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Abstract: When using repeated measures linear regression models to make causal inference in
laboratory, clinical and environmental research, it is typically assumed that the within-subject
association of differences (or changes) in predictor variable values across replicates is the same
as the between-subject association of differences in those predictor variable values. However, this is
often false. For example, with body weight as the predictor variable and blood cholesterol (which
increases with higher body fat) as the outcome: (i) a 10-lb. weight increase in the same adult affects
more greatly an increase in cholesterol in that adult than does (ii) one adult weighing 10 lbs. more
than a second indicate higher cholesterol in the heavier adult. A 10-lb. weight gain in the first adult
more likely reflects a build-up of body fat in that person, while a second person being 10 lbs. heavier
than the first could be influenced by other factors, such as the second person being taller. Hence, to
make causal inferences, different within- and between-subject slopes should be separately modeled.
A related misconception commonly made using generalized estimation equations (GEE) and mixed
models on repeated measures (i.e., for fitting cross-sectional regression) is that the working correlation
structure only influences variance of the parameter estimates. However, only independence working
correlation guarantees that the modeled parameters have interpretability. We illustrate this with an
example where changing the working correlation from independence to equicorrelation qualitatively
biases parameters of GEE models and show that this happens because within- and between-subject
slopes for the outcomes regressed on the predictor variables differ. We then systematically describe
several common mechanisms that cause within- and between-subject slopes to differ: change effects,
lag/reverse-lag and spillover causality, shared within-subject measurement bias or confounding, and
predictor variable measurement error. The misconceptions we describe should be better publicized.
Repeated measures analyses should compare within- and between-subject slopes of predictors and
when they do differ, investigate the causal reasons for this.
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1. Introduction

We focus on two common misconceptions that are made in research while fitting repeated
measures regression with generalized estimating equations (GEE) and mixed models (MM).
Misconception-A: The association between the predictor variable and the outcome across different
measures from the same subject (within-subject) is the same as the association of that variable with the
outcome between measures from different subjects (between-subject). In fact, these associations often
differ, which should be considered when making causal inference. For example, consider weight as the
predictor and cholesterol the outcome given the well-known association of higher serum cholesterol
and with greater body fat: (i) a 10 lb. increase in the same adult more likely indicates greater difference
in serum cholesterol than does (ii) one adult being 10 lbs heavier than a second adult. A 10-pound
weight gain in the same adult more likely reflects a build-up of body fat in that person, while the
first adult being 10 pounds heavier than the second could be influenced by other factors such as the
first adult being taller than the second. Misconception-B: The working correlation structure used in
GEE and MM models is only a nuisance factor that impacts precision of model parameter estimates.
As illustrated and explained in the next Section (and Table 1), the wrong choice for working correlation
structure biases parameter estimates.

Both of these misconceptions are related, but the analytical details are complicated. To explore this
further, Section 2 begins with an illustration of Misconception-B in real data. Section 2 also explains
how this relates to Misconception-A and why independence working correlation must be used for
creation of predictive models using “cross-sectional regression” on repeated measures. Then, Section 3
details how separation into within- and between-subject associations is needed for using repeated
measures regression to makes causal inference. Section 4 describes epidemiological mechanisms that
can cause within- and between-subject slopes to differ. Section 6 summarizes and explores further
implications for statistical practice in applied research.

2. Cross-Sectional and Between/Within-Subject Linear Models with Repeated Measures

We begin here with some notation. Consider repeated measures on n subjects denoted by i = 1,2,
. . . , n. The “subjects” can either be persons with longitudinal repeated measures, or, as is common
in environmental epidemiology, can be cities, schools, neighborhoods, census tracks, hospitals, etc.
Each subject has Ji different observations enumerated by j = 1, . . . , Ji. For example, these Ji different
observations could be taken at times ti1 < ti2 < . . . < tiJi, on the same person when the “subject”
is a person or from Ji different persons living in the same neighborhood when the “subject” is a
neighborhood. For Ji constant across i, (i.e., always the same number of repeat measures for a subject),
we drop the “i” subscript and denote J. Let us consider that the observations have continuous outcomes
Yij and K predictor (or exposure) variables X

˜ ij = X1,ij, X2,ij, . . . , XK,ij. When K = 1, we drop the “K”
enumeration, using Xij for the only predictor. Linear regression models for E[Yij| X

˜ ij] or E[Yij|Xij] are
fit in the analyses described here. However, the overall conclusions we obtain on these linear regression
models can be generalized to discrete outcomes (i.e., logistic regression) and survival analyses.

2A Cross-Sectional (CS) Regression. The most commonly fitted linear regression model on
repeated measures does not separate within- and between-subject associations and is usually written
out as Yij = α + β1X1,ij + β2X2,ij + . . . + βKXK,ij + εij. This is denoted as “cross-sectional (CS) regression”
particularly for longitudinal repeated measures. We add a subscripted “CS” to the β’s to distinguish
these slopes from between-subject (BS) and within-subject (WS) slopes defined in Section 2B. The CS
regression model here is thus denoted as

Yij = β
˜

CSX
˜ ij = αCS + β1,CSX1,ij + β2,CSX2,ij + . . . + BK,CSXK,ij + εij (1)

where αCS, β1,CS, β2,CS, . . . , BK,CS are parameters (fixed effects), while εij is error with E[εij] = 0 that
is independent between different subjects i and i’, but may be correlated for j 6= j’ within the same
subject. It should be noted that the intercept is fixed at the same αCS for each subject. Should the actual



Int. J. Environ. Res. Public Health 2019, 16, 504 3 of 21

intercepts differ between subjects (i.e., be αCS,i) as random intercepts, then for both MM and GEE, the
difference αCS,i − αCS is incorporated into the error term εij of (1) and the within-subject correlation
of that error [1]. Using (vs. not using) random intercepts does not influence the point estimates of
αCS, β1,CS, β2,CS, . . . , BK,CS or the variance of these estimates for mixed models [1]. However, for GEE
using a different intercept on each subject (with each intercept now adding a new parameter) creates
too many parameters for the asymptotic properties of GEE model to hold in our examples (and in
general) which destabilizes parameter estimates [2].

Again for K = 1, the subscript for K is dropped and the model is Yij = αCS + βCSXij + εij. The main
goal of CS regression is to first obtain estimates β̂

˜
CS for β

˜
CS and then input β̂

˜
CS into (1) in order to

estimate future unobserved Y’s from observed X
˜ ij’s as β

˜
CSX

˜ ij. Cross-sectional regression is also used

to make adjusted (causal) inference on the covariate associations in β̂
˜

CS, but, as we show later, doing

this may be problematic.
Table 1 presents parameter estimates from repeated measure cross-sectional regression (1) to a

clinical measure of glomerular filtration rate (EGFR) from the Modification of Diet in Renal Disease
Study (MDRD) [3]. Formula (1) with EGFR as the outcome Y and three predictor variables (X1, X2, X3)
= (HIV infection, serum albumin, blood urea nitrogen (BUN)) was fit to 10,782 semi-annual measures of
584 women at the Bronx-site of the Women’s Interagency HIV Study (WIHS) [4]. Higher EGFR values
indicate better renal function. The models assume that the within- and between-subject associations
of the predictor variables are the same. We later show this assumption is incorrect. The parameter
estimates of Table 1 were calculated using GEE [1] with both independence (GEE-IND) in columns 2–4
and equicorrelation (GEE-E) columns 5–7 for the working correlation structure of model residuals from
repeated measures in the same person. We again note that this model (1) has a fixed intercept across
all subjects with the error term being independent between different subjects. However, otherwise in
Table 1 (and elsewhere in the paper) the within subject correlation structure of the error is allowed to
be either (i) independent within the same subject (GEE-IND) or (ii) to have the same correlation for all
outcomes within the same subject (GEE-E). The second condition (i.e., equicorrelation) is equivalent to
fitting a random subject intercept model [1].

