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Abstract

The potential of mean force (PMF) calculation in single molecule manipulation experiments performed via the steered
molecular dynamics (SMD) technique is a computationally very demanding task because the analyzed system has to be
perturbed very slowly to be kept close to equilibrium. Faster perturbations, far from equilibrium, increase dissipation and
move the average work away from the underlying free energy profile, and thus introduce a bias into the PMF estimate. The
Jarzynski equality offers a way to overcome the bias problem by being able to produce an exact estimate of the free energy
difference, regardless of the perturbation regime. However, with a limited number of samples and high dissipation the
Jarzynski equality also introduces a bias. In our previous work, based on the Brownian motion formalism, we introduced
three stochastic perturbation protocols aimed at improving the PMF calculation with the Jarzynski equality in single
molecule manipulation experiments and analogous computer simulations. This paper describes the PMF reconstruction
results based on full-atom molecular dynamics simulations, obtained with those three protocols. We also want to show that
the protocols are applicable with the second-order cumulant expansion formula. Our protocols offer a very noticeable
improvement over the simple constant velocity pulling. They are able to produce an acceptable estimate of PMF with a
significantly reduced bias, even with very fast perturbation regimes. Therefore, the protocols can be adopted as practical
and efficient tools for the analysis of mechanical properties of biological molecules.
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Introduction

Proteins with mechanical functions can be roughly divided into

two large groups. Members of the first group are mechanically

active which means that they perform biological tasks by

generating a mechanical force through their own conformational

changes. Such a force is usually observed during a stretching

experiment as an increased mechanical resistance to pulling.

Spectrin, a protein that forms the cytoskeleton in red blood cells

and muscle protein titin are examples of proteins with a direct

mechanical role. Members of the second group are force sensitive

proteins. They respond to a mechanical stimulus by changing their

overall three dimensional structure. Such changes trigger cascades

of various biochemical processes through the interactions these

proteins have with other biomolecules. The force sensitive proteins

thus serve as signal transmitters and signal transducers. Examples

of mechano-sensitive proteins are integrins, cadherins, fibronectin,

and bacterial adhesive protein fimH.

Mechanical properties of proteins belonging to either of these

two groups are determined by their potentials of mean force

(PMF), i.e., free-energy profiles along the reaction path. The

knowledge of PMF is therefore crucial for the complete

understanding of the functioning of a protein with a mechanical

role. The real-world single molecule manipulation with the atomic

force microscopy (AFM) [1,2,3,4] or with the optical tweezers [5],

and the simulated stretching via the steered molecular dynamics

(SMD) technique [2,3,4,6,7,8] can provide data for the PMF

reconstruction. Simulation methods, although easy to perform due

to advances in software and hardware, often cannot produce

enough data for a good quality PMF reconstruction. Their

limitations stem from the numerical complexity of simulation

protocols, which require fast, and therefore, far from equilibrium

perturbations. A fast perturbation inevitably increases dissipation

and a corresponding PMF estimate. Advances in nonequilibrium

statistical mechanics, especially the introduction of the Jarzynski

equality [9] opened a way toward a more accurate extraction of

equilibrium properties from nonequilibrium experiments. Howev-

er, the slow convergence of the Jarzynski equality with the increase

in the number of samples [10] seems to limit its applicability to

near equilibrium perturbation regimes only.

The potential of mean force may be perceived as a one-

dimensional function of a reaction coordinate, but it is, in fact, a

multidimensional free-energy profile averaged over all degrees of

freedom, except the very reaction coordinate being examined.

That multidimensionality means that a pulled protein may follow

very different unfolding pathways during repeated experiments

and thus may exhibit irreversible behavior during a short duration
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simulation (or experiment). A protein accidentally unfolded by a

random fluctuation may require more time to refold to the initial

state than available during a short duration SMD stretching

simulation (on protein folding times see Ref. [11]). Furthermore,

protein unfolding (or protein-ligand unbinding) is a process in

which the friction coefficient is a function of the reaction

coordinate. The friction between a polymer and its surrounding

determines the amplitude of thermal fluctuations. Brownian

motion simulations are usually performed with fixed diffusion/

friction coefficients, which means that the variance of their

fluctuations is constant. In real-world situations, protein structural

elements, open loops for example, often have very slow relaxation

times, and make the friction and the very stochastic behavior of

polymers dispersive [12].

The aim of this paper is to present three stochastic perturbation

protocols we developed in attempt to improve the PMF calculation

with the Jarzynski equality. The protocols were introduced in our

previous publication [13] in which we used a simple one-

dimensional Brownian motion model to simulate the fast polymer

stretching. Brownian simulations are useful due to the easiness of

their implementation [14,12,15], and the speed with which they

can be performed, but they are only crude simplifications of real-

life processes. Here we present results of our research based on

full-atom molecular dynamics simulations of a deca-alanin

stretching (deca-alanin is a peptide made of ten alanin amino-

acid residues).

The paper starts with a short overview of the theory of free-

energy calculation. Simulation and reconstruction procedures are

described in the second chapter. In that chapter we also introduce

the weighted histogram formula [14], used to implement the

Jarzynski equality, together with the second order cumulant

expansion formula [16]. In the next chapter, we describe a

standard SMD constant velocity perturbation protocol, analogous

to the protocols applied with real-life protein manipulation tools,

such as the atomic force microscopy (AFM), or the optical

tweezers. In that chapter, we also deal with the maximum bias

estimation. After that, we present results based on a simple

stochastic perturbation protocol, which offers only a limited

improvement over the normal constant velocity pulling. After that,

we introduce two improvements of the stochastic protocol. Finally,

we compare the efficiency of the three protocols. The paper ends

with the Conclusion.

Theory

All systems in nature dissipate energy when they perform work,

or when the external work is performed on them. That means that

the average external work used to perturb a given system between

two states is usually larger than the corresponding free-energy

difference, SWT§DF , a fact described by the Second Law of

Thermodynamics [17]. The mean work is usually larger than the

free energy difference because a part of the external work is always

dissipated. The equality is satisfied only if the external perturba-

tion is reversible, i.e., if it is infinitely slow. However, an infinitely

slow perturbation is difficult to perform or simulate which means

that practical perturbations are usually non-equilibrium processes.

Various theoretical, numerical and perturbation methods were

developed in attempt to improve the calculation of free energy.

Those methods move a given molecular system between two

terminal states by means of an external potential. Unfortunately,

they can produce an accurate estimate of DF only if the

perturbation is performed very slowly. Real-life, non-reversible

perturbations introduce a bias into the estimate. That bias can be

reduced through a further reduction of the perturbation rate,

which may be computationally very expensive.

In 1997, C. Jarzynski presented a theoretical framework able to

directly connect the exponential average of the external work

performed during the perturbation and the corresponding free-

energy difference [9]

Se{bW T~e{bDF : ð1Þ

The most important property of this relation is that it is not

restricted to close to equilibrium regimes only. The equality is

satisfied for any perturbation, only if enough samples are available

[10].

Theoretically speaking, the Jarzynski work relation is equality,

but in practice, with a limited number of work samples, it

generates a noticeable bias [10,16]. It was shown that for a bias

larger than 15 kBT, and equilibrated heath bath [18], the number

of samples required to reduce that bias to an acceptable level is

larger than a number of samples anyone can expect to obtain

experimentally [10]. Such a bias is noticeable with fast pulling

steered molecular dynamics (SMD) experiments [6,16]. A fast

SMD perturbation, at least three orders of magnitude faster than

real-word AFM experiments, generates a significant dissipation

which may raise the Jarzynski bias to a level which can hardly be

reduced through the increase in the number of samples [10,16].

Our research aim was to develop a new perturbation protocol

able to produce a good quality PMF reconstruction with a limited

number of samples. We wanted to enable the accurate calculation

of free energy using the fast pulling steered molecular dynamics

technique. The initial theoretical work on this problem was

presented in our previous publication [13] in which we used a

simple, Brownian motion model to develop three stochastic pulling

protocols. Here we present a full-atom SMD implementations of

the same three protocols.

The method development requires many repeated trials, which

means that the target system has to be made of a small number of

atoms. The small number of atoms allows fast computation and

multiple SMD simulations. Deca-alanine, a peptide made of ten

alanine residues (104 atoms) is ideal for that task because it keeps a

helical structure (2 whole helical turns) in vacuum, on a room

temperature [19]. That means that its pulling can be carried out

without a solvent. The solvent elimination reduces the computa-

tional costs, but requires the application of the Langevin dynamics

to control the system’s temperature and introduce random

fluctuations otherwise caused by a thermal environment. Deca-

alanin was already used to test the nonequilibrium work relation

[16,20]. The results based on the constant velocity pulling showed

that the Jarzynski equality can give a relatively accurate PMF

estimate, with a limited number of samples, only in a close to

equilibrium regime. That regime for deca-alanin is achieved when

the pulling velocity is 1 m/s or slower. A ten times faster pulling

(10 m/s) introduces a bias which even 10,000 puling trajectories

cannot reduce [16].

