numbers of datasets possessing motifs with higher / lower ranks. 
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nd 706 datasets. For the synthetic approach, the correspond-
ng numbers 36 and 513 were notably smaller. Respective dis-
ributions for SSR motifs showed the opposite trend (Figure
 C). The genomic approach revealed notably fewer datasets
ith SSR motifs at the first ranks (7 / 68 for A. thaliana /
. musculus ) compared to the synthetic approach (82 / 201). 
Application of Fisher exact test (Table 1 ) confirmed that the

ractions of motifs corresponding to target TFs and ranked
rst were significantly higher for the genomic approach than
or the synthetic approach (for the collections of M. musculus
nd A. thaliana ( P < 4E-5 and P < 3E-5, Figure 3 A). The sub-
equent ranks showed the same trend, although it gradually
ecame insignificant. The first-ranked enriched SSR motifs oc-
urred significantly less frequently in lists derived from the ge-
omic approach than from the synthetic approach ( P < 9E-20
nd P < 9E-26, Figure 3 B). The subsequent ranks showed the
imilar and sometimes even more significant depletion. 

Next, we applied Fisher exact test separately for each of
he background generation approaches to compare M. mus-
ulus and A. thaliana collections (Table 2 ). We revealed that
he fractions of datasets possessing the enriched motifs re-
pecting target TFs are significantly higher for the M. muscu-
us collection compared to those for the A. thaliana collection
the first rank, genomic P < 5E-8, synthetic P < 3E-18, Fig-
re 4 A). This enrichment may reflect notably higher variation
f mammalian motifs compared to plant motifs ( 10 , 19 , 20 ).
he comparison between the fractions of datasets containing
nriched SSR motifs (Figure 4 B) showed that they were sig-
ificantly more abundant in A. thaliana than in M. muscu-
us . For the highest ranks of enriched motifs (first and from
rst to third) this trend was significant only for the synthetic
pproach ( P < 1E-16 and P < 5E-8, correspondingly). The
enomic approach rejected the significance of this trend for
he enriched SSR motifs of the first rank, and for the range
f ranks from first to third (Figure 4 B). Thus, for the synthetic
pproach, de novo motif search significantly higher yields top-
cored enriched motifs of SSRs much more frequently in the
. thaliana ChIP-seq data collection than in the M. musculus

ollection. 
Overall, we found that the genomic approach of back-

round sequences generation provided both better sensitivity
nd specificity for benchmark ChIP-seq data collections from
ammals and plants. As expected, we confirmed that the syn-

hetic and genomic approaches guaranteed the significant en-
ichment of motifs for target TFs in de novo motif discovery
esults for all ChIP-seq data collections. In contrast to the ge-
omic approach, the synthetic approach assigned the highest
anks to the enriched SSR motifs substantially more frequently
n the A. thaliana ChIP-seq data collection compared to the

. musculus . Hence, de novo motif discovery in plant ChIP-
eq data requires more careful processing taking into account
ossible false positives of SSR motifs enrichment. 

enomic approach shows better sensitivity for 
arget TFs of almost all classes 

ext, we tested whether the difference between the results
f applying the genomic and synthetic approaches depended
n the structure of DBDs of target TFs. We used annota-
ions of mammalian and plant target TFs from TFClass, Plant-
FClass, JASPAR, cis -BP and Hocomoco databases, and ap-
lied their hierarchical classification, see Materials and meth-
ds, Supplementary Tables S1 –S3 ( 21–25 ). Figure 5 for the
most abundant superclasses and classes of target TFs of M.
musculus and A. thaliana shows the distributions of the num-
ber of datasets, with enriched motifs, that are significantly sim-
ilar to known motifs of target TFs with certain ranks in the
lists of motifs obtained using the genomic and synthetic ap-
proaches. Supplementary Tables S4 –S6 present the results of
corresponding analyses for all classes. Overall, for almost all
the most abundant classes of M. musculus and A. thaliana tar-
get TFs (12 of 13), the genomic approach is more sensitive
than the synthetic approach. Only for the class of C2H2 zinc
finger factors in M. musculus synthetic / genomic approaches
shows the first ranks for 124 / 122 datasets out of 137. Since
these numbers are almost equal, one exception still confirmed
the general trend. Moreover, in the human collection 228 / 222
datasets of total 244 for the same class C2H2 zinc finger fac-
tors have the first ranks, thereby this class is not an exception
to the general trend. 