Most of today’s literature providing guidance on fitting repeated measures linear regression
(i.e., [5–13]) qualitatively describes working correlation as a “nuisance factor” that does not alter
model parameters and states that “the working correlation that minimizes variance of parameter estimates
should be chosen”. However, in Table 1, the parameter estimates for BUN (per g/dL), from GEE-E, of
−1.22; 95% confidence interval (CI) (−1.46, −0.99) is both qualitatively and statistically higher than the
corresponding GEE-IND estimate of −1.87; 95% CI (−2.12, −1.62). For HIV, the parameter estimates
of −3.86, p = 0.0081 from GEE-E is qualitatively lower than that from GEE-IND −2.04 and p = 0.19.
Clearly, changing the working correlation from independence to equicorrelation qualitatively and
statistically changes the parameter estimates. Thus, this correlation structure is not a nuisance factor.

When faced with such a dilemma of qualitatively and statistically different parameter estimates
from the same model fit to the same data with only the working correlation structure changed (as is
shown in Table 1), investigators typically go to published guidance on which correlation structure
to use. To that end, based on the within-subject correlation of residuals being 0.45 in GEE-E (and
in MM-E), and the quasi-likelihood independence criteria goodness of fit statistic (QIC) = 10,836.27
for GEE-E being smaller than the QIC = 10,847.14 for GEE-IND (or the Akaike information criteria
goodness of fit statistic (AIC) from a mixed model using equicorrelation (MM-E) of (AIC = 94,934.5)
being smaller than AIC = 99,374.5 from a mixed model using independence (MM-IND) as shown in
Table A1 in Appendix A), almost all articles providing model fitting guidance [5–13] point towards
using equicorrelation as the working correlation structure. However, as the rest of Section 2 describes
in detail, this guidance is problematic as only the parameter estimates obtained by using independence
working correlation can have any meaning for cross-sectional regression.
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But first we make two brief asides. First, we note that if MM, rather than GEE are used for Table 1,
the corresponding parameter point estimates in Table 1 using independence correlation (MM-IND)
and equicorrelation (MM-E) are essentially unchanged [1]. (See Appendix A for details on parameter
estimates from MM fit to this data with independence and equicorrelation correlations structures).
However, due to non-robustness of MM, GEE is preferable for this specific example. Second, we note
that the differences observed in Table 1 occur not only between independence and equicorrelation.
Any different choice of correlation structure, such as AR(1), Toeplitz, unstructured, etc. will result in
different parameter estimates (results not shown). For simplicity, we focus this article on only two
structures: independence and equicorrelation.

Table 1. Cross-sectional regression parameter estimates using GEE 1 for EGFR = HIV infection, serum
albumin and BUN in the Bronx WIHS.

Variable

Working Correlation Structure

Independence Equicorrelation 2

Point
Estimate 95% CI Z-Value (p) Point

Estimate 95% CI Z-Value (p)

HIV Infection
(βHIV,CS) −2.04 (−5.07, 0.98) −1.32

(<0.19) −3.96 (−6.90, −1.03) −2.65
(0.0081)

Albumin Per g/dL
(βALB,CS) −6.21 (−8.95, −3.47) −4.44

(<0.0001) −9.84 (−12.01, −7.68) −8.93
(<0.0001)

BUN Per mg/dL
(βBUN, CS) −1.87 (−2.12, −1.62) −14.45

(<0.0001) −1.22 (−1.46, −0.99) −10.30
(<0.0001)

Quasi-Likelihood
Information

Criteria (QIC)
10,847.14 10,836.27

1 Mixed models gave essentially similar point estimates; see Appendix A. 2 Interclass correlation of residuals from
GEE-E was 0.45 indicating non-independence correlation was structurally correct.

2B Between-/Within-Subject Slope (BS/WS) Regression. While investigators almost never
consider this in practice, it has long been noted that slopes on changes of Xij within the same subject i
differ from cross-sectional slopes on between subject-measure differences in Xij [14–17]. To illustrate
this, consider the cross-sectional model of a laboratory measure cholesterol (Yij), which is well known
to be higher in people with more body fat. To that end, the predictor is body weight (Xij) with E[Yij] =
αCS + βCSXij. As described in the Introduction, the cross-sectional slope βCS for association of a 10 lbs.
weight difference between two different adults for cholesterol is less than the slope for association
of a 10 lbs. within-subject weight change for the same adult on cholesterol, which we denote as βWS.
Again, the reason βCS is less than βWS is that: (i) a 10 lb. cross-sectional weight difference between
two adults often reflects greater height in one of the persons, but (ii) a 10 lbs. weight increase in the
same adult is not influenced by height difference and thus is more likely due to more body fat after the
10-lbs weight gain. Thus, since greater body fat is what is directly associated with more cholesterol, the
within-person association of a 10-lb. weight increase with cholesterol is greater than the cross-sectional
repeated measures association with a 10-lb. weight difference between two persons.

Common within-person height creates a shared within-subject measurement bias from this
extraneous factor for subject i (denoted Ei) on weight as a predictor of cholesterol. To that end, many
investigators adjust weight for height using body mass index = wt/ht2 to remove this effect of height on
weight. As Figure 1a illustrates, if TXij = body mass index (wt/ht2) were the true predictor of Yij, and
Hi = height (which does not change with j in the same i), then Xij = TXij * (Hi)2 contains this shared
within-subject measurement bias from common Hi which again we denote as Ei in Table 1a to confer it
is an extraneous within-subject bias. Section 4 describes more settings where βWS 6= βCS.
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Figure 1. Illustration of common within-subject measurement bias and confounding for K = 1.

While for weight it is possible to remove the common shared within-subject bias from height
by dividing by ht2, this is not the case for less well-understood causal relationships. Therefore, to
model and account for a bias such as this, linear regression models fit for making causal inference can
decompose the associations into “within-subject” slopes (β

˜
WS), described above, and “between-subject”

slopes (β
˜

BS), described below, which capture associations of subjects’ central tendencies of the exposure.

To do this, subject means of the predictor variables x
˜ i
= x1,i, x2,i, . . . , xK,i are calculated, where xk,i =

∑Ji
j=i Xk,ii/Ji. Then Yij is modeled as a combination of “between-subject” slopes from xk,i (that could be

influenced by the common person measurement bias in Figure 1) and “within-subject” slopes from
deviations of Xk,ij about xk,i which will be free of such a bias, since the comparison is within person.

Yij = αBS/WS + β1,BSx1,i + β2,BSx2,i + . . . + βK,BSxK,i+

+β1,WS(X1,ij − x1,i) + β2,WS(X2,ij − x2,i) + . . . + βK,WS(XK,ij − xK,i) + εij

(2)

As described for (1), this is a fixed intercept model that is functionally equivalent to a random
intercept model for MM. When K = 1, we have Yij = αBS/WS + βBSxi + βWS(Xij− xi) + εij. To illustrate
this for our earlier example with Yij = cholesterol and Xij = weight, let αBS/WS = 30, βBS = 0.9 and
βWS = 3, such that Yij = 30 + 0.9xi + 3(Xij − xi) + εij. If person i had an average value of xi = 210
across all Ji measures with the jth measure being Xij = 200, then for the person-visit at time tij, E[Yij] =
30 + 0.9(210) + 3(200-210) = 189.

Now we make some technical asides. First, the choice of the observed xk,i as the “central tendency”
of Xk,ij for subject i is necessary as µk,i a person’s “true average weight” over the entire time period
is unknown, but for Ji large enough, xk,i should be close to µk,i. Thus, while βk,WS only captures
association with within-subject change in Xk,ij, βk,BS inherently contains some βk,WS from deviation
of (xk,i − µk,i); especially for small Ji. This situation is described for occupational epidemiology
research, where often an average of personal exposure measurements is computed as estimate of
true exposure of a “subject”, defined as either an individual, or group of individuals that share a
job [18]. Second, the implicit assumption that βk,WS is well defined may also not always be true.
For example, “βk,WS” could differ by time separation tij – tij’. Perhaps for k = weight, a weight gain
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of 10 lbs. in one month creates a shock that hyper-elevates cholesterol, but a 10 lbs. weight gain
over 12 months does not, in which case βk,WS

∣∣∣(tij − tij′) = 1 > βk,WS

∣∣∣(tij − tij′) = 12 . Third, if the
investigator is only interested in the within-subject slopes he/she can substitute as a fixed effect a
different subject intercept αWS,i for the between-subject slopes in (2) with the model reducing to
Yij = αBS,i + β1,WS(X1,ij − x1,i) + β2,WS(X2,ij − x2,i) + . . . + βK,WS(XK,ij − xK,i) + εij.