Simulation and reconstruction procedures

In a SMD simulation, a biological polymer is stretched

analogously to the stretching performed with AFM [1,2,3,4] or

with the optical tweezers [5]. In that kind of experiment, one end

(atom) of a molecule is fixed, and the other end is moved by a

cantilever. The cantilever, usually interpreted as a Hookean

spring, connects the terminal end of a pulled molecule (henceforth

pulled point) to the external point (pulling point, from now on)
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which moves with the predetermined protocol. In a simulation,

that cantilever is virtual, i.e., it does not occupy any space, but

influences the pulled point as an existing entity.

Two perturbation protocols are dominant in the polymer

stretching; one is the constant velocity pulling (normal pulling) and

other is the constant force pulling. Both of them can be used to

generate data for a PMF calculation. In this work, we are focused

on the constant velocity pertrubation.

The Jarzynski equality (Eq. 1) cannot be directly used to

calculate PMF because it only gives the free-energy difference

between two states, whereas PMF represents the evolution of free-

energy along the reaction coordinate. Hummer and Szabo [14]

adapted the Jarzynski equality to PMF calculation using the

weighted histogram method [21]

e{bG0(x)~

P
t

Sd x{x(t)½ � exp ({bW (t))T
Sexp ({bW (t))TP

t

exp ({bV (x,t))

Sexp ({bW (t))T

: ð2Þ

The term G0(x) in this formula is the value of the Gibbs free-energy

at a specific point x along the reaction path, W(t) is the work

sample at time t and V(x,t) is the external potential (instantaneous

deflection potential). We will use this equation for the Jarzynski

free-energy calculations.

The second-order cumulant expansion formula is used to

approximate the Jarzynski equality [16,22,23]. The cumulants

are obtained by expanding the logarithm of a characteristic

function. The second-order approximation is based on the

external work distribution properties in equilibrium. If the external

work has a normal distribution than all cumulants after the second

one are identical to zero. Only in that case, the formula for the

free-energy calculation is, without loss of generality,

DFE(t)~SW (t)T{
b

2
SW (t)2T{SW (t)T2
� �

: ð3Þ

This relation is identical to the near equilibrium formula

[24,25]. Park et al. [16] showed that the stiff spring approximation
[12] forces a polymer to adopt the quasi equilibrium behavior,

characterized by a normal distribution of the external work, thus

allowing the application of Eq. 3 without limitations. The stiff

spring imposes a short relaxation time, which allows the perturbed

system to maintain the equilibrium-like behavior. This approxi-

mation also interprets the external work used to pull the polymer-

spring system as a work used to stretch the polymer only. The

approximation assumes that the increased stiffness keeps the

pulling spring short, thus making the instantaneous deflection

potential negligible. The second order cumulant expansion shows

much faster convergence with biopolymers [16]. We did not use

the third-order cumulant expansion formula because it produces

rather noisy PMF estimates [26]. We will show later that the stiff

spring approximation is not always applicable, and that the

external work can deviate from the Gaussian distribution.

We used the NAMD simulation package [27] with the

CHARMM22 force field [28] to simulate the deca-alanin

stretching. The initial helical configuration was obtained from

the web site of Klaus Schulten’s Theoretical and Computational
Biophysics group (http://www.ks.uiuc.edu/Training/Tutorials/).

The Langevin dynamics was applied with the damping coefficient

c = 5 ps21 and the pulling spring stiffness was 500 pN/Å. The

perturbation protocols were implemented in the Tcl/Tk script

language embedded in the NAMD package. The simulation

package allows the application of a 2 fs time step via the SHAKE

integration algorithm. We used the same simulation parameters

and the same pulling velocities (1 m/s and 10 m/s) as Park et al.

used [16]. The first pulling velocity, 1 m/s, corresponds to the

close to equilibrium perturbation and produces a very good

estimate of PMF, whereas ten times faster velocity, 10 m/s,

introduces a significant bias. We, therefore, applied the stochastic

perturbation protocols to that velocity only. With each simulation

setup, we generated 10,000 trajectories, except for the 1 m/s

pulling, with which we generated 1000 trajectories only. Besides

using all 10,000 trajectories per simulation setup to calculate PMF,

we used smaller subsets of 100, 200, 500, 1000, 2000, 4000 and

8000 trajectories also. When the number of trajectories per subset

allowed multiple reconstructions, we calculated all possible PMF

estimates using separate non-overlapping subsets (for example, 100

reconstructions based on 100 trajectories, and so forth). We

applied the two aforementioned reconstruction procedures, (Eqs. 2

and 3) to calculate deca-alanin’s PMF at 500 points along the 20 Å

long reaction path.

Referent and benchmark PMF estimates
To estimate a referent deca-alanin’s PMF, we generated 40

trajectories using the normal pulling protocol with a very slow

pulling velocity, 0.002 m/s, and applied Eq. 2 on them. Those 40

slow pulling trajectories are computationally as expensive as

200,000 trajectories generated with the 10 m/s velocity. To

estimate the accuracy of that prediction, we used a bias estimating

procedure, based on the work of Gore et al. [10], that uses the

estimate’s fluctuations to establish the distance of that estimate

from a true free energy profile (the detailed description of that

procedure is given in the Chapter 3). The maximum bias our

0.002 m/s Jarzynski PMF estimate, thus established, is less than 1

kBT.

We also calculated a set of PMF estimates using the normal

constant velocity pulling protocol, with two velocities, 1 m/s and

10 m/s. We used those estimates as benchmarks.

Constant velocity pulling and the maximum bias
estimation

A Jarzynski PMF estimate based on a limited number of

trajectories is not very smooth, it contains fluctuations [10,13]. An

example of those fluctuations can be seen in Fig. 1a. When the

number of work samples is small, it can be assumed that the

estimate’s fluctuations are not an intrinsic property of the potential

but a byproduct of dissipation and limited sampling [10,13]. The

potential of mean force of a biological molecule cannot contain

high frequency fluctuations along the reaction path because such

fluctuations imply high amplitude forces that are (presumably) not

possible with biological polymers. The high frequency changes of

PMF along the reaction path would produce forces, as first spatial

derivatives of the potential, much higher than the forces

encountered in natural biomolecular systems.

The easiest way to extract the fluctuations from a Jarzynski

PMF estimate is to apply a digital filter to it. The knowledge of the

estimate’s harmonic spectrum is essential for that operation. The

analysis of the harmonic spectrum of an average deca-alanin

Jarzynski PMF estimate using the Fourier spectral analysis [29]

shows that only low frequency harmonics (the ones covering up to

4% of the sampling rate) have a significant contribution to its

shape. The rest of the spectrum has two orders of magnitude

smaller amplitudes and probably belongs to the fluctuations

caused by the limited sampling. Knowing that, we applied a low-
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pass filter (Butterworth filter) [30] with a 20 dB stop-band

attenuation and a sinusoidal cutoff frequency which is 3% of the

sampling frequency (for 500 sample points along the reaction

path). We used the numerical package MATLAB to perform the

filtering. The second-order cumulant expansion formula (Eq. 11)

does not require filtering because it produces very smooth

estimates. The second order expansion is itself a sort of filtering

procedure because it disregards the tails of the work distribution

and uses only the slowly changing variance, besides the mean

value of the external work.

Fig. 1b shows smoothed Jarzynski estimates and Fig. 1c second-

order cumulant-expansion reconstructions. These two figures

show that the faster pulling produces much better results with

the cumulant approximation than with the Jarzynski equality; the

cumulant-expansion formula bias at the end of the reaction path is

noticeably smaller than the analogous Jarzynski bias. The slow

pulling produces the same quality of reconstruction with both

averaging schemes because its work distribution is very narrow,

with negligible tails. Those tails are responsible for the higher bias

of the Jarzynski estimates when pulling is faster. It is also obvious

Figure 1. Normal pulling based estimates a) Jarzynski based PMF estimate based on the normal 10 m/s pulling and limited number
of trajectories (100). The thin and ‘‘noisy’’ line is the estimate, and the thick line passing through it is its smoothed version. The line on the bottom
is the absolute difference between the estimate and its smoothed version; it represents the estimate’s fluctuations. We used these fluctuations to
analyze the behavior and determine the maximum bias of our estimates. The dashed line is PMF. The dotted line is the mean work. b) PMF estimates
based on the normal pulling protocol and the Jarzynski equality, for 1 m/s and 10 m/s pulling velocities. c) PMF estimates based on the normal
pulling protocol and the cumulant expansion formula, for 1 m/s and 10 m/s pulling velocities. For each pulling velocity two estimates are given, one
based on the maximum number of work trajectories, and the other on 10 times less trajectories. With the slower pulling, we used fewer trajectories in
order to make the comparison on equal terms, i.e., using the same computational cost.
doi:10.1371/journal.pone.0101810.g001
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that the bias falls very slowly with the increase in the number of

samples (ten times more samples is much less effective than ten

times slower pulling [16]). However, this conclusion is applicable

to this case only (a small molecule and narrow-width thermal

fluctuations).