AntiNoise web service and command line software 

package: input / output data and functionality 

For a wider application of the genomic approach in further
researches, we implemented it in the AntiNoise command
line software package and web service. The command line
software package is available at https:// github.com/ parthian-
sterlet/antinoise . The package allows application of genomic
and synthetic approaches. Additionally, the package provides
perl scripts starting from the reference genome sequences
in one FASTA file. There are three options for genomic se-
quence extraction. First, ‘No masking’, defines the entire ref-
erence genome as a source of background sequences. Sec-
ond, ‘Blacklisted region masking’ means that given ‘black-
listed’ regions are excluded during the search. We mask
these blacklisted regions, thereby they completely excluded
from output data. E.g., a recent study provides examples for
mouse and human ( 54 ). Third, ‘Retention of whitelisted re-
gions’ implies that background sequences are restricted to
only ‘whitelisted’ regions, and all remaining genomic loci
were masked and they couldn’t get into the output. We pro-
pose the promoter regions of all protein-coding genes (–5000;
+100) as a default option of the whitelisted regions for all
species. 

The web service is available at https://denovosea.icgbio.ru/
antinoise/. Figure 6 A displays the main and advanced options
of the web service: 

• Genome release and species, among them the animals hu-
man ( H. sapiens , hg38), mouse ( M. musculus , mm10),
rat ( R. norvegicus , Rnor_6.0), zebrafish ( Danio rerio ,
GRCz11), fly ( D. melanogaster , dm6) and roundworm
( C. elegans , WBcel235); the plants are arabidopsis ( A.
thaliana TAIR10), soybean ( Glycine max v2.1), maize
( Zea mays , B73) and liverwort ( Marchantia polymorpha ,
MpTak v6.1); the fungi baker’s yeast ( S. cerevisiae , R64-
1-1) and fission yeast ( S. pombe , ASM294v2); 

• Required number R BF of background sequences per one
foreground sequence. The default value R BF = 5 implies
that that if calculations are successively completed for all
N F input sequences, then totally N B = R BF * N F back-
ground sequences are found; 

• Either ‘no masking’, or ‘Retention of whitelisted regions’
options are applied. The ‘whitelisted regions’ are the pro-
moter regions of all protein-coding genes, (–5000; +100)
relative to the 5 

′ ends of genes. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
https://github.com/parthian-sterlet/antinoise
https://denovosea.icgbio.ru/antinoise/
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Figure 3. The significance of difference in ranking of the enriched motifs between the synthetic and genomic background approaches. De novo motif 
search re v ealed the ranks of enriched motifs. T he Fisher e xact test separately f or the M. musculus / A. thaliana collections compared the fractions of 
datasets possessing enriched motifs with certain ranks. Panels ( A , B ) display the analysis for the enriched motifs, significantly similar to the motifs of 
target TFs and the motifs of SSRs. Axes X and Y show the motif rank and the significance by exact Fisher test, respectively; dotted lines mean the 
significance threshold ( P < 0.05). Table 1 explains the Fisher task applied in analysis. 

Figure 4. The significance of difference in ranking of the enriched motifs between the M. musculus and A. thaliana benchmark collections. De novo 
motif search re v ealed the ranks of enriched motifs. The Fisher exact test separately for the synthetic and genomic background approaches compared 
the fractions of datasets possessing enriched motifs with certain ranks. Panels ( A ) and ( B ) display the analysis for the enriched motifs, significantly 
similar to the motifs of target TFs and the motifs of SSRs. Axes X and Y show the motif rank and the significance by Fisher exact test, respectively; 
dotted lines mean the significance threshold ( P < 0.05). Table 2 explains the Fisher task applied in analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Deviation δ of the A / T nucleotide content of each back-
ground sequence from that for the corresponding fore-
ground sequence. The default value 0.01 allows the mis-
match of one bp per a sequence length of 100 bp in a
foreground sequence. 