Despite these technical caveats, the within- vs. between-subject decomposition in (2) is used to test
whether βk.BS = βk.WS so that, as shown in Section 2C, they also equal βk.CS and thus the separated WS
vs. BS decomposition can be collapsed to (1). Due to the orthogonal decomposition of Xk,ij about xk,i
this previous test for collapsing the within- vs. between-subject decomposition is a two-sample z-test

of parameter estimates from fitted models comparing
∣∣∣∣β̂k,BS − β̂k,WS

∣∣∣∣/√Var(β̂k,BS) + Var(β̂k,WS) to

Z1-α/2 [17]. The within- vs. between-subject decomposition is mostly used for inference on adjusted
(causal) associations of the Xk,ij’s on Yij’s. It is typically not used to produce models to estimate
future unknown Yij from known X

˜ ij as such estimation often only happens in settings where just one
observation per subject is available, hence Xk,ij ≡ xk,i.

We refit the analyses of Table 1 to illustrate that the impact of choice of correlation structure
(i.e., GEE-IND vs. GEE-E working correlation structure) is eliminated in our example after making a
within- vs. between-subject decomposition. Please note that there were no new HIV infections after
study entry; so XHIV,ij ≡ xHIV,i meaning that the within-subject association of change of HIV infection
status cannot be modeled. For within-subject associations of BUN and albumin, GEE-IND and GEE-E
gave identical point estimates, because centering about xk,i makes comparisons entirely within-subject
and invariant to these correlation structure choices (although within-subject estimates could differ
slightly if autoregressive (AR (1)) or other formulations for intra-subject correlation of residuals had
been used). There were small GEE-IND vs. GEE-E differences on the between-subject slopes as was
observed elsewhere [19]. For example, the point estimate for between-subject HIV status is −1.16; 95%
CI (−4.21, 1.88) in the GEE-IND of Table 2 versus −1.57; 95% CI (−4.47, 1.33) with GEE-E.

From now on, we only examine GEE-IND results for within- between-subject decomposition
models, as GEE-E results are similar. For BUN and GEE-IND, the within-subject β̂BUN,WS = −1.11, 95%
CI (−1.34, −0.88) is qualitatively and statistically closer to 0 than is the corresponding between-subject
slope β̂BUN,BS = −2.72, 95% CI (−3.10, −2.33). However, serum albumin goes the other way: the
within-subject slope β̂ALB,WS = −10.70, 95% CI (−12.99, −8.40) is statistically further from 0 than is the
corresponding between-subject GEE-IND β̂ALB,BS = −3.27 with a 95% CI (−7.88, 1.33) that overlaps 0.
The QIC is lower (10,857.62) for equicorrelation than for independence (10,866.64) which perhaps now
indicates an advantage to the former correlation structure in this setting where the slopes have been
correctly decomposed.

One might wonder how to interpret differences in the within- and between-subject slopes for
causal inference, including the reasons that these slopes were different? This in part will depend on the
hypotheses of interest (and we did not have any for this illustrative example). However, general rules
also apply, although we are unaware of any systematic exploration of reasons why the between-subject
slopes β

˜
BS (or βBS for K = 1) could differ from within-subject slopes β

˜
WS (or βWS for K = 1). and the

resultant implications for causal inference. Before outlining these rules, it is important to note an
important relationship among cross-sectional, within-subject and between-subject slopes.
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Table 2. Within- and between-subject decomposition regression parameter estimates using GEE 1 for
EGFR = HIV infection, serum albumin and BUN in the Bronx WIHS.

Variable

Working Correlation Structure

Compartment Independence Equicorrelation

Point
Estimate 95% CI Z-Value

(p)
Point

Estimate 95% CI Z-Value
(p)

HIV
Infection

Between-subject
(βHIV, BS) −1.16 (−4.21,

1.88)
−0.75
(0.45) −1.57 (−4.47,

1.33)
−1.06
(0.29)

NA 2 --- --- --- NA 2 --- ---

Albumin
Per g/dL

Between-subject
(βALB, BS) −3.27 (−7.88,

1.33)
−1.39
(0.16) −2.71 (−7.00,

1.57)
−1.24
(0.21)

Within-subject
(βALB, WS) −10.70 (−12.99,

−8.40)
−9.16

(<0.0001) −10.70 (−12.99,
−8.40)

−9.16
(<0.0001)

BUN Per
mg/dL

Between-subject
(βBUN, BS) −2.72 (−3.10,

−2.33)
−13.89

(<0.0001) −2.65 (−3.01,
−2.08)

−14.21
(<0.0001)

Within-subject
(βBUN, WS) −1.11 (−1.34,

−0.88)
−9.31

(<0.0001) −1.11 (−1.34,
−0.88)

−9.31
(<0.0001)

Quasi-Likelihood Information
Criteria (QIC) 10,866.64 10,857.62

1 Mixed models gave essentially similar point estimates. See Appendix A 2 There is no within-subject variation for
HIV infection status.

2C Relationship between β
˜

CS, β
˜

WS and β
˜

WS. Now β
˜

CS averages β
˜

WS and β
˜

BS according to

relative variances of the subject means (i.e., the x
˜ i

) vs. the variance of the repeated measures about

those sample means (i.e., the X
˜ i − x

˜ i
) [17]. For example, with K = 1, if σx

2 is the population variance of

the within-person mean xi and σ2
X−x is the population variance of the deviations of differences of the

repeat measures Xij from their x
˜ i

, then

βCS = βBSσx
2/(σ2

X−x + σx
2) + βWSσ2

X−x/(σ2
X−x + σx

2) (3)

In the previous example of weight and cholesterol with βBS = 0.9, βWS = 3 and Yij = 30 + 0.9xi +

3(Xij − xi) + εij, if σx
2 = 400 and σ2

X−x = 100, then from (3) βCS = 0.9*400/(100+400)+3*100/(100+400)
= 1.32. If the between-person sample means are more homogeneous in weight with σ2

X−x = 200
but the within- person σ2

X−x is still 100, then again using (3) βCS moves closer to βWS; βCS =
0.9*200/(100+200)+3*100/(100+200) = 1.60.

2D Working Correlation Structures for Model Residuals Other than Independence Can Lead
to Unusable Results for Cross-Sectional Regression. As noted earlier, fitting both MM and GEE
repeated measure regression models involves specification of correlation (or working correlation)
structure of εij within the same subject i. We denote the working correlation structure by matrix Vi.
Typical choices for Vi are the ones we used in the illustrative examples of Tables 1 and 2; equicorrelation
(E), with correlation of εij and εij’ for j 6= j’ always the same value ρ (this common value of ρ is estimated
in the model fitting process based on the residuals in the model fitting process), and independence
(IND), with correlation of εij and εij’ ≡ 0. However, other structures are used such as AR(1) where
correlation of εij and εij’ is ρ|j-j’| with the value of ρ being estimated from the residuals [1]. Again,
current guidance [5–13] emphasizes choosing the Vi that most closely fits the true covariance structure
of the residuals within i and/or by model fit criteria such as having lowest QIC for GEE and AIC for
MM, because doing so often improves precision of the model parameter estimates. However, we just
observed that this approach may be wrong for CS regression, because using any correlation structure
other than IND can introduce structural bias into β̂

˜ CS
[20,21] and, unfortunately, AIC and QIC do not

account for this bias.
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To that end, Pepe and Anderson (1994) [20], developed a general rule for when IND is (and is not)
the only correlation structure that should be used for CS regression that we now present. Specifically,
they show that if a predictor X

˜ ij varies (i.e., takes on different values) within the same subject i and,

E[Y
∣∣∣X
˜ ij] depends on Xk,ij for any k of a different replicate j′ in i (4)

then, no matter what true correlation structure of εij among repeated measures within a subject is,
GEE-IND gives unbiased estimates for β

˜
CS, but any MM or GEE model not using Vi = IND, gives

biased estimates of β
˜

CS. Thus, the only working correlation structure that should be used to estimate

β
˜

CS is Vi = IND. However, if (4) does not hold, then any working correlation structure obtains unbiased

estimates for β
˜

CS in which case, choosing the Vi that most accurately fits the correlation structure of εij

minimizes the variance of β̂
˜ CS

.