Fluctuations of a PMF estimate are not desirable because they

represent an inaccuracy, but they can be useful because they carry

information on the amount of bias. Gore et al. [10], as well as

Zuckerman and Woolf [31,32] connected the fluctuations of a

Jarzynski estimate sJ(N) to its bias BJ(N) when the number of

samples N is large and the heat bath is equilibrated (Eq. 9 in ref.

[10]):

s2
J (N)~

Var(e{bWdis)

b2N
~

2BJ (N)

b
: ð4Þ

We used this formula to calculate the maximum bias of our

Jarzynski PMF estimates based on the 10 m/s normal pulling (and

to calculate the bias of the referent 0.002 m/s velocity based

estimate). The thin line on the bottom of Fig. 1a shows the

estimate fluctuations obtained by subtracting the smoothed

estimate from the original one. That line clearly shows that the

amplitude of the fluctuations rises with the bias. Those fluctuations

were obtained by subtracting the filtered reconstruction from the

original PMF reconstruction. They were used together with Eq. 4

to obtain the estimate of the maximum bias. Multiple experiments

showed that this method produces the best results when the mean

value of the estimate’s fluctuations plus one standard deviation are

taken as the fluctuations maximum amplitude. This approach is

valid only if the underlying PMF is a slowly changing function.

We used the low-pass Butterworth digital filter to obtain the

estimates’ fluctuations and we tested that approach with a whole

range of filtering frequencies, from low cut-off values, which pass

through the filter just a few harmonics, to much higher cut-off

values, whose outputs accurately follow the shape of a Jarzynski

PMF estimate. If the cutoff frequency were identical to the

sampling frequency, the filter would not remove anything from the

input signal. In that case, the filter’s output would be the original

input signal (a Jarzynski PMF estimate). As an example of the

filtering behavior, see Fig. 2a. The red line in that figure minutely

follows the original PMF estimate (thin blue line), while the green

line exhibits much less fluctuations – it is more stable. The red and

green lines are smoothed PMF estimates obtained by filtering the

original PMF estimate using two different cut-off frequencies. The

green estimate was produced with a very low cutoff frequency, and

the red one with a ten times higher cutoff. The subtraction of the

red line from the original, blue PMF estimate produces

fluctuations that are in a good correlation to the bias. The green

line, on the other hand, overestimates the bias because it does not

accurately follow the fluctuations, it goes straight through the

estimate, and thus overestimates the fluctuations amplitude(s). The

green line is very smooth and mostly misses the local behavior of

the original estimate. That implies that the red line should be

chosen to extract the fluctuations. Therefore, without the

knowledge of the underlying bias, using just an observation of

the output of the described filtering procedure, one can (roughly)

estimate the correct frequency (or frequency range) to be applied

in the Jarzynski bias estimation.

To test this assumption we applied the filtering procedure with

various cutoff values, starting with 1.2% and going to 20% of the

sampling frequency. The behavior of bias estimates based on these

frequencies is depicted in Fig. 2b. The quality of the bias

prediction is expressed as the ratio of the bias prediction versus

the true bias for a given number of samples and a given cutoff

frequency. Every point is the average of multiple experiments (100

bias estimates for 100 trajectories per reconstruction, and so on).

The figure shows that the best bias estimates for a small number of

trajectories per reconstructions (100 to 1000) are obtained with

higher cut-off values (12% to 20%, i.e. 0.12 to 0.20). In those cases,

bias estimates are between 60% and 130% of the true Jarzynski

bias. Cutoff values lower than these (1.2% to 6%) hugely

overestimate the bias because the filtered output they produce is

not able to follow the overall shape of the original Jarzynski

estimate. That happens because the filtering procedure passes

through only a few sinusoidal harmonics that are not able to

accurately describe the input signal. The output is either above or

below the input. The fluctuations amplitude thus obtained is very

high and overestimates the bias when applied via Eq. 4.

A large number of trajectories per reconstruction (2000 or more

in this case) produces Jarzynski estimates with small amplitude,

long wavelength (low frequency) fluctuations that cannot be

extracted with the above described high frequency filtering. The

filtering based on a high cutoff frequency cannot see those low

amplitude fluctuations, because it is local in nature; it only sees a

very narrow region around the reconstruction point (see Fig. 2a),

for that matter it is similar to the moving average procedure. Long

wavelength fluctuations can be extracted using only very low cutoff

frequencies, lower than 2% of the sampling rate. The upper curve

in Fig. 2b, (red line) which corresponds to the 0.012 cutoff

frequency shows that bias estimates for this frequency, based on

8000 and 10,000 trajectories are relatively accurate, as opposed to

estimates based on a smaller number of trajectories. Therefore,

with many work samples, the cutoff frequency should be low.

However, a large number of work trajectories is very expensive to

produce, and not necessary, because the average Jarzynski bias

falls slowly with the increase in the number of samples (see Fig. 1b

and Ref. [10]).

We gave an overview of the proper way to design the filtering

procedure, but the cutoff frequency can be estimated through a

simple observation of the filtered output. It should follow the

overall shape of a PMF estimate, but it should follow its local

behavior as well.

To produce a robust predictor of the Jarzynski bias, for a small

number of samples, we averaged the output of four best bias

predictors based on four cutoff frequencies (0.03, 0.04, 0.06 and

0.08). Those frequencies produce the best predictions with

estimates based on a small number of samples per reconstructions

(100 to 1000). Fig. 2c depicts the behavior of the averaging bias

predictor (red line), and four predictors based on the individual

cutoff frequencies, for the reconstructions based on 100, 200, 500

and 1000 trajectories. It is clear that with 200 samples per

reconstructions the averaging predictor accurately estimates the

bias. With 100 samples only, the procedure overestimates the bias.

We will show later that a moderate bias overestimate (less than

30% in this case) is not a drawback when that bias prediction is

used to estimate the amount of the external noise required to

improve the external work sampling.

Figure 2c shows that the filtering of PMF estimates based on a

small number of work trajectories (100–1000) using medium to

high frequencies produces acceptable maximum bias estimates.

The filtering with higher cutoff values underestimates the bias

(Fig. 2b, dark blue line on the bottom).

The whole maximum bias estimating procedure based on Eq. 4

may be omitted if the height of free-energy barrier is already

known, for example, if it is experimentally estimated (real-life

experiments).
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Palassini and Ritort derived a bias estimator [33] that uses

parameters of the external work distribution, instead the behavior

of the free energy estimate itself. In our case, the application of

their bias estimator may be difficult to implement because the

external work distribution changes width along the reaction path.

Maximum bias reduction

The fast polymer stretching generates a dissipation which

inevitably introduces a bias into the Jarzynski PMF estimate. That

bias can be reduced through the increase in the number of pulling

Figure 2. Maximum bias estimation. a) Original PMF estimate (blue line, moved up by 5 KBT for a clearer picture) in comparison to its two filtered
(smoothed) versions. The first version (the green one) is produced by applying a low pass filter (Butterworth) with a very low cutoff frequency (2% of
the sampling frequency). The second filtered output (the red one) is also produced by the low pass filtering, but with a much higher cutoff frequency
(20% of the sampling frequency). b) Quality of the bias estimating based on the low-pass filtering technique. The quality is expressed as the percent
of the true bias predicted for a given number of pulling trajectories. The cutoff frequencies are in the range 0.012 to 0.20 (1.2 to 20%) of the sampling
frequency. The dashed line designates the actual bias for a given number of trajectories. c) Maximum bias predictor behavior for a limited number of
work trajectories per reconstruction (100 to 1000). The behavior of the maximum bias predictor (red line), as an average of four predictors based on 4
different cutoff frequencies, (0.03, 0.04, 0.06 and 0.08, blue lines).
doi:10.1371/journal.pone.0101810.g002
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trajectories, or through the decrease of the pulling velocity [13,16].

Unfortunately, both approaches are computationally unfeasible; a

number of samples required to decrease the estimate’s bias to an

acceptable level, for example, less than 1 kBT, may be larger than

the number of trajectories experimentalist can expect to generate

using SMD or AFM [10,16], and the decrease of the pulling

velocity is computationally always expensive. Therefore, a

different approach has to be applied to achieve a desired quality

of reconstruction. One approach may be the increase of the

probability of generating work samples with a reduced dissipation,

while maintaining the same pulling velocity. A number of methods

was devised to increase that probability, i.e., to improve the

external work sampling. We gave an overview of these methods in

our previous publications (see Discussions in Refs. [13,34]). In this

work we followed the same idea, namely, we wanted to

intentionally broaden the external work distribution in a controlled

manner in attempt to increase the probability of generating work

samples with a small dissipation. This approach inevitably

increases the error of the mean work, but also increases the

number of low dissipation samples emphasized by the Jarzynski

equality [13].