• Threshold F MIN 

for the minimum fraction of completely
processed foreground sequences to stop calculations.
The default value of 0.99 means that calculations stop if
for 99% of all foreground sequences for each sequence
at least R BF background sequences are found for each
sequences; 

• Maximal number of attempts N A 

to find matching back-
ground sequences in the genome. If a given number N A

of last attempts to find any at least one more background
sequence are unsuccessful, the algorithm terminates. The
default value 50000. 
Figure 6 A shows the screenshot for the application page of 
the web service with an example. Here we analyzed the dataset 
of 1000 top-scored ChIP-seq peaks for M. musculus corti- 
cal neurons treated with 10nM purified recombinant Reelin 

for 1 hour, TF MEF2C, GEO GSM1629389 ( 55 ), GTRD ID 

PEAKS037873. 
Pressing the ‘SUBMIT’ button starts the calculation and 

provides a web link to the page with its results. During the 
running process, the service indicates the number of found 

background sequences. The output data of the web service in- 
clude a link to a file with the main calculation result, a set of 
genomic background sequences in FASTA format. These re- 
sults respect the first tab ‘Results / Input parameters’ (Figure 
6 B). In addition, four charts on two tabs illustrate the validity 
of the background sequences search. The second tab ‘Fore- 
ground set vs. Background set’ shows two charts depicting 
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Figure 5. Application of the genomic and synthetic approaches for target TFs of various DBD str uct ures. Left / right columns present analysis of 
ChIP-seq datasets from the M. musculus and A. thaliana collections. The hierarchical classifications of M. musculus and A. thaliana target TFs by the 
str uct ure of DBDs were derived from TFclass and Plant-TFclass ( 22–25 ), see Materials and methods. Axes X mark the number of datasets possessing 
certain ranks of enriched motifs in the lists from de no v o search; axes Y imply the application of the synthetic and genomic background approaches for 
ChIP-seq data with target TFs from various classes. The titles on the left stand for the names of nine TF superclasses from TFclass and Plant-TFclass 
( 22–25 ). The ranks for TFs were assigned by the enrichment significance of motifs from de novo motif discovery for ChIP-seq datasets for the M. 
musculus and A. thaliana benchmark collections. Only the most abundant classes were represented. See Supplementary Tables S4-S6 for the 
respective ranking of enriched motifs for all TF classes in H. sapiens / M. musculus / A. thaliana . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae090#supplementary-data
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Figure 6. Main screenshots of the AntiNoise web application. ( A ) Application page with an example. Here user can enter input sequences, set the 
parameters of a calculation task and start calculations. ( B ) The ‘Results / Input parameters’ output tab provides access to input (foreground) sequences 
and output (background) sequences, and lists major options of a calculation task. ChIP-seq dataset for M. musculus TF MEF2A, GEO GSM1629389, 
GTRD ID PEAKS037873 is used as an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the distributions of the A / T content and of the dinucleotide
frequencies for the foreground and background sets (Figure
7 A). These charts can be critical for choosing between various
types of background sets. The third tab ‘Selected foreground
sequences versus Foreground set’ demonstrate two charts list-
ing foreground sequences that did not reach the required num-
ber of background sequences per one foreground sequence.
These two charts apply the metrics of the A / T content and
dinucleotide frequencies to compare the selected foreground
sequence with the whole set of foreground sequences (Fig-
ure 7 B). While the A / T content means the metrics applied for
the genomic background sequences selection, the dinucleotide
frequencies as the k -mers of the shortest length 2 bp show
the behavior of the simplest motifs. These two charts detect
foreground sequences with abnormal mono- and dinucleotide
content. 

The runtime for the command line version was estimated
on a desktop PC. For the A. thaliana / M. musculus bench-
mark collections of ChIP-seq datasets (top 1000 peaks in each) 
the median runtime is about 3–4 minutes, and 95% of tested 

datasets were ready in 35 minutes / 1 hour, correspondingly. 