Our paper only focuses on equicorrelation as the alternate to independence in order to keep the
presentation from becoming too cumbersome, given the large number of possible correlation structures.
However, the previous paragraph and (4) apply to any non-independence correlation structure.

As one (of many) examples of where (4) holds, let k = 1 and Yij and Xij be the degree of airway
obstruction and inhalation of tobacco smoke of subject i at time j, respectively. One would expect
that, because smoking effect on the lung is cumulative, historical smoking in a current smoker or
non-smoker would lead to poorer lung function. Thus, E[Yij|Xij’] for a smoker at time j’ < j would
poorer irrespective of Xij.

We now present an easier way to visualize (4). If repeated measures j and j’ are thought
of as “siblings” and the predictors as “exposures” then (4) means that even after considering the
“self-exposure” of the current measure j through X

˜ ij the outcome Y has “Conditional Dependence On
Sibling Exposures” (Co-DOSE) (i.e., on Xk,ij′ ). Thus, the sibling exposure Xk,ij′ could be thought of as a
Co-DOSE beyond the “dose” from the “self-exposure”. Hence, from now on we use the term Co-DOSE
to denote that (4) occurs.

Also, while this point has not been very well made, for CS regression, Co-DOSE in (4) largely
occurs if and only if within- and between-subject slopes differ. If within- and between-subject slopes
differ for any predictor (i.e., β

˜
BS 6= β

˜
WS) then Co-DOSE (4) happens. However, if the within- and

between-subject slopes are equal for all predictors (i.e., β
˜

BS = β
˜

WS) then Co-DOSE (4) does not occur.

More details on this and an illustration are given in Appendix B, but one trivial case arises if the
predictors are invariant within the same subject (i.e., X

˜ i1 ≡ X
˜ i2 ≡ .. ≡ X

˜ i Ji
≡ x

˜ i
) such that the

within-subject slopes are not defined (since X
˜ ij − x

˜ i
≡ 0) and for the same reason Co-DOSE in (4)

cannot occur. While the mathematical details are beyond this paper, if β
˜

BS 6= β
˜

WS and Vi = IND, then

non-zero covariance ρij > 0 besides adjusting for within-i collinearity of εij also over-weights the β
˜

WS

relative to β
˜

BS in (3), thereby pushing CS regression parameter estimates away from β
˜

CS towards

β
˜

WS [17]. Since robust covariance methods exist to adjust for impact of misspecification of Vi = IND

from collinearity of the residuals εij’s on variance estimates, in particular for GEE [1], Vi = IND can
eliminate bias in estimating β

˜
CS while providing conservative variances for the parameter estimates.

2E Implications for Applied Research and Statistical Practice. Much of what has been presented
above is not commonly understood and implemented in applied research and statistical practice. CS
models are typically fit, with β

˜
CS interpreted to also be β

˜
BS and β

˜
WS, without checking if these slopes are

equal. Non-independence Vi is often used for CS regression without checking if Co-DOSE (in (4)) exists.
Perhaps in part this occurs because systematic epidemiological descriptions of causal mechanisms
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for why between- and within-subject slopes can differ are lacking, which hinders awareness of this
possibility. We endeavor to fill this gap in Section 3.

3. Epidemiological Reasons for Between- and Within-Subject Slopes to Differ

To make it easier for investigators to identify what could cause βk,WS 6= βk,BS (or equivalently
Co-DOSE) in a given setting, we classify major reasons why this can happen. For simplicity, let K = 1
unless otherwise noted, as the following principles extend to multivariate settings.

3A. Change Effects. We propose that the effect of a longitudinal within-subject change in the
predictor X could have a greater (or less) direct impact on Y than a long-term standing difference in X
between two different subjects (hence βWS 6= βBS) and define this as a (c.f. short term) “change effect”.
Returning to the example of weight and cholesterol, consider two identical twins, “A” has lived his
adult life at xi = 190 lbs. and “B” at xi′ = 180 lbs. If “B” undergoes a short-term weight gain of 10 lbs.
to 190 (Xi′ j − xi′ = 10), assuming xi′ not impacted by the rapid change, while A remains at 190 lbs.
(Xij − xi = 0), the shock or corollaries of this rapid change in B may raise his cholesterol level above
that of A’s even though they both now weigh 190 lbs., meaning that βWS > βBS and Co-DOSE in (4)
occurs. However, it should be noted that as was mentioned in Section 2B, in this setting, βWS would be
somewhat undefined if, e.g., a 10 lbs. gain in a shorter time period (i.e., 1 month) increases βWS more
than does a 10 lbs. gain over a longer time period (i.e., 12 months).

3B Lag Causality of X on Future Y. The effect of historical levels of X on Y may independently
project into the future (i.e., beyond that effect of the current level of X). For example, consider an
HIV-infected person and two time points t1 < t2; let Xij be HIV viral load and Yij be CD4 count. High
HIV levels destroy CD4 blood cells into the future. Therefore, as illustrated in Figure 2a, high HIV
viral load at t1 may affect CD4 loss from t1 to t2 so that even if the person’s HIV viral load is low at t2,
the high viral load at t1 is predictive of lower CD4 at t2 through higher viral load at t1 having created
more CD4 destruction between t1 and t2 (i.e., lag causality of X at t1 on Y at t2). Thus, Yi2|Xi2 at t2
is not independent of Xi1 at t1; Co-DOSE in (4) occurs and the within- and between- subject slopes
differ (βWS 6= βBS). In Figure 2a,b, Ei2 denotes that Xi2 differs from Xi1 due to an extraneous process
that is causing Xi to change over time. Lag causality is often considered when serial measures of X
represent long-term environmental exposures (such as air pollution and cigarette smoke) that effect
chronic conditions Y (such as lung function) are obtained [1,18,22].Int. J. Environ. Res. Public Health 2019, 16, x   10 of 23 
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3C Reverse-Lag Causality of X on Future Y. The setting in Section 3B also manifests in the
opposite direction if X is being used as to estimate Y that is causal for future X. Reversing the previous
example with X now being CD4 used to predict HIV viral load as Y, as Figure 2b illustrates, high viral
load (Yi1) at t1 may have degraded the CD4 count from t1 to t2. Thus, Yi1|Xi1 at t1 is not independent
of Xi2 at t2: Co-DOSE in (4) occurs and within- and between-subject slopes differ (βWS 6= βBS).

3D Spillover Causality of X on Adjacent Y. An analogous setting to those of 3B and 3C can
also manifest in repeated measure cross-sectional settings based on geographical proximities. Let the
subjects i now be cities and j enumerate different neighborhoods in these cities. The repeated measures
are average air pollution (Xij) of neighborhood j in city i and average lung function of all residents
living within neighborhood j of city i (Yij). A resident living in neighborhood j may work in a different
neighborhood j’ of the same city and thus have “spillover exposure” to air in the neighborhood they
work in, for a given city i, thus Yij|Xij is not independent of Xij’ and hence Co-DOSE in (4) occurs.

3E Common Within-Subject Measurement Bias. Shared within-subject measurement bias occurs
if all repeat measures from the same subject have the same correlated measurement bias. This was
the setting described in Section 2B and Figure 1a with weight as exposure for cholesterol. Here with
weight as a surrogate for body fat, the measurement bias was mediated by height with taller adults
being heavier independently of body fat than shorter adults, which leads to βWS > βCS and Co-DOSE
in (4) when weight was a predictor of cholesterol. In this setting, height is a measurement bias not a
confounder as height itself is not associated with cholesterol. We now present a similar setting where
the un-modeled variable is a confounder.