The work distribution can be unintentionally broadened by the

imperfections of the experimental setup, but its width can be

purposely increased through the introduction of the random

fluctuations of the pulling spring. Those fluctuations can be

applied via symmetrically distributed random perturbations of the

pulling point (cantilever), i.e., through the intentionally added zero

mean external noise. The pulling spring then directly transfers that

noise to the pulled point (the pulled terminus of a polymer). The

pulling point in that case follows the stochastic pulling protocol

x(t)~x(0)zv:n:Dtzsx
:g(t), ð5Þ

in contrast to the normal pulling where the pulling point moves

deterministically

x(t)~x(0)zv:n:Dt: ð6Þ

In this scheme, the stochastic component is guided by the

distribution function g(t) with a standard deviation sx. We choose

to apply the normal distribution to guide the stochastic perturba-

tion because it is the most prevalent distribution in nature and its

analytical treatment is straightforward. Therefore, the external

noise thus applied increases the standard deviation of the pulled

point through the fluctuations of the pulling spring. The increased

deviation of the protein’s position increases the fluctuation of the

external work and consequently improves the external work

sampling. This approach has to omit the external noise at the very

sampling moments to allow the exact external work calculation

through the weighted histogram protocol (Eq. 2). If the noise

component is present during the sampling moments, the external

work exhibits additional fluctuations, and make the external work

calculation less precise, and the whole PMF reconstruction

procedure impractical. Without the omission, the calculated work

can be an approximated if it is assumed that the pulling point

moves deterministically. However, that approach does not

accurately calculate the external work. In our implementation,

the external work calculation is exact because at the sampling

moments, the pulling point has the same value x(t) it should have if

it would be moving completely deterministically (Eq. 6).

The work generated by the stochastic movement of the pulling

point can be treated as a function of the random spring extension

X and the spring stiffness k as W~k:X 2. For a given spring

extension distribution function f(x), the distribution function of the

random work W is [35]

fWR
(w)~

fx(
ffiffiffiffiffiffiffiffiffi
w=k

p
)

2
ffiffiffiffiffiffiffiffi
w:k
p z

fx({
ffiffiffiffiffiffiffiffiffi
w=k

p
)

2
ffiffiffiffiffiffiffiffi
w:k
p : ð7Þ

If the external noise is applied with the every time step of the

simulation, its standard deviation can be given as a multiple of the

standard deviation of the position of the pulled particle, caused by

the thermal fluctuations of the polymer and its environment. We

want to express the standard deviation of the pulling cantilever sx,

as a multiple of the standard deviation sr of the pulled atom

caused by thermal fluctuations. For a known diffusion coefficient

D, the standard deviation of the pulled particle is, according to the

theory of Brownian motion, equal to sr~
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

, [17,22,36].

Following that, we express the standard deviation of the noise

applied to the pulling point as sx~m:sr~m:
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

, with m
being the noise multiplication factor, i.e., noise amplitude. To

calculate the required noise amplitude m, we used 3.5 ? 1029

m2s21 for the diffusion coefficient D. That value is based on the

diffusion coefficient estimate of Park et al. [16]. They estimated

maximum D to be 2.7 ? 1029 m2s21, using their SMD data based

on the normal pulling protocol. We increased that value 30% to

account for the maximum width of the external work. That

increase does not change the effective noise amplitude because a

lower value of D would only increase the required noise amplitude

m.

When the random variation of the pulling point sx
:g(t) is

normally distributed, the distribution of the external random work

(Eq. 7) belongs to the family of chi-square functions

fWr (w)~fx

ffiffiffiffiffiffiffiffiffi
w=k

p� �
=
ffiffiffiffiffiffi
kw
p

~
exp {(w=k)=(2s2

x)
� �

sx

ffiffiffiffiffiffiffiffiffiffiffi
2pkw
p� � , ð8Þ

with a standard deviation

sWr~
ffiffiffi
3
p

ks2
x~

ffiffiffi
3
p

km2(2DDt): ð9Þ

The work calculation via the weighted histogram protocol requires

the noise omission at the very sampling moments, as we explained

previously [13]. The value of the pulling coordinate x(t) at those

moments is the same as in the case of the normal (non stochastic)

pulling. However, the effective work amplitude (standard deviation

of the stochastic external work) averaged over n time steps

between two sampling points is approximately
ffiffiffi
n
p

times smaller

than the standard deviation of the instantaneous work fluctuation.

Therefore, the effective noise is expressed as the root mean square

deviation of the instantaneous noise over n time steps; in our case

with the 10 m/s pulling, n is 200. Consequently, the effective

deviation of the external random work is

sWr~
ffiffiffi
3
p

ks2
x~

ffiffiffi
3
p

km2(2DDt)=
ffiffiffi
n
p

: ð10Þ

Here we assume that the effective work distribution, follows the

chi-square distribution. This assumption is based on the fact that

the additional external work has a much larger amplitude, i.e.

standard deviation, than the internal, natural noise. We used a stiff

spring to pull the polymer (stiff spring reduces the relaxation time
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of a polymer-spring system, see Ref. [16]), but we also assumed

that the external work partly deviates from the Gaussian behavior

for large noise amplitudes. Our simulation experiments confirmed

this assumption; see for example Fig. A1c in the Appendix S1.

In our previous paper [13], based on a simple one-dimensional

Brownian motion protocol, we showed that in order to reduce the

Jarzynski bias, with a limited number of samples, the standard

deviation of the external random work sWr
should be close to the

bias of the mean work SWT based on the normal, non-stochastic

pulling protocol. That approach offers a much faster estimate

convergence than the normal, constant velocity pulling. With an

infinite number of samples, a Jarzynski equality estimate inevitably

converges, even if the standard deviation is larger than the bias

due to asymmetry of the external work distribution. This is the key

property of the Jarzynski equality.

Previously, we only dealt with the improvement of the

convergence of the Jarzynski PMF estimator [13], while in the

present study we want to show that the increased work variance

can improve the PMF calculation based on the second cumulant

expansion formula also. A normal distribution of the external work

is required for the application of this formula (moments higher

than the second have to be zero). That means that the pulling

point (pulling spring) distribution must induce a normal distribu-

tion to the external work. Although the stiff spring [16] imposes a

normal distribution on the external work, the high amplitude

external noise may produce a distribution which deviates from the

Gaussian shape. To address that issue we decided to apply a

pulling point distribution which inevitably imposes a normal

distribution to the external work.

If W is the external work and X is the random spring extension

with a distribution function fX(x), then W can be written as W =

g(X). The probability density of the external work fW(w) is obtained

as the first derivative of the probability function FW(w). That

derivative can be expressed via the probability density function of

the spring extension fX(x) and the function h, which is the inverse

of the function g(X), h = g21,

fW (w)~F ’W (w)~fX h(w)ð Þ:Dh’(w)D

In our case, the function g(X) is a quadratic function (W = k?X2).

Therefore, we can write

FW (w)~P(Wƒw)~P(kX 2
ƒw)

~P {

ffiffiffiffi
w

k

r
ƒXƒ

ffiffiffiffi
w

k

r� �
~FX

ffiffiffi
s

k

r� �
{FX {

ffiffiffi
s

k

r� �
:

The probability density function is,

fW (w)~fX

ffiffiffiffi
w

k

r� �
1

2
ffiffiffiffiffiffi
wk
p zfX {

ffiffiffiffi
w

k

r� �
1

2
ffiffiffiffiffiffi
wk
p :

The function fW(w) has to be a normal distribution, which means

that fX(x) has to be

fX (x)~
1

s2
r

ffiffiffiffiffiffi
2p
p e

{ x4

2s4
r :DxD: ð11Þ

Consequently fW(w) is

fW (w)~
1

ks2
r

ffiffiffiffiffiffi
2p
p e

{ w2

k2s4
r : ð12Þ

To generate the desired density fX(x) we applied a simple

elimination method (Rejection algorithm). The details of this

scheme are given in the Appendix S1 (Elimination scheme for

generating random numbers - rejection algorithm).

When the second-order cumulant expansion approximation is

used, the amplitude of the external noise has to be smaller than the

amplitude of the noise applied with the Jarzynski equality. The

amplitude is smaller because the second order cumulant has a

quadratic dependence on the work deviation, (the second cumulant
is 0:5:b:s2

Wr
), while sWr

itself has a quadratic dependence on the

noise amplitude. Therefore, the second cumulant expansion has a

fourth-degree dependence on the noise amplitude m (see Appendix

S1, Fig. A2 in Appendix S1). The second reason why the cumulant

expansion converges faster is in the behavior of the external work.

If the external work is normally distributed, all cumulants after the

second are identical to zero. Those cumulants, if present, would

give a positive contribution to the cumulant expansion sum and

thus reduce the convergence rate.

Constant velocity pulling with the additional constant
variance noise

To test the ability of the external noise to improve the PMF

calculation we followed the methodology described in the Section

IV of our previous paper [13]. We tested a simple stochastic

protocol that adds the constant variance noise during the constant

velocity pulling. We applied that protocol to stretch deca-alanin.