Discussion 

In the current study, we performed the massive comparison of 
two popular approaches to generating background sequences 
for subsequent de novo motif search in ChIP-seq data. The 
synthetic approach performs nucleotides shuffling that abol- 
ishes the enrichment of any motifs. This procedure radically 
destroys in the foreground sequences the enrichment of k -mers 
of any length. These k -mers represent either specific or non- 
specific motifs; they compete between each other at the next 
step of de novo motifs search. Applying the synthetic back- 
ground approach inevitably results in a lower frequency of 
non-specific and specific motifs in the background sequence 
compared to the foreground sequence. In this case, the enrich- 
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Figure 7. Additional output screenshots of the AntiNoise web application. ( A ) The ‘Foreground set vs. Background set’ output tab compares the input 
and output sequences. One chart depicts the A / T content and another shows dinucleotide frequencies. ( B ) The ‘Selected background sequences vs. 
Foreground’ output tab compares input sequences that did not reach the required threshold of found genomic background sequences and all input 
sequences. the Y axis lists foreground sequences that did not reach the required number of background sequences per one foreground sequence, the 
labels ‘#Seq NNN #FoundSeq K’ mark for these sequences serial numbers in input file (NNN) and shows the counts of background sequences found (K). 
The label ‘AllSeq #AvFoundSeq K’ implies the averaging for all foreground sequences, the value K means the average number of background sequences 
per one foreground sequence. Axes X show the A / T-content (top) and dinucleotide frequencies (bottom). The ChIP-seq dataset for M. musculus TF 
MEF2A, GEO GSM1629389, GTRD ID PEAKS037873 is used as an example. 
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ment of non-specific motifs in the foreground set is not due
to binding of specific TFs, but rather corresponds to the over-
all specificity of the full-length genome in terms of oligonu-
cleotide composition. Attempting to suppress these noisy ge-
nomic bias motifs in the foreground set, one should try to pre-
serve their content in the background set, while destroying the
enrichment of context-specific motifs presumed to have TF
binding functionality. Hence, the genomic approach implies
the extraction of the background sequences from the reference
genome sequences. 

Before the beginning of the next-generation sequencing era,
both TFBS and genomic mapping data were scarce, and, con-
ventionally, motif discovery algorithms applied the synthetic
sequences to model the expected frequencies of motifs ( 34 ).
However, application of these algorithms for newly available
large datasets derived from ChIP-seq technology ( 56 ) raised
many unanswered issues, including long computation time,
too redundant output data, variation in a threshold for the
peak quality, filtration of genome bias motifs, etc. ( 6 , 9 , 28 , 32 ).
In addition, the chromatin as primary source of ChIP-seq data
often complicated the detection of motifs of target TFs due
to their possible indirect binding through intermediate pro-
teins, co-binding with partner TFs, and structural heterogene-
ity within the same TFs ( 57 ,58 ). Thus, even a variety of distinct
algorithmic strategies gave only a limited success in higher eu-
karyotes ( 3 , 9 , 36 , 43 , 59 ). 

Earlier, it was found that the distributions of the rela-
tive abundance of short oligonucleotides were strikingly di-
verse among DNA sequences from the genomes of various eu-
karyotic taxa, and these distributions were certainly different
from those expected from Markov modeling ( 60 ). Namely, the
di- / tri-nucleotide frequencies in genomic sequences differed
markedly from those expected by their mono- / di-nucleotide
content, etc. Authors explained these differences through dis-
tinct structural properties of short k -mers, in particular, the
base-step stacking capacities, duplex curvature and other
higher order DNA structural features of dinucleotides ( 61 ).
It was concluded that the genome-wide consistency of dinu-
cleotide relative abundance values suggested involvement of
the fundamental biological processes, such as DNA replica-
tion, recombination and repair . Later , the analysis of the whole
chromosomes of various species from distant eukaryotic taxa
confirmed that the deviations of dinucleotide frequencies from
those expected according to their nucleotide content were dis-
tinctly genome-specific ( 62 ). These studies showed that the
sequence bias in whole genomes implied the species-specific
pattern of enriched and depleted oligonucleotides of various
lengths, including lengths typical for TFBS motifs (6–20 bp).
The synthetic approach applies Markov models with various
orders of a chain, which may be ranged from 0 to 5 ( 63 ,64 ).
Therefore, even the largest order of a Markov chain can en-
sure the preservation of k -mers of short lengths, up to hex-
amers. However, the occurrence in the foreground sequences
of k -mers of longer lengths, particularly those with lengths as
long as the TFBS motifs (6–20 bp), can be wrongly regarded
as enrichment. Hence, the synthetic approach can create an
artificial enrichment of non-specific motifs in the foreground
set. Thus, because the genomic approach reflects the genome-
specific bias in oligonucleotide frequencies it should be supe-
rior to the synthetic approach. 