3F Common Within-Subject Confounding. Figure 1b shows common within-subject confounding,
that causes βWS 6= βCS and Co-DOSE in (4). This phenomenon is diagrammatically similar to common
measurement bias that was described in Section 2B. However, rather than a common measurement bias,
the extraneous factor, shared by the repeated measures of the same subject, is a confounder that is
associated with both X and Y. For example, let the confounder variable Ci be sex of subject i (which
does not change with j) not be in the model and the outcome Yij be a linear score for male pattern
baldness at time j with again Xij being weight at time j. Adult men are both on average heavier and,
independently of weight, have greater male pattern baldness than do adult women. So Ci is associated
with both the exposure and the outcome. Here a 10 lbs. weight difference in two adults, but not a
within-adult increase of 10 lbs., could be informative of the heavier adult more likely being male.
Hence for this example, βWS = 0 (assuming within adult weight does not influence baldness), but
βCS > 0 (and thus βBS > 0) as males are more likely to be both heavier and bald compared to women.
Hence also βCS > 0, reflecting unaddressed between-subject confounding from heavier adults more
likely being men.

Similarly, Mancl, Leroux and DeRouen proposed that in a study with repeated dental predictor
and outcome pairs as (Xij,Yij) measured on teeth (i.e., enumerated by j) on the same persons (i.e.,
enumerated by i) that better compliance with dental treatment by some persons was a confounder
that could lead to differences in slopes within and between subjects [19]. In a non-longitudinal
setting where i denotes clusters (for example schools) and j denotes repeated subjects within that
cluster (for example students), common within-subject confounding is referred to as “contextual
effects” [23,24]. For example, as Robinson (1950) [14] observed, when X was race of the student and Y
was achievement-score, a higher xi (here: portion of a school’s students that were non-White) indicated
weaker financial support for that school (weaker financial support being the confounder) and thus
worse achievement-scores overall for that school: βBS was negative. However, within the same school,
race had no impact on the achievement score (βWS = 0). Begg and Parides [25] identify a similar setting
in birthweight and intelligence quotient in families.

3G Measurement Error in Xij Makes E[Yij|Xij] Dependent on Xij’ In many settings, the
predictor we observe is X = TX + M where TX is the true value of the predictor and M is measurement
error that is independent of TX (i.e., classical measurement error). It has been shown that, measurement
error in X that is either independent of [26], or correlated with Y [27], biases estimates for the slope that
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relates TX with Y. Measurement error can arise either from imprecision in an analysis instrument, such
as in a machine quantifying components of serum, or in data collection process, such as the chemical
composition of blood samples being non-informatively influenced by diurnal and other nuisance
processes. If Xij is incorrectly quantified due to such measurement error, then Co-DOSE in (4) occurs
and the observed within- and between-subject slopes differ, because, as illustrated in Appendix C,
the biases being created from the measurement error distribute differentially to different slopes. As
Figure 3 shows and the paragraph below it describes using an illustrative example, if Xi1 incompletely
measures the true state TXi1 (i.e., true BUN) due to classical measurement error as the extraneous
influence then Xi2, is informative for TXi1 even after considering Xi1. Please note that in Figure 3
there are two times subscripts on the extraneous influence, because Ei1 and Ei2 are two independent
measure errors.
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For example, going back to the analysis of Table 1, let Xij be BUN and Yij be EGFR. Consider two
persons who have BUN of Xi1 = 10 mg/dL measured with error today. Also assume that the true BUN
state changes slowly. If so, and after 6 months one of these persons measures Xi2 = 20 mg/dL while the
other measures Xi2 = 5 mg/dL, we can then surmise that since BUN changes slowly, it is more likely
that the true BUN today (TXi1) of the former person is > 10 mg/dL and that of the latter is < 10 mg/dL.
Thus, since (i) EGFR (Yi1) directly depends on TXi1 not Xi1, and (ii) Xi2 is informative on TXi1 after
considering Xi1, then (iii) Yi1|Xi1 is not independent of Xi2 and similarly Yi2|Xi2 not independent of Xi1
meaning Co-DOSE in (4) occurs and the observed within- between-subject slopes differ. Appendix C
shows that measurement error in the exposure that is independent of the outcome pushes both βWS
and βBS towards 0, but more so for βWS. Such tempering from averaged measurement error has
been proposed as a reason |βWS| < |βBS| was observed in dental research [19] and occupational
epidemiology [28,29].

However, if Mij is correlated with Yij (most likely being correlated with measurement error
on Yij [27]) the tempering of β’s from Mij will not be to 0. For example, consider TX = CD8 and
TY = CD4 cells which together are the almost exclusive components of serum lymphocytes (TZ)
(i.e., TY ≈ TZ− TX. Physiologically, TZ is constrained to create a negative βBS, βWS and βCS for TYij
on TXij: subjects with a higher CD8 component of serum lymphocytes by converse must a have lower
CD4 components. However, the measured lymphocyte count (Z) is subject to a correlated measurement
error that equally spreads onto X and Y. For example, if a person is dehydrated, the entire measured
lymphocyte (meaning both CD8 = X and CD4 = Y) portion of blood becomes artificially higher due to
reduction of the percentage of water in the blood. If a person has a high (or low) measured lymphocyte
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count Zij = TZij + Mij due to such measurement error, then Mij contributes to both CD4 (Xij) and CD8
(Yij), making both simultaneously artificially higher (or lower). Consequently, within person, a higher
measured CD4 count due to positive Mij is associated with higher measured CD8. Because in this case
the measurement error is shared, naïve regression analysis tends to draw βWS towards being positive.
On the other hand, βBS, which tempers down Mij on both X and Y through averaging as shown in
Appendix C, is less affected by the shared bias due to measurement error.

We have only considered classical measurement error so far. The other common type of
measurement error is known as Berkson error [30]. It is approximated by some exposure assessment
procedures commonly used in environmental and occupational epidemiology (see semi-ecological
design and group-based exposure assessment) [18]. While this is an aside to the main points of this
paper, when Berkson measurement error exists, only the between-subject slope, βBS, is estimable. More
details are in Appendix D.

4. Predictors Having Co-DOSE Will Bias Adjusted Parameter Estimates of Other Predictors Not
Having Co-DOSE When Included Together in Cross-Sectional Regression When Vi 6= IND
Is Used

Going back to Table 1, it was shown earlier that the point estimate from GEE-IND β̂HIV,CS for
the adjusted cross-sectional association of HIV with EGFR is still consistent for βHIV,CS. However,
HIV infection status was constant over all replicates within the same subject, and therefore cannot
have Co-DOSE in (4) as the entire effect of HIV is mediated between-subject, not within-subject.
Consequently, the question arises whether the adjusted estimate from a non-independence correlation
structure (say for example β̂HIV,CS−E) can be biased for βHIV,CS. Please note that for this section, we use
β̂XXX,CS and β̂XXX,CS−E to denote estimates for adjusted cross-sectional association for variable XXX
from models using independence and equicorrelation structures, respectively. The added designation
of “E” (CS-E) in the subscript for equicorrelation, but none for independence correlation, is made
because the equicorrelation estimate (but not the independence estimate) can be asymptotically biased.
The specific question addressed here is: could including BUN and albumin that each have Co-DOSE in
the model bias the corresponding estimate for cross-sectional adjusted HIV association from using
equicorrelation (β̂HIV,CS−E) so that it no longer is consistent for βHIV,CS in the multivariate model,
even though HIV itself is not Co-DOSE? This is important, because in Table 1, β̂HIV,CS of −2.04 95%
CI (−5.07 0.98) qualitatively differs from β̂HIV,CS−E of −3.96 (−6.90, −1.03) with only β̂HIV,CS−E
statistically (p < 0.01) differing from 0.