The noise multiplication factor m was calculated via Eq. 10. If the

standard deviation of the external work sWr
is equivalent to the

mean work bias (biasSWT), based on the normal pulling, the noise

amplitude m should be equal to (see Eq. 10 in [13])

m&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias(SWT)ffiffiffi
3
p

:k:2DDt=
ffiffiffi
n
p

s
: ð13Þ

The crucial element of this calculation is the knowledge of the

maximum mean work SWT bias. We already depicted the

procedure for the Jarzynski bias estimation (see Chapter 3 and

Fig. 2). The bias of the mean work can be easily calculated as the

sum of the Jarzynski bias and the difference between the mean

work and the Jarzynski PMF estimate (the mean work and the

initial Jarzynski estimate are known and both are based on the

same set of pulling trajectories). To account for the variable noise

amplitude (that issue will be explained later, in the section dealing

with the noise modulation), we multiplied the expression for the

denominator 3:k:2DDt=
ffiffiffi
n
p

with (0.74)2. 0.74 is the average value

of the noise guiding function. We squared it because the

amplitude-modulated noise has a quadratic dependence on the

noise amplitude.

We tested this stochastic perturbation protocol with the 10 m/s

pulling using six different noise amplitudes: 160, 170, 180, 190,

200 and 210. The noise amplitude m equal to 160 corresponds to

the maximum mean work bias of 28 kBT; m equal to 170

corresponds to the maximum bias of 32 kBT; m equal to 180

corresponds to maximum bias of 36 kBT, m equal to 190

corresponds to the maximum bias of 40 kBT, m equal to 200

corresponds to the maximum bias of 45 kBT, and m equal to 210
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corresponds to the maximum bias of 50 kBT (see Appendix S1,

Chapter - Noise amplitudes, Fig. A2 in Appendix S1). The

amplitudes values which exactly correspond to the above given

biases slightly differ from the given amplitudes; we rounded the

amplitudes to a closest decade for easier analysis. We used these

amplitudes to test the behavior of the perturbation protocol when

the amplitude of the external noise precisely corresponds to the

maximum bias, and to test the protocol when the noise has higher

and lower amplitudes due to the imperfection of the bias

estimation protocol. We also used different noise amplitudes

because we wanted to examine how the PMF estimator behaves

when the number of trajectories per reconstruction gets increased.

With each noise amplitude, we performed 10,000 simulations and

calculated corresponding PMF estimates using the Jarzynski

equality (Eq. 2).

Fig. 3a depicts PMF estimates based on the constant variance

stochastic perturbation protocol, reconstructed with the Jarzynski

equality. Besides four reconstructions based on the stochastic

pulling protocols (based on four highest Gussian noise amplitudes,

m = 180 to 210), two reconstructions based on the normal pulling

protocol (1 m/s and 10 m/s), are also shown. It is obvious that the

external noise helps in decreasing the maximum DG(r) overesti-

mate (the maximum Jarzynski bias, at the end of the reaction path,

is reduced to zero, using the same number of trajectories as with

the normal pulling), but it also introduces a significant underes-

timate along the reaction path, regardless the noise amplitude m.

That means that the external noise with the constant variance is

not able to consistently improve the Jarzynski based PMF

estimation. The similar underestimate was observed in the real

world, when the optical tweezers were used to probe a single RNA

hairpin [37]. We will addressed the underestimate in the last

Chapter of the Appendix S1.

We also applied the stochastic perturbation protocol with the

second cumulant expansion formula (Eq. 3). To calculate the

required noise amplitude we followed a simple assumption; if the

mean work bias (the difference between the mean work and PMF)

is equal to the second cumulant of the external work, b=2s2
Wr

� �
,

the bias of the estimate based on the second-order cumulant

expansion formula will be annulled. In this case also the effective

work variation has to be expressed as the root mean square

deviation because the external noise has to be omitted at the very

sampling moments. Therefore, the work deviation has to be

divided by
ffiffiffi
n
p

, as with the Jarzynski noise, where n is the number

of steps between any two sampling points, 200 in the case of

10 m/s pulling.

b

2
s2

Wr
~bias SWTð Þ

b

2

k2:m4:s4
x

n
~bias SWTð Þ

: ð14Þ

If the second cumulant b=2s2
Wr

� �
is equal to the mean work bias,

the noise amplitude m is

m&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias SWTð Þ:2:n
b:k24D2DT2

4

s
: ð15Þ

With the cumulant expansion formula and with the 10 m/s

pulling, the mean work bias is 37 kBT, therefore, the noise

amplitude m has to be 100 (Eq. 15). We used higher and lower

noise amplitudes, m = 80 to 130, in steps of 10, to test how they

affect the reconstruction (m = 80 corresponds to the maximum bias

of 15 kBT, and m = 130 corresponds to the maximum bias of 110

kBT, see Fig. A2 in the Appendix S1). We used noise amplitudes

which correspond to very high bias values, much higher than the

real bias, because the polymer itself dampness the random spring

fluctuations. Besides that, the work distribution is never an ideal

Gaussian. It has ‘‘fat’’ tails, which move the estimate up.

Furthermore, the cumulant expansion formula is sensitive only

to the variance of the external work, which moves more slowly

than the width of the work distribution. Thus, the noise amplitude

has to be higher than estimated by Eq. 15. The noise modulation

protocols also require higher noise amplitudes because they reduce

the efficiency of the external noise. We will address them later.

Fig. 3b shows PMF estimates based on the stochastic perturba-

tion protocol, calculated with the second-order cumulant-expan-

sion formula (Eq. 3). Besides four reconstructions based on the

stochastic pulling protocols (based on four highest chi-square noise

amplitudes, m = 100 to 130) two reconstructions based on the

normal pulling protocol (1 m/s and 10 m/s), are also shown.

When compared to the Jarzynski estimates, it is clear that these

estimates have lower biases, and noticeably smaller underesti-

mates. Their noise amplitudes, although smaller than the

amplitudes applied with the Gaussian noise and the Jarzynski

averaging, are more efficient in improving the PMF calculation.

The highest noise amplitude (m = 130, magenta line) is the most

successful in reducing the bias with only a small, but noticeable

underestimate.

It is obvious that the external noise with a constant variance

efficiently reduces the bias when the cumulant-expansion formula

is used, but it is not an appropriate tool to improve the

convergence of the Jarzynski PMF estimator. The high noise at

the beginning of the reaction path may force a polymer to

suddenly unfold. That irregular unfolding is reflected as the PMF

underestimate because the Jarzynski equality emphasizes low

dissipation work trajectories. The external noise, besides spreading

the external work distribution, also slightly reduces the mean value

of the external work (see Fig. A1 in the Appendix S1). That

happens because the polymer perturbed with the additional

external noise easier crosses the free energy barrier. The second-

order cumulant-expansion formula converges faster, with smaller

noise amplitudes than the Jarzynski equality, but it cannot avoid a

small PMF underestimation, especially with higher noise ampli-

tudes. All that implies that the external noise has to be adapted to

the bias behavior along the reaction path. We previously showed

that the information on the bias evolution along the reaction path

is contained in the fluctuations of a Jarzynski estimate [13]. That

behavior can be used to adapt the external noise to the bias.

Bias behavior along the reaction path
A Jarzynski based PMF estimate, when dissipation is high and

the number of work samples is limited, contains a bias [10,16].

The bias appears because the usually short pulling time does not

allow the complete release of the thermal energy accumulated in

the system. The narrow work distribution is not able to efficiently

sample the external work, which means that on average, the

Jarzynski PMF bias is an increasing function of the pulling

coordinate. The increase is not uniform because the underlying

PMF is not a simple, linear function. Gore, et al. [10], as well as

Zuckerman and Woolf [31,32], showed that there is a direct,

nonlinear relation between the variance of the estimate and its bias

(see Eq. 4). Therefore, it can be assumed that the behavior of the

estimate’s fluctuation roughly depicts the bias evolution along the

reaction path [10,13].
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The fluctuations of a Jarzynski based PMF estimate can be

extracted by subtracting the smoothed version of the estimate from

the original, Jarzynski one (see the bottom line in Fig. 1a and

Fig. 4a). The first step in the fluctuation extraction is the

calculation of the smoothed estimate. To get the smoothed

estimate, we again applied the 5th order Butterworth filter. The

limited sampling produces a higher variance of the Jarzynski

estimate, especially at the end of the reaction path where the

accumulated energy is highest. To properly access the fluctuations

we used a lower cutoff frequency (0.02 of the sampling frequency,

for 500 reconstruction points per estimate), and to get a statistical

overview, we calculated 5 reconstructions; each based on 10

separate fast puling trajectories. We did not use more than 5 PMF

reconstructions because we wanted to reduce the computational

costs. We used a slightly higher cutoff frequency because we

wanted to extract high amplitude fluctuations caused by the

limited sampling. The computational cost to produce those 50

work trajectories is negligible in comparison to the total

computational cost (10,000 fast pulling trajectories). Besides, it

was shown that the bias in this kind of experiments falls rather

slowly with the increase in the number of samples [10,16].