The synthetic approach has been very popular in motif dis-
covery tools to generate the background sequences ( 9 , 65 , 66 ).
Some modern tools do not allow to adopt the genomic back-
ground sequences for de novo motif discovery ( 64 ,67–69 ),
while others allow both synthetic or genomic background se- 
quences ( 38 , 43 , 45 , 70 ). Alternative suggestion for de novo mo- 
tif discovery compiled genome sequences flanking peaks to the 
background set ( 72 ,72 ). However, even the peak calling tool 
selection and its options influence on the precise positioning 
of peaks borders. E.g., the peak callers GEM / MACS2 pro- 
vide peaks of fixed / varied lengths ( 71 ,46 ). Therefore, we sus- 
pect that the compilation of background sequences from areas 
flanking the peaks is not a completely correct methodology.
Among the current sources of TFBS motifs derived from ChIP- 
seq data, three are the most reliable and popular, the HOCO- 
MOCO ( 10 ), CisBP ( 20 ) and JASPAR ( 19 ) databases. Among 
them, only the CIS-BP was developed with the support from 

the various types of genomic background sequences ( 73 ). 
In the current study, we took in analysis ChIP-seq data 

from the GTRD, since this database combined uniformly 
processed chromatin immunoprecipitation data with de- 
tailed annotations, such as the application of the input con- 
trol experiment in the processing pipeline, descriptions of 
tissue / cell / treatment conditions, application of various peak 

caller tools, etc. We retained in the analysis only ChIP-seq 

datasets with enrichment of motifs of known TFs from the 
same hierarchical clade as the target TFs. Here, we used the 
AME tool; we took the clades of subfamilies for TFs from 

the mammalian C2H2 ZF class, and the clades of classes 
for the remaining TFs. Motifs of known TFs were taken 

from JASPAR, Cis-BP or Hocomoco. Thus, popular motif 
databases supported the context specificity of target TFs bind- 
ing. We treated enriched SSR motifs as potential false posi- 
tives. For each ChIP-seq dataset, we considered the top ten 

most enriched motifs from results of de novo motif discov- 
ery (STREME). This choice was due to the inability of ChIP- 
seq technology to distinguish between direct and indirect TF- 
DNA interactions ( 1 , 2 , 59 ), and motifs of target TFs could 

have lower ranks in the output lists. In confirmation of this,
many massive applications of de novo motif discovery to 

ChIP-seq data showed that about a half of datasets did not 
reveal the known motifs for target TFs as the first-ranked en- 
riched motifs ( 41 ,74–76 ). A rank of each enriched motif al- 
lowed estimating the sensitivity and specificity of each of the 
background generation approaches, through estimates of the 
significance of the similarity of this enriched motif to known 

motifs of target TFs or SSR motifs, respectively. 
To select sequences into the background set, we applied two 

metrics of genomic DNA loci. The first is A / T content, the 
variation of which also accurately reflects the variation of G / C 

content, reflecting the ratio of the content of relatively strong 
G / C and weak A / T pairs of nucleotides with three and two 

hydrogen bonds in DNA. For example, it is difficult to find 

any G / C-reach motifs of the KLF / SP1 family of mammalian 

TFs in A / T-rich genomic loci. Accurate retention of the sec- 
ond metric, the sequence length, is required to support pop- 
ular measures of accuracy for de novo motif search, such as 
the Precision-Recall curve or Area Under Curve (ENCODE- 
DREAM in vivo TF Binding Site Prediction Challenge, ( 77 )). 

Example analysis of two ChIP-seq datasets (Figure 2 A) 
showed that the use of genomic background sequences com- 
pared to synthetic ones provided higher enrichment of known 

motifs of target TFs and lower enrichment of SSR motifs. We 
proposed that these differences were due to the complete de- 
struction of the enrichment of any motifs by nucleotide shuf- 
fling as the generation procedure of synthetic sequences, while 
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he procedure of the genomic approach accounted the ex-
ected content of genome bias motifs in ChIP-seq data. 
The systematic analysis of the M. musculus , H. sapiens and

. thaliana benchmark collections of ChIP-seq data confirmed
hese conclusions (Figure 2 B, C, Supplementary Tables S4 - S9 ).

e came to two concordant conclusions. First, known motifs
f target TFs showed significantly higher ranks in the results of
e novo motif discovery for the genomic approach compared
o those for the synthetic approach (Figure 3 A). Second, SSR
otifs demonstrated significantly lower ranks in the results of
e novo motif discovery for the genomic approach compared
o those for the synthetic approach (Figure 3 B). 