We believe that β̂HIV,CS−E for HIV in Table 1 is biased away from βHIV,CS. To help make this
point, Table 3 presents normative data broken down by HIV status of the subjects. First we note
from Table 1 that β̂BUN,CS−E is biased higher for βBUN,CS (with GEE-E β̂BUN,CS−E = −1.22 > β̂BUN,CS
= −1.87, p < 0.0001 from GEE-IND), while from Table 3, those who are HIV+ have higher mean BUN
(12.94 vs. 12.10, p < 0.0001 from GEE-IND). Thus, the full apparent “negative effect” of the higher BUN
in HIV+ subjects from βBUN,CS is underestimated by β̂BUN,CS−E and this pushes β̂HIV,CS−E down to
compensate. Second, similarly, also from Table 1, β̂ALB,CS−E is biased lower for βALB,CS (with GEE-E
β̂ALB,CS−E =−9.84 < β̂ALB,CS =−6.21), while from Table 3, HIV+ individuals have lower mean albumin
(3.97 vs. 4.14, p < 0.0001 from GEE-IND). Thus, the apparent “positive effect” of the lower albumin in
HIV+ subjects from βALB,CS is overestimated by β̂ALB,CS−E, which pushes β̂HIV,CS−E further down to
compensate. Now we consider these two biases together as illustrated in Figure 4. These two deficits
act jointly to push β̂HIV,CS−E downwards from the true adjusted βHIV,CS. Therefore, non-independence
Vi can bias multivariate cross-sectional parameter estimates of variables that do not carry Co-DOSE in
(4) when other variables in the model carry Co-DOSE.
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Table 3. Means ± standard deviation of EGFR serum albumin and BUN broken down by HIV status
across all repeated measures used in Tables 1 and 2.

Variable For HIV + Subjects
(496 persons 7326 Replicates)

For HIV - Subjects
(178 persons 3456 Replicates)

EGFR 90.3 ± 27.2 92.4 ± 25.0

BUN 12.94 ± 5.71 12.10 ± 5.30

Albumin 3.97 ± 0.44 4.14 ± 0.36
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5. Discussion

Numerous published papers fit GEE and MM cross-sectional regression models with repeated
measures having time varying predictors that either use non-independence working correlations
structures or do not state the correlation structure. These papers, which continue to be published, do
not show awareness of the points presented in Sections 1–4, above. Specifically, they:

(a) Neither specify whether the coefficients of interest are β
˜

CS, β
˜

WS or, β
˜

BS nor check whether

β
˜

WS = β
˜

BS;

(b) Make potentially invalid interpretations of β
˜

CS from MM and GEE using non-independence

correlation Vi’s; and/or;
(c) Do not justify the choice of non-independence working correlation structures Vi in light of

potential differences between β
˜

WS, β
˜

BS and β
˜

CS.

We have identified almost 45 such papers including some authored by us prior to becoming aware
of these issues. This is almost certainly only a fraction of the total number of such papers.
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Yet papers published up to 65 years ago either warn against using non-independence working
correlation structure in cross-sectional regression with repeated measures [19,20], or instruct to
decompose the associations into within-subject (β

˜
WS) and between-subject (β

˜
BS) slopes to make causal

inference [14–17]. Numerous examples where β
˜

WS 6= β
˜

BS 6= β
˜

CS have been presented [14–20,22–25].

While it was not covered in our paper, this includes fitting GEE models of binary outcomes where the
issues discussed here also apply [19,31]. However, these points are still not well known or emphasized
in statistical software documentation and papers providing guidance on GEE and MM analyses
(i.e., [5–13]).

One problem that impedes acceptance of within- and between-subject decomposition is that it
necessitates much more complicated models that are difficult to explain. Still, some air pollution
epidemiologic studies have attempted within- and between-subject decompositions using cities as the
subject and neighborhoods as the repeated measures within the city [32–34]. Most often in these studies,
the magnitude was greater for within-subject slope |βWS| > |βBS| but sometimes |βBS| > |βWS|
was observed meaning that possibly multiple causes for slope differences are involved. Those papers
that did attempt to explain the reasons for the differences described only “common within-subject
confounding” (Section 3E) as a potential reason; such as un-modeled pollutants that were correlated
between (but not within) cities with the modeled pollutants of interest. Other studies in environmental
research have considered the mechanism described in Section 3B, namely, lag causality in longitudinal
analyses of association of air pollution on health measures [1]. Nevertheless, having to explain
complicated and unknown mechanisms for biases such as these can appear to detract from the main
purpose of the research and cast doubt on the overall findings, making the paper harder to publish.
In other words, there appears to be neither incentive, nor guidance on how to engage with these issues
for applied researchers.

We concur with others [19,20], that cross-sectional regression with repeated measures should use
independence as the default working correlation unless justification is given to use other Vi. While
non-independence Vi can improve precision and thus be desirable [21], they can considerably bias
estimates for cross-sectional parameters, β

˜
CS, including perhaps towards what the investigator wants

to see. For example, in Table 1, p < 0.01 was observed for association with HIV with worse EGFR in
GEE-E compared to the more appropriate p = 0.19 from GEE-IND. An investigator who was expecting
HIV to be associated with worse EGFR might thus be tempted to use the results from GEE-E for
this reason.

While showing this is beyond the scope of our paper, when Vi is not independence, factors such
as the values of Ji and magnitude/structure of εij strongly influence parameter estimate values for β

˜
CS

from the miss-fitted cross-sectional models, allowing the miss-fitted estimate to arbitrarily range from
β
˜

CS to β
˜

WS [17]. Standardization is important and, as such factors will arbitrarily vary between studies,

parameter estimates of β
˜

CS become harder to compare across studies when Vi differs at discretion of

investigators. Therefore, the working correlation structure used in cross-sectional regressions using
repeated measures should always be justified and reported.

We also concur with others [14–19,23–25] that despite the difficulties in identifying why within-
and between-subject slopes differ, causal inference analyses with repeated measures should initially
make such decompositions. Investigators should then be wary if there are qualitative differences
between β

˜
WS and β

˜
BS. For example, Table 2 with 584 subjects and 10,782 measurements demonstrated

need for β
˜

WS, β
˜

BS decomposition to make causal inference (as well as for using GEE-IND in

cross-sectional regression). However, a smaller study could have been less clear-cut. If the same
point estimates for β

˜
WS and β

˜
BS seen in Table 2 were observed but did not statistically differ, one would

be tempted to merge β
˜

WS and β
˜

BS into a combined β
˜

CS at least for some variables, because standard

model-fitting practice promotes parsimony when statistical significance is not observed. This would
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be particularly true if for a given variable, k, neither β̂k,WS nor β̂k,BS statistically differed from 0, but
β̂k,CS did. If such collapsing is done, it may still be important to report β̂k,WS and β̂k,BS for comparison
to future studies and target potential mechanisms for within- between-subject slope differences as
described in Section 3.

Unfortunately, the within- and between-subject slope decomposition expands required analyses
and presentation. Statistical software mostly does not have standard subroutines to do this.
Decomposition can be tedious if xk,i is recalculated to maintain orthogonal decomposition of Xk,ij as
new models are fit if observations are excluded from the Ji due to missing values of newly included
variables. The fact that the xk,i are ill-defined by averaging the Xk,ij rather than being true means for
subject i creates confusion about interpretation of β̂

˜
BS that can also be influenced by within-subject

slopes as was noted in Section 2B.
When β̂

˜
BS and β̂

˜
WS differ, the causal mechanisms as to why this happens should be explored. For

example, in our analysis presented in Table 2 with EGFR as the outcome, for BUN the between-subject
slope β̂BUN,BS = −2.72 (from GEE-IND) was statistically further from 0 in the expected direction of
association than was the within-subject slope β̂BUN,WS = −1.11. However, the albumin went the
other way: between-subject slope β̂ALB,BS = −3.27 was statistically closer to 0 than was within-subject
slope β̂ALB,WS = −10.70 with again both slopes being in the expected direction from zero. So what
are the potential reasons for this? While lag/reverse-lag causality (Section 3B,C) between BUN and
creatinine (the main component of calculated EGFR) could reduce magnitude of βBUN,WS vs. βBUN,BS,
this was unlikely given the separation of visits was 6 months and internal biochemistry operates over
shorter time periods. However, independent measurement error on BUN (Section 3G) would temper
|βBUN,WS| towards 0 relative to |βBUN,BS|. To that end, several articles find greater coefficient of
variation [35,36], within-person change [35,36], assay error [36], and sample degradation for BUN
vs. albumin measures [37], all of which could reflect BUN having larger independent measurement
error than does albumin that would selectively attenuate β̂BUN,WS towards 0 (i.e., more than it did to
β̂ALB,WS). Conversely, serum creatinine and albumin are both constrained into the intravascular fluid
compartment and will non-informatively increase together with greater hydration and decrease with
less hydration of this compartment, inducing positively correlated measurement error, as in the case
for measured CD4 and CD8 cells in the last paragraph of Section 3G. As creatinine factors inversely
into the EGFR calculation, this would constitute negative correlation of measurement error between
albumin and EGFR and selectively bias β̂ALB,WS to be more negative than β̂ALB,BS . However, BUN,
which crosses across all body compartments, is less subject to such correlation in measurement error
with creatinine and thus with EGFR.