The normalized average of 5 sets of estimate fluctuations,

DF̂Fnoise(r) (Fig. 4b), obtained following the above procedure, can

be seen as a rough description of the bias behavior along the

reaction path. However, that description is itself very noisy. That

noise could hardly be an artifact of the underlying potential

because sudden changes of PMF along the reaction path would

generate forces much higher than the forces expected from a

biological system. As we already explained before (Chapter 3),

those high frequency fluctuations were generated by the inefficient

sampling and high dissipation, which means that they have to be

filtered out. As before, we applied the low-pass Butterworth digital

filter to perform that task. The cutoff frequency was lowered to

0.004 due to the rough nature of the extracted bias fluctuations (we

came to that cutoff value by observing the shape of the filtered

output). The absolute, normalized, average version of those

fluctuations DDF̂Fnoise(r)D=max DDF̂Fnoise(r)D
� �

and their smoothed,

normalized variant Vnoise(r) are both shown in Fig. 4b. We moved

the guiding function Vnoise(r) down to 0 and normalized it to avoid

the high external noise at the beginning of the reaction path.

The Vnoise(r) function, when compared to the shapes of the

original and reconstructed potentials shows that our assumption is

correct, i.e. that the amplitude of the estimate fluctuations roughly

follows the evolution of the bias [13]. The exact relationship would

be hard to obtain because dissipation and the bias, both depend on

the underlying potential which shape is unknown before the

experiment. The precise knowledge of the bias behavior along the

reaction path would be sufficient to remove the bias from the PMF

estimate, but that information is impossible to obtain with

perturbations far from equilibrium and a small number of work

trajectories.

Figure 3. Constant variance noise based reconstructions. a) Jarzynski PMF estimates based on the constant variance noise protocol. The
Gaussian noise was applied with the 10 m/s pulling velocity. Four noise amplitudes are depicted, m = 180, 190, 200 and 210. b) Cumulant expansion
PMF estimates based on the constant variance noise protocol. The Chi-square noise was applied with the 10 m/s pulling velocity. Four noise
amplitudes are depicted, m = 100, 110, 120 and 130. The estimates based on the normal pulling (1 m/s and 10 m/s) are given for the comparison. In
each case depicted the computational cost is the same, i.e., it is analogous to the cost required to generate 10,000 trajectories using normal pulling
and 10 m/s velocity.
doi:10.1371/journal.pone.0101810.g003
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Two improvements of the stochastic perturbation
protocol

In our previous paper [13] we introduced two adaptive

stochastic perturbation (ASP) protocols which utilize the position

dependent function Vnoise(r) to adjust the externally applied noise

to the bias behavior. The first and more obvious protocol

modulates the amplitude, i.e., the standard deviation of the

external noise, so we named it the amplitude modulation (AM).

The second protocol modifies the probability of the noise

appearance during the stretching, which means that it deals with

the frequency of the noise appearance, so we named it the

frequency modulation (FM). This chapter gives a detailed

description of their full-atom SMD implementations.

Amplitude modulation of the external noise
The amplitude modulation protocol (AM), as it name implies,

alters (modulates) the standard deviation sx of the externally

applied noise (stochastic fluctuation of the pulling point) during the

polymer stretching. The standard deviation in that case is not

constant during the perturbation; it depends on the pulling

coordinate through the normalized function Vnoise(t):

sx~ Vnoise(t):mð Þ:sr~ Vnoise(t):mð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

: ð16Þ

This method controls the work performed by the external noise

through the modulation of its amplitude via the position

dependent function Vnoise. The current sampling time step t is

used to extract the corresponding value of the function Vnoise. This

approach is applied because the pulled point r, i.e. the protein

itself, exhibits random fluctuations due to presence of both thermal

and external noises. The random fluctuations prohibit the

continuous change of the noise amplitude. Our aim was to change

the function Vnoise continuously and deterministically throughout

the perturbation, thus we opted to extract the values of the

function Vnoise via the sampling time step t, instead via the pulled

coordinate r. That means that the values of the function Vnoise are

extracted using the position of the cantilever x (without noise being

added), which is, itself, linearly dependent on the pulling moment

t. This approach is acceptable because the stiff spring keeps both

(pulled and the pulling) points in proximity. The function Vnoise

changes value at the sampling moments and on those moments,

the pulling point has deterministic values (the noise is not added

when the external work is sampled, as we already explained).

Therefore, the above equation should be read as

sx~ Vnoise(x(t)):mð Þ:sr~ Vnoise(x(t)):mð Þ:
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

: ð17Þ

When the polymer is stretched using the normal, constant velocity

pulling the cantilever covers an equal distance between every two

Figure 4. Jarzynski PMF estimate fluctuations analysis. a) Extraction of the estimate fluctuations by subtracting the filtered estimate from the
original Jarzynski estimate. b) Creation of the function Vnoise(r) by filtering out the estimate fluctuations (as an average extracted from 5
reconstructions based on 10 different trajectories each).
doi:10.1371/journal.pone.0101810.g004
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sampling steps. That distance is made of a large number of equally

distributed (sub)steps. The stochastic perturbation assumes that the

external noise is applied with each and every of those intermediate

steps (except at the very sampling moments when the external

noise is omitted). With the amplitude-modulated external noise, sx

is multiplied by the position dependent function Vnoise(t). Fig. A3a

in the Appendix S1 depicts how the noise amplitude changes

throughout a single pulling experiment. When the number of

simulation steps between two sampling points is n, the average

work performed by the amplitude-modulated external noise is

SWAM (t)T ~k
Pn
t~0

S Vnoise(t):sx
:g(t)ð Þ2T

~k Vnoise(t)½ �2s2
x

Pn
t~0

Sg(t)2T:
ð18Þ

The second line stems from the fact that the function Vnoise is

constant between every two consecutive sampling moments. It is

constant because the function (signal) Vnoise has the same

resolution as the sampled external work, and the reconstruction

(500 points along the reaction path). This derivation shows that the

average random work of the amplitude modulate noise has a

quadratic dependence on the function Vnoise.

We applied the AM protocol only to the fast pulling regime, i.e.

to the 10 m/s velocity. To reconstruct PMF we applied both

averaging schemes (Eqs. 2 and 3). The noise amplitudes for both

sets of simulations (Gaussian and chi-square noise) were the same

as with the constant noise perturbations experiments. To test the

efficiency of the AM noise protocol we conducted 10,000

simulations with each noise amplitude.

Fig. 5a shows that the AM noise protocol coupled to the

Jarzynski equality effectively reduces both the maximum PMF bias

and the PMF underestimate. The AM protocol improves the PMF

reconstruction even when the maximum bias is underestimated,

i.e. when the required noise amplitude is underestimated. Of all six

noise amplitudes (four depicted in Fig. 5) the highest noise

amplitude (m = 210) was the most efficient. It was able to

efficiently reduce the maximum bias, without a pronounced

underestimate. The statistical analysis, given later in the paper,

shows that the quality of the reconstruction obtained with only 100

trajectories and the AM noise protocol cannot be achieved with

the normal pulling and 10,000 trajectories.

The comparison of Figures 3a and 5a shows that the AM noise

is less effective in the maximum bias reduction than the constant

variance noise. That is to be expected, because the reduced

amplitude of AM noise at the beginning of the simulation reduces

the probability of generating trajectories with a minimal work and

thus reduces the overall probability of generating work samples

with a minimal dissipation. That also implies that the amplitude of

the external noise has to be increased, when the noise modulation

is used, in order to achieve the bias reduction analogous to the

reduction produced with the constant variance noise.

The AM perturbation protocol was also tested with the

cumulant expansion formula. We used the same noise distribution

(chi-square) and the same noise amplitudes (80 to 130) as with the

constant noise perturbation, see Chapter 4.1. We also applied the

AM protocol with the same Vnoise function as with the trajectories

intended to be reconstructed with the Jarzynski equality. This

approach can be accepted because the function Vnoise is only a

rough descriptor of the bias. Fig. 5b shows the results of this

approach. The AM protocol reduces the bias, although not as

effectively as the constant variance noise, but it also successfully

eliminates the underestimate.

Figure 5 (panels a and b) shows that the AM protocol can

effectively reduce the bias of a PMF estimate caused by a far from

equilibrium perturbation. The final outputs are of a similar quality

for both averaging schemes, although the applied noise amplitudes

are not equal. That happens because the cumulant-expansion

formula has initially smaller bias and converges faster than the

Jarzynski equality. However, that also means that the AM protocol

more effectively reduces the bias of the Jarzynski estimator, than

the bias of the cumulant expansion formula.

Frequency modulation of the external noise
Stochastic fluctuations of an unperturbed system are caused by

the system’s own internal energy, and by the energy of the

surrounding thermal bath. Their joint variance is primarily

influenced by the properties of the heath bath because the

observed system is usually much smaller than the bath. If the

fluctuations have a clearly defined distribution, then the energy

they transfer to the system is determined by either their standard

deviation, or the duration of a time step between their successive

applications [30,38]. The change of the time step is, in essence, the

change of the frequency of fluctuations. Regardless of the

fluctuations’ nature (internal, or external) the control of their

frequency determines the amount of energy they transfer to the

system. In the previous chapter, we dealt with the amplitude

modulation of the external noise and in this we are going to

address the modulation of its frequency (FM noise).

The energy pumped into a system by an energy-carrying signal

depends, besides its amplitude and shape, on its frequency also.