Next, we compared the results of separate applications of
ither genomic or synthetic approach between ChIP-seq data
ollections for M. musculus and A. thaliana . Both collections
evealed the significant enrichment of known motifs of target
Fs for the A. thaliana collection, although the synthetic ap-
roach showed higher significance (Figure 4 A). Surprisingly,
he synthetic approach provided substantially higher enrich-
ent of SSR motifs for the A. thaliana collection compared to

he M. musculus collection (motif rank 1, 1–3, Figure 4 B). The
enomic approach did not show the significant enrichment
or the same ranks of the enriched motifs. Hence, whereas
oth approaches are sensitive due to enrichment of the known
otifs of target TFs, the specificity appreciated through the

bundances of potentially false positive motifs of SSRs is sub-
tantially worse for A. thaliana ChIP-seq data over those for
. musculus . 
Finally, we considered the hierarchical classification of tar-

et TFs from ChIP-seq data of mammalian and plant TFs
y their structure of DBDs ( 22–25 ,19 ). We showed that the
igher enrichment of the known motifs of target TFs in the
esults from the genomic approach compared to those from
he synthetic one is observed for almost all most abundant
lasses of murine or Arabidopsis TFs (Figure 5 ). 

A necessary step of the processing of massive sequencing
ata such as ChIP-seq is the assessment of motif enrichment
eflecting the binding specificity of target TFs. The choice of a
articular approach has been essential for both specific tools
enerating background sequences ( 44 ,65 ), and for de novo
otif search tools ( 38 , 67 , 78 ), and for the special databases
f TFBS motifs ( 10 , 19 , 20 ). However, until now, no one has
erformed a massive analysis of ChIP-seq data for various eu-
aryotic taxa to compare two the most popular approaches
 the generation of background sequences by the synthetic or
enomic approaches. Since our study resulted in very strong
rguments in favor of the genomic approach (Figures 2 –5 ),
e implemented it as the command line software package

nd the web service (Figures 6 ,7 ). They allow extract back-
round sequences for the most popular in massive sequenc-
ng analysis eukaryotic genomes from yeasts to mammals and
lants. Thus, we propose a flexible approach to robustly sup-
ort the identification of specific TF targeting motifs in widely
sed de novo motif search tools from massive sequencing
ata. 
A recent comprehensive all-against-all TF binding motif

enchmarking study ( 79 ) showed that TF binding specificity
orrelates with the structural class of its DBD. Thus, different
WMs for TFs from the same structural classes tended to per-
orm similarly across experiments; and the best performing
WM model often respected the same TF class. Another con-
lusion from the benchmarking study ( 79 ) stated that the prac-
ical set of motifs for many biological applications is much
maller than the number of motifs already contained in the
most popular motifs collections. Therefore, we hope that the
main conclusions of our study concerning the advantages of
the genomic background sequences over synthetic sequences
hold true for target TFs from a variety of eukaryotic taxa and
for target TFs of any structural class. 

We performed a de novo motif search for benchmark col-
lections of ChIP-seq data for target TFs from mouse, hu-
man and Arabidopsis. We aimed to investigate whether back-
ground sets consisting of genomic or synthetic sequences pro-
vide both a higher prediction rate of known motifs of target
TFs and a lower prediction rate of potentially false positive
SSR motifs. We found that although both genomic and syn-
thetic approaches provide pronounced enrichment of known
target TF motifs, the synthetic approach compared to the ge-
nomic approach yields a very significant increase in the pro-
portion of SSR motifs representing possible false positives. We
confirmed the advantage of the genomic approach over the
synthetic approach in terms of sensitivity of detection of mo-
tifs of known target TFs for all the most common classes of
target TFs in mammals and plants. As for specificity, the use
of the synthetic approach compared to the genomic approach
resulted in higher ranks of enriched SSR motifs for plant than
for mammalian ChIP-seq data. To summarize, massive anal-
ysis of mammalian and plant ChIP-seq data has shown that
the genomic approach is more effective than the synthetic ap-
proach in generating background sequences for de novo motif
discovery. Therefore, we propose to use genomic sequences ex-
tracting as a default option for generating a set of background
sequences when applying de novo motif search to ChIP-seq
data. To promote and widely apply the results of our anal-
ysis, we implemented the genomic approach of background
sequences generation as the AntiNoise web service and pro-
vided its extended options in the command line version. 

Data availability 

AntiNoise is implemented in C++, Python and PHP. The
source code and documentation are available at https://github.
com/ parthian-sterlet/ antinoise (permanent doi https://doi.org/
10.5281/ zenodo.12744549 ) and https:// denovosea.icgbio.ru/
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