As is illustrated in the previous paragraph, we believe that the systematic epidemiological
description of reasons for within- and between subject slopes to differ in Section 3 will provide some
basis for future studies to explore this. That may lead to greater recognition and understanding of
this phenomenon. However, our list of reasons for these slopes to differ may not be exhaustive.
Furthermore, these mechanisms are quite complicated including that limited resources may be
available to investigate them in given studies given the other tasks that need to be done and limited
funding/personnel.

When between- and within-subject slopes differ, β
˜

BS 6= β
˜

WS, it is unclear which is the “least

confounded or biased”, including the possibility that by “averaging” the different biases in each would
make β

˜
CS be the least biased. There may be a heuristic perception that by “matching within the same

subject”, β
˜

WS is superior to β
˜

BS and β
˜

CS, but this is not necessarily true as measurement error in X

(Section 3G) and lag/reverse-lag and spillover causality (Section 3B–D) can in fact bias β
˜

WS to a larger

degree than they do for β
˜

BS and β
˜

CS.
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6. Conclusions

It has been known for decades by some that when exposures vary within subjects in repeated
measures regression then, (i) cross-sectional regression using Vi = independence working correlation
should be the default for building a model to estimate a future unknown Y as the goal, and (ii) within-
and between-subject decompositions of slopes should at least initially be fit when building models for
causal inference. Yet this advice rarely makes it into published guidelines and hence is not heeded,
perhaps in part due to complexity of the settings where within- and between-subject slopes differ and
limited substantive study of the mechanisms that cause such differences. In general, analysts should
explore and quantify reasons for biases that can occur in such study designs. To that end, analyses
using repeated measures regression should investigate if within- and between-subject slopes differ
and when they do, try to identify the reasons for this.
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Abbreviations

AIC Akaike Information Criteria
AR(1) Autoregressive Order 1
BS Between-Subject
BUN Blood Urine Nitrogen
Co-DOSE Conditionally Dependent On Sibling Exposure
CS Cross-sectional
E Equicorrelation
EGFR Estimated Glomerular Filtration Rate
GEE Generalize Estimation Equations
IND Independent
MM Mixed Models
QIC Quasi-likelihood Information criteria
WIHS Women’s Interagency HIV Study
WS Within-Subject

Appendix A. Results of Our Example Obtained Using Mixed Models

While mixed models are not appropriate for the cross-sectional regression of this example (and
often are not appropriate for cross-sectional regression using repeated measures in general), they are
often used for this purpose in practice. We have made the case that the biases described in this paper
applying to GEE for CS regression also apply to mixed models CS regression. Thus, Table A1 below
presents the parameters for CS regression of the Bronx WIHS example in Table 1 as estimated by
mixed models using independence and equicorrelation working correlation structures. To that end,
the reader can confirm that the parameter estimates from the mixed models in Table A1 are almost
identical to those from the GEE model with the same correlation structure in Table 1. This includes that
the estimates obtained using independence correlation here are also qualitatively different than those
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from using equicorrelation. We caution the reader; however, that the confidence intervals and p-values
reported in these tables are meaningless irrespective of the biases reported on in this paper, since,
unlike GEE, mixed models are not robust to misspecification of the correlation structure. Miss-specified
correlation structure for this example is clearly the case for independence although such a claim is
more debatable for equicorrelation.

Table A1. Parameter estimates for the cross-sectional regression of Table 1 EGFR = HIV infection,
serum albumin and BUN in the Bronx WIHS using mixed models.

Variable

Working Correlation Structure

Independence Equicorrelation

Point
Estimate 95% CI 1 Z-Value

(p) 1
Point

Estimate 95% CI 1 Z-Value
(p) 1

HIV Infection
(βHIV,CS) −2.04 (−5.04, −1.04) −4.02

(<0.0001) −3.99 (−7.04 −0.93) −2.55 (0.01)

Albumin Per g/dL
(βALB,CS) −6.21 (−7.30 −5.11) −11.04

(<0.0001) −9.89 (−11.03, −8.73) −16.90
(<0.0001)

BUN Per mg/dL
(βBUN,CS) −1.87 (−1.95, −1.79) −44.68

(<0.0001) −1.22 (−1.30, −1.13) −29.08
(<0.0001)

Akaike Information
Criteria (AIC) 99,374.5 94,934.5

1 The confidence interval and p-values for independence working correlation structure in particular but also
arguably for equicorrelation as well overestimate the precision of the parameter estimates. Unlike GEE, mixed
models are not robust to misspecification of the correlation structure.

Table A2. Parameter estimates for the within- between-subject decomposition regression of Table 2
EGFR = HIV infection, albumin and BUN in the Bronx WIHS using mixed models.

Variable Compartment

Working Correlation Structure

Independence Equicorrelation

Point
Estimate 95% CI 1 Z-Value

(p) 1
Point

Estimate 95% CI 1 Z-Value
(p) 1

HIV
Infection

Between-subject
(βHIV,BS) −1.16 (−4.21,

1.88)
−2.30
(0.02) −1.57 (−4.47,

1.32)
−1.06
(0.29)

NA 2 --- --- --- NA 2 --- ---

Albumin
Per g/dL

Between-subject
(βALB,BS) −3.28 (−4.78,

−1.77)
−4.26
(0.16) −2.72 (−7.00,

1.57)
−1.32
(0.19)

Within-subject
(βALB,WS) −10.70 (−12.24,

−9.15)
13.60

(<0.0001) −10.67 (−11.86,
−9.48)

−17.57
(<0.0001)

BUN Per
mg/dL

Between-subject
(βBUN,BS) −2.72 (−2.84,

−2.60)
−44.87

(<0.0001) −2.65 (−2.95,
−2.35)

−17.10
(<0.0001)

Within-subject
(βBUN,WS) −1.11 (−1.22,

−0.99)
−18.59

(<0.0001) −1.11 (−1.20,
−1.03)

−25.72
(<0.0001)

Akaike Information Criteria
(AIC) 98,451.8 94,824.7

1 The confidence interval and p-values for independence working correlation structure in particular but also arguably
for equicorrelation overestimate the precision of the parameter estimates. Unlike GEE, mixed models are not robust
to misspecification of the correlation structure. 2 There is no Within-subject Variation for HIV Infection Status.

Mixed models may be more appropriate for within- between- subject decomposition models than
they are for CS regression provided the correct correlation structure of the residuals is used. Table A2
below thus presents the parameters for within- between- subject decomposition regression of the Bronx
WIHS example in Table 2 as estimated by mixed models using independence and equicorrelation.
As was the case with Table A1 above compared to Table 1, the reader can again confirm here that
the parameter estimates from the mixed models in Table A2 are almost identical to those from the
GEE model with the same correlation structure in Table 2. This also includes that the mixed model
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parameter estimates under independence and equicorrelation are at worst qualitatively similar and
often close to identical for the two correlation structures. We caution the reader; however, that, as
with Table A1, the confidence intervals and p-values in Table A2 should be interpreted cautiously,
because mixed models are not robust to misspecification of correlation structure of the residuals. While
independence correlation is clearly not correct (as the within subject residuals for this example had a
large positive correlation) it can be argued that equicorrelation might be correct. However, looking
into that is beyond the scope of this paper.