That frequency can be defined as the number of energy packets
received by the system between consecutive sampling moments

[30,38]. The more energy packets are generated per unit of time,

the more energy is transferred to the system. It is important to

remember that the energy carrying signal does not have to be

deterministic, its nature can be stochastic (such a signal can be seen

as a sum of infinitely many harmonic components with a flat

power density spectrum [29]). The instantaneous value of that

signal can be hard to obtain, but its average value is often easily

calculated or measured. In our case, if the number of simulation

time steps between two sampling points is n, the average energy

pumped into the system, i.e., the average work performed by the

external stochastic signal [38] is equal to:

SWr(t)T~
Xn

i~0

SW (i)T~k:
Xn

i~0

S sx
:g(i)2

� �
T: ð19Þ

This relation shows that the average work SW (t)T directly

depends on the number of noise samples n. Consequently, the

amount of the stochastic work can be controlled by the alteration

of that number. The normalized function Vnoise, which we already

used to control the amplitude of the external noise, is ideally suited

for that task. When this function is equal to 1, the noise should be

applied without any constraints. When this function is equal to 0,

the external noise should not be applied at all, i.e., the stochastic

fluctuations should come from the system’s internal energy and the

thermal environment only. When the current value of this function

is between those two extremes (between 0 and 1), the number of

noise applications during n simulation time steps should be as close

to n:Vnoise(t) as possible, where t corresponds to the current

sampling time step. The question remains, what is the most

efficient way to distribute n:Vnoise(t) random impulses over the n
time steps? That issue becomes emphasized when the external

noise has to be applied with a real-life experimental setup, for

example with AFM. To address that issue, we devised a method
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which randomly determines whether the external noise with the

constant variance is going to be applied, or not. The method uses

an additional generator of uniformly distributed random numbers

between 0 and 1, and compares its output R(t) to the current value

of the function Vnoise(t). The constant variance noise is applied

only if that output is smaller or equal to the current value of the

function Vnoise(t). This method should, on average, generate

n:Vnoise(t) random perturbations over n simulation time steps

between two sampling points. The very number of random

impulses per particular trajectory may differ from n:Vnoise(t), but it

should be very close to that value if the number of simulation time

steps between two sampling points is large enough to allow the

random number generator to produce enough numbers recog-

nized as uniformly distributed. Fig. A3b in the Appendix S1

depicts the behavior of the FM noise protocol during the

stretching. The average work performed by the frequency-

modulated external noise is therefore

SWFM (t)T~
Xn:Vnoise(t)

i~0

SW (i)T~k:
Xn:Vnoise(t)

i~0

S sx
:g(i)ð Þ2T: ð20Þ

The true comparison between the two modulation protocols, AM

and FM, requires the comparison of their average works on equal

terms. That can be done if the average work of the FM noise

SWFM (r)T, is expressed through the summation over n simulation

time steps, instead of n:Vnoise(t) steps (for the average work of the

AM noise see Eq. 18). To make things clear, we can imagine that

the generator which produces the stochastic perturbation of the

pulling point produces random fluctuations with every time step,

regardless of the current values of the functions Vnoise and R(t). Its

output is transferred to the pulling cantilever only if the random

number R(t) is larger that the current value of the function Vnoise(t).
Knowing that, we can express the random work of the FM noise

through the random work of the uniformly applied noise with the

constant variance (Eq. 19). Their ratio is, on average, n:Vnoise(t)=n.

Therefore, the random work of the FM noise can be written as

SWFM (t)T %
n:Vnoise(t)

n
:k:s2

x
:
Xn

i~0

Sg(i)2T

~Vnoise(t):k:s2
x
:Pn

i~0

Sg(i)2T
: ð21Þ

When the number of steps n, between two sampling points, is large

enough (as in our case), the average random work of the FM noise

is linearly dependent on the function Vnoise, as opposed to the AM

random work which has a quadratic dependence on Vnoise (Eq.

18). If the number of samples is large enough, the number of

random impulses will be very close to n?Vn(r). If the number of

samples is smaller, the number of random impulse may

significantly deviate from that value. Simply speaking, the average

amount of energy the FM noise transfers to the system is directly

proportional to the function Vnoise(t). That implies that the FM

Figure 5. Amplitude-modulated (AM) noise based reconstructions. a) Jarzynski PMF estimates based on the AM protocol. The Gaussian noise
was applied with the 10 m/s pulling velocity, using four noise amplitudes, m = 180, 190, 200 and 210. b) Second order cumulant expansion PMF
estimates based on the AM protocol. The chi-square noise was applied with the 10 m/s pulling velocity using 4 different noise amplitudes, m = 100,
110, 120 and 130. The estimates based on the normal pulling (1 m/s and 10 m/s) are given for the comparison. In each case depicted the
computational cost is the same, i.e., it is analogous to the cost required to generate 10,000 trajectories using the normal pulling and 10 m/s velocity.
doi:10.1371/journal.pone.0101810.g005
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protocol more powerfully transfers noise to the polymer because it

does not square the normalized function Vnoise(t).
We tested this method with the exponential averaging (Eq. 2)

and with the second cumulant expansion formula (Eq. 3) using the

same simulation parameters as with the amplitude modulation (see

Chapter 5.1).

Fig. 6a depicts the efficiency of the FM noise with the Jarzynski

averaging scheme. As with the constant and the AM noise, we

used six noise amplitudes (m was between 160 and 210), but

depicted only results based on highest four (all six were used in the

statistical analysis). The amplitude next to highest, m = 200, was

the most successful in improving the reconstruction. It was able to

efficiently reduce the bias, and keep the underestimate under

control. The three other noise amplitudes depicted (180, 190 and

210) were also able to improve the PMF calculation, although not

as effectively as m = 200. All four reconstruction show small

underestimates. Those underestimates can be dealt with if all their

pulling trajectories are closely examined. The ones that strongly

deviate from the general behavior should be generated again. The

new Jarzynski calculations, with those trajectories replaced, should

produce slightly better PMF estimates.

The differences in Vnoise interpretation between the two

modulation protocols become apparent when Figures 5a and 6a

are compared. The AM protocol ‘‘squares’’ the guiding function

Vnoise, while the FM noise uses the original Vnoise. Therefore, the

FM noise more efficiently reduces the maximum bias, but also

introduces a small underestimate.

The influence of the FM noise on the cumulant expansion based

PMF estimation is depicted in Fig. 6b. The simulation parameters

were the same as with the amplitude modulation protocol (m was

between 100 and 130) and the pulling spring again followed the

chi-square distribution as in the two previous cases (constant

amplitude noise and AM noise). The highest noise amplitude,

m = 130, was the most successful in improving the PMF

reconstruction. It reduced the overestimate to less than half its

normal pulling value, without introducing an underestimate. The

three smaller noise amplitudes were also able to reduces the bias,

although less effectively than m = 130. As with the Jarzynski

equality, the comparison of Figs. 5b and 6b shows that the FM

noise applied with the cumulate expansion formula is more

powerful in reducing the PMF overestimate, than the AM noise.

Comparison of the efficiency of the three
stochastic perturbation protocols

The PMF estimates based on trajectories generated with the

additional external noise converge faster than the estimates based

on the normal pulling only. The question remains, which of the

three stochastic protocols is the most successful in improving the

PMF calculation? The relative RMSD (root mean square

deviation, expressed as the percent of the potential barrier height)

and the computational cost per reconstruction are good measures

of the efficiency of the applied perturbation protocols. For N
reconstruction points along PMF, the relative RMSD is

Figure 6. Frequency-modulated (FM) noise based reconstructions. a) Jarzynski PMF estimates based on the FM stochastic perturbation
protocol. The external Gaussian noise was applied with the 10 m/s pulling velocity, using four noise amplitudes, m = 180, 190, 200 and 210. b) Second
order cumulant expansion PMF estimates based on the FM stochastic perturbation protocol. The chi-square noise was applied to 10 m/s pulling
velocity using 4 different noise amplitudes, m = 100, 110, 120 and 130. The estimates based on the normal pulling (1 m/s and 10 m/s) are given for
the comparison. In each case depicted the computational cost is the same, i.e., it is analogous to the cost required to generate 10,000 trajectories
using the normal pulling and 10 m/s velocity.
doi:10.1371/journal.pone.0101810.g006
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RMSD~100:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN~500
i~1 DĜGJ (i){DG(i)

� �2

N

vuut
DG(N){DG(1)

: ð22Þ

With each simulation setup we conducted 10,000 trajectories

(except with the 1 m/s pulling with which we performed 1000

simulations only). The PMF reconstructions were carried out using

all 10,000 trajectories and all their smaller non-overlapping subsets

(100, 200, 500, 1000, 2000, 4000, 8000 trajectories). With the

Gaussian distribution, we used the noise amplitude m in the range

between 160 and 210, and with the chi-square distribution, we

used m in the range between 80 and 130. The RMSD analysis was

performed on each PMF reconstruction. The results of the RMSD

analysis of the three stochastic protocols are depicted in Figs. 7

and 8. Fig. 7 depicts RMSDs for PMFs based on both set of

simulations (Gaussian and chi-square) calculated using the

Jarzynski equality, and Fig. 8 depicts analogous RMSDs of PMF

estimates produced with the cumulant expansion formula. The

computational cost is equivalent for each point along the number-

of-trajectories axis. It is expressed as the number of trajectories

generated using the 10 m/s velocity. That means that for the 1 m/

s pulling, the number of trajectories per reconstruction is 10 times

smaller than the values depicted in the figures. Critics may argue

that with the external noise, we use the random number generator,

which increases the computational cost, but that increase is

negligible when compared to the total cost of the MD integration.