Appendix B. Homology between Co-DOSE in (4) Occurring with between- and within-Subject
Slopes Being the Same or Differing

Figure A1 illustrates using the example of Section 2B (with K = 1) that Co-DOSE in (4) occurs
if β

˜
WS 6= β

˜
BS. Remember that in this example, βBS = 0.9, βWS = 3, βCS = 1.60. Now let J = 2. So for

the between / within-subject decomposition model; Yij = 30 + 0.9xi + 3(Xij − xi) + εij. If the overall

mean of Xij for all repeat measures in the sample was 180 (i.e.,
n
∑

i=1

2
∑

j=1
Xij/(2n) = 180) then the full

cross-sectional model is E[Yij] = −96 + 160(Xij). If a subject’s two weight measures are Xi1 = 200 and
Xi2 = 220, then for the first measure, the cross-sectional model estimates E[Yij] = −96+ 160(200) = 224.
However, since Xi2 = 220 and xi = 210, as we saw earlier within- between-subject decomposition gives;
E[Yij

∣∣Xi1, Xi2] = 30 + 0.9(210) + 3(200− 210) = 189 . Thus, E[Yi1|Xi1] is not independent of Xi2 since
Xi2 is informative of where xi falls and the slope for (Xij − xi) is different than the slope for xi when
βWS 6= βBS. However, if βWS = βBS = βCS, then Xi2 is non-informative on Yi1|Xi1 as E[Yij] =
αCS + βCSXi1 = αCS + βCS(Xi1 − xi) + βCSxi = αWS/BS + βWS(Xi1 − xi) + βBSxi since βWS = βBS = βCS.Int. J. Environ. Res. Public Health 2019, 16, x   20 of 23 
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when BBS 6= βWS in a between/within decomposition model with Ji = 2, Xi1 = 200 and Xi2 = 220.

As Ji ≡ 2, in the prior example, the second observation was deterministic for xi. However, for
Ji > 2, while additional Xij’ go into computation of xi these are still informative on relative contributions
of βBSxi and βWS(Xij − xi) on E[Yij|Xij].

Whether or not Co-DOSE in (4) occurs also informs if βBS = βWS. If for a given j, E[Yij|Xij] is

independent of all other Xij’, then E[Yij|Xij] is independent of xi =
Ji
∑

j=1
Xij/Ji, which only happens if
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βBS = βWS. However, if E[Yij|Xij] is not independent of other Xij’, then; (i) if Corr[(Yij, xi
)
|Xij] 6= 0,

βWS (if well defined) 6= βBS, (ii) otherwise if Corr[(Yij, xi
)
|Xij] = 0 then βWS is not well defined.

Appendix C. Illustration That Classical Measurement Error Which Is Independent of the
Outcome Pushes βWS and βBS to Zero with Greater Impact on βWS

To illustrate this for the classical measurement error setting with K = 1, let there always be the
same number of replicates, J, per subject and assume that the true data-generating mechanism, i.e.,
in the absence of measurement error, involves β = βWS = βBS = βCS. For example, let E[Yij] = βTXij
= β(TXij-µi) + βµi, where µi is true mean exposure of the ith subject, for simplicity the intercept is 0.
However, we only observe Xij = TXij + Mij, where Mij is measurement error with E[Mij] = 0, variance
σ2

M that is independent across all i’s and j’s and also independent from Yij. It also would often be
assumed that Mij ~ N(0, σ2

M), but we do not invoke this assumption here. When we use Xij instead of
TXij in regression, the observed estimates of βWS, βBS, and βCS will not be equal to their true values
(i.e., as obtained with TXij), but instead will equal different values β*

WS, β*
BS, and β*

CS from Xij
being watered down by the independent measurement error as shown below. In this special case
that β = βW S = βB S = βCS, we show that we expect β*

WS 6= β*
BS 6= β*

CS. We also reproduce a known
result that under classical measurement error observed β*’s are attenuated towards 0 with respect
to the true β’s. Furthermore, let TXij vary with j within i as follows; TXij = TCi + TRij where TCi is
a central tendency of TX for subject i, while TRij is within- subject i repeated visit variation in TXij
across the j’s. Let σ2

C and σ2
R be variances of TCi and TRij, respectively. Now, using the identity that the

slope of the regression line for Y = α + βX is the covariance of X and Y divided by the variance of X
(i.e., Cov(X,Y)/Var(X)), we derive:

Var(Xij) = (σ2
C + σ2

R + σ2
M), Cov(Xij,Yij) = βCS(σ2

C + σ2
R), so that

β*
CS = βCS(σ2

C + σ2
R)/(σ2

C + σ2
R + σ2

M);

Var(xi) = (σ2
C + σ2

R/J +σ2
M/J), Cov(xi,Yij) = (βBS σ

2
C + βWS σ

2
R/J), so that

β*
BS = (βBS σ

2
C + βWS σ

2
R/J)/(σ2

C + σ2
R/J + σ 2

M/J);

Var (Xij − xi) = ((J − 1)/J)(σ2
R + σ2

M), Cov(Xij − xi, Yij − yi) = βWS σ
2

R ((J − 1)/J), so that

β*
W S = βWSσ

2
R/(σ2

R + σ2
M).

Thus, for example if βWS = βBS = βCS = 5 we therefore have from the above formulas

β*
CS = 5(σ2

C + σ2
R)

σ2
C + σ2

R + σ2
M

, β*
BS = 5σ2

C + 5σ2
R/J

σ2
C + σ2

R/J + σ2
M/J

, and β*
WS = 5σ2

R
σ2

R + σ2
M

.

Continuing with this numeric example, let σ2
C = 8, σ2

R = 2 and σ2
M = 10 and J = 5. The entire variance

of Xij is 20 of which half, 10, is from measurement error, 8 is variation of the central tendency of X
between-subjects and 2 is variation of X within-subject. Then β*

CS = 5(10)/20 = 2.5, β*
BS = 5(8.4)/10.4

= 4.03 and β*
WS = 5(2)/12 = 0.83. Considering that, without measurement error, true between and

within person slopes are both 5, measurement error has greatly attenuated β*
WS = 0.83 towards 0,

while β*
BS = 4.03 is the least tempered. This happens because β*

BS most fully retains the common
signal in X, but tempers M through averaging, while β*

WS more fully retains M while excluding the
between-subject signal in X.

Appendix D. Only βBS Is Estimable When Under Berkson-type Measurement Error

Since we have brought up classical measurement error we should also discuss the other common
type of measurement error known as Berkson error. For Berkson error the measurement error is
independent of the observed value (i.e., X), but is not independent from the true value (TX). Such a
situation is approximated when a common value is reported for all Ji replicates in the same subject
i. For example consider a study of radiation contamination of the milk supply with i = community
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and j = child within the community. Now the true value of daily milk consumption for each child,
TXij, is unknown, but the average daily consumption of milk across all children in that community,
µi, is known (or estimated with high degree of certainty as xi, with a caveat noted below) and is thus
substituted for Xij. With Berkson-type error, the common within subject mean, µ (or xi), rather than
the different Xij is observed across all j replicates. Thus, when Berkson-type error exists, the fitted
model estimates βBS by default and both βWS and βCS (which require knowledge of TXij) are not
identifiable. However, in practice of observational rather than laboratory studies Berkson-type error
may coexist with classical measure error in different ratios. This was described by Berkson (1950) [30]
as “modified controlled experimentation”. If so, then the estimate for βBS is likely attenuated (i.e., as a
β*

BS similar to what has been described in Appendix C for classical measurement error) due to the
classical measurement error component of xi that is computed from Xij. More formal exploration of this
hybrid quasi-Berkson-type error is given in context of occupational epidemiology in Kim et al. [18].
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