We also used 50 trajectories to calculate the bias and the Vnoise

function, but that cost is also very small in comparison to the

overall computational cost to generate 10,000 trajectories.

Although we applied two different types of the external noise

distribution (Gaussian and chi-square), we produced PMF

estimates using both averaging schemes (Eqs. 2 and 3). The first

set of simulations was intended for the Jarzynski equality

averaging, but we applied the cumulant expansion formula on it

also. We did the same with the simulations intended for cumulant

expansion formula, i.e., we used the Jarzynski averaging on them

also.

The most obvious conclusion that can be drawn from Figs. 7

and 8 is that the external noise improves the PMF calculation.

However, the two averaging schemes and the three types of the

external noise have different influence on the reconstruction. The

Jarzynski averaging produced the best results with the FM noise

guided by the Gaussian distribution (Figs. 6a and 7c). Those

results are closely followed by the results based on the AM noise

guided by the same distribution (Figs 5a and 7b). The RMSDs of

the PMF estimates based on the samples generated with the

Gaussian FM noise, with amplitude m = 200, are almost

comparable to RMSDs of the estimates based on the 10 times

slower pulling without the external noise (1 m/s). Their average

difference is less than 5%.

The Jarzynski equality produced a lesser quality output with the

trajectories generated using the chi-square noise (see Fig. 7, panels

d, e and f). It was able to reduce the overestimate, but not as

efficiently as with the higher amplitude Gaussian noise.

The cumulant expansion formula produced the best results with

the chi-square noise, when that noise was not modulated (Fig. 8,

panel a and Fig. 3b, the bias reduction is prominent, and the

underestimate is almost nonexistent). That outcome is not as

surprising as it may seem. The samples perturbed with the chi-

square distribution were generated with the smaller noise

amplitude, than the Gaussian noise samples. The smaller noise

amplitude reduces the probability of a sudden jump at the

beginning of the reaction path. Such jumps are responsible for the

underestimation. We also used the stiff spring to pull the polymer.

The stiff spring forces a polymer to maintain the normal

distribution of the external work, even when perturbed far from

equilibrium [16]. We used the stiff spring because the second order

cumulant expansion formula converges much faster with the

Gaussian distribution than with other distributions. However, with

the external noise, the external work may deviate from the normal

distribution, thus we imposed a normal distribution to the external

noise through the chi-square distribution of the pulling point. It

must be noted, that the chi-square distribution may be difficult to

generate with a real-world experimental setup.

With the Gaussian noise based trajectories, the cumulant

expansion formula produced PMF reconstructions with a low

RMSD only with the AM stochastic protocol (see Fig. 8e).

However, low RMSDs of those reconstructions may be misleading

because they do not resemble deca-alanin’s PMF, except with the

lowest noise amplitude (see Fig. A4b. in the Appendix S1). With

the constant variance Gaussian noise and the FM Gaussian noise

the cumulant expansion formula does not produce a satisfactory

output (see Figs. 8d, 8f and Figs. A4a and A4c in the Appendix

S1).

Conclusion

This paper describes the three perturbation protocols we have

developed in an attempt to improve the potential of mean force

reconstruction in real world and simulated single molecule

manipulation experiments. The protocols improve the PMF

calculation by improving the external work sampling through

the widening of external work distribution. The work distribution

gets widened through the application of the external noise, which

itself gets introduced through the random fluctuations of the

pulling spring. One way to interpret the external noise is to

imagine that it comes from an additional heath bath directly

coupled to a polymer being examined. That ‘‘heat bath’’ is

completely independent from the solvent the perturbed system is

immersed in. It transfers random fluctuations only along the

pulling vector and its diffusion coefficient is variable and depends

only on the reaction coordinate.

The application of the external noise requires the knowledge of

the maximum bias. To estimate it, we followed the work of Gore et

al. [10] and Zuckerman and Wolf [31,32]. They produced a

relation able to connect the fluctuations of a Jarzynski estimate to

its bias under the assumption that the external work fluctuations

follow the fluctuation-dissipation relationship [18]. That protocol

may slightly overestimate the bias, but we showed that it is not an

issue because the noise modulation protocols themselves decrease

the noise efficiency and thus require noise amplitudes somewhat

higher than the ones that ideally fit the true maximum bias.

We used two averaging schemes to calculate the PMF estimates,

the Jarzynski equality and the second-order cumulant-expansion

formula. Consequently, we applied two different external work

distributions (Gaussian and chi-square) and a couple of different

values of the noise amplitude m. Both reconstruction procedures,

when the external noise has very high amplitude, produce an

underestimate of PMF.

To address the PMF underestimate issue we introduced two

noise modulation protocols that adapt the external noise to the

bias behavior along the reaction path. Those two protocols are the

amplitude modulation (AM) and the frequency modulation (FM).

We also introduced the noise guiding function Vnoise to control the

modulation protocols. That function was obtained through a
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(digital) filtration of the initial, constant velocity Jarzynski PMF

estimates. With the amplitude modulation we used the normlized

Vnoise function to multiply the amplitude of the external noise

(standard deviation of the external noise), and with the frequency

modulation we used this function to control the probability of the

noise appearance.

The results of our experiments show that the modulated

external noise is a proper tool to noticeably improve the PMF

calculation with fast steered molecular dynamics experiments. The

best overall results were achieved with the frequency-modulated

noise and the Jarzynski equality. The quality of those reconstruc-

tions approach the quality of the reconstruction based on ten times

slower pulling without the external noise. A similar quality can be

achieved using the cumulant expansion formula and the constant

variance noise. However, that noise has to follow a chi-square

distribution, which may be difficult to generate in real-life

experiments. Furthermore, we showed that the Jarzynski averag-

ing is more flexible than the cumulant expansion averaging

because the noise amplitude that produced the best PMF estimate

with the Jarzynski averaging and the Gaussian noise was based on

a bias estimate much closer to the real bias. The cumulant

expansion averaging and the chi-square noise, on the other hand,

require a noise amplitude based on a bias estimate much higher

than the real bias to effectively reduce it.

The work depicted here is in a good correlation with the work of

Kou and Xie [39]. They addressed the issue of an anomalous,

subdifussion process with the fractional Gaussian noise guided by

the memory kernel K(t). That approach is similar to our own

research because a stretching simulation (SMD) with the

additional noise can be perceived as an anomalous, subdifussion

process in which the increased work variation increases the

system’s correlation time. Therefore, our modulation protocols

introduce the memory kernel K(t) via the function Vnoise. The

model exhibits a dependence of fluctuations on the reaction

coordinate even without the additional noise with the memory

kernel Vnoise (see Park and Schulten, [16]).

One may wonder what would happen with an increase in the

pulling velocity and with a consequential increase in dissipation. Will

that increase require an analogous increase of the external noise

amplitude? The external noise depends on two parameters, the

maximum noise amplitude and the function Vnoise. The first

parameter, the noise amplitude, is calculated via the maximum bias

estimate. That calculation accounts for the noise omitted at the very

sampling moments by reducing the effective work variance
ffiffiffi
n
p

times, where n is the number of simulation time steps between two

consecutive sampling moments (see Equations 10 to 15). The

number of steps n gets reduced with the increase in the pulling

velocity (if we assume that the simulation time step stays the same,

regardless the pulling velocity). That means that the increase in the

Figure 7. PMF reconstruction quality expressed as the relative RMSD, for the reconstructions calculated with the Jarzynski equality.
The pulling trajectories were generated using the three stochastic perturbation protocols (constant variance noise, AM noise and FM noise). The noise
amplitude m was in the range between 160 and 210, for the Gaussian distribution of the pulling point (panels a, b and c), and between 80 and 130,
for the chi-square distribution of the pulling point (panels d, e and f). The full line represents the reconstruction quality for the normal pulling and
10 m/s velocity. The dashed line is the reconstruction quality for the normal pulling and 1 m/s velocity.
doi:10.1371/journal.pone.0101810.g007
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pulling velocity (and the consequential increase in the average bias)

does not require a comparable increase of the noise amplitude (n
used in Eqs. 13 and 15 will be reduced). For example, for the 20 m/s

pulling, the number of steps between two sampling moments will be

half of the steps used with the 10 m/s pulling. That means that the

corresponding noise amplitudes calculated via Eqs. 13 and 15 have

to be reduced by a factor of 21/4 in comparison to the amplitudes

used with the 2 times slower pulling (not counting the average work

values).

Our work, although based on in-silico experiments, also

addresses the influence of the real-world instrumental noise on

the PMF calculation. The single molecule manipulation of

biological molecules usually happens on physiological tempera-

tures, and on those temperatures, not only the examined polymer,

but the manipulation apparatus also, exhibits random fluctuations.

The frequency response (dynamic regime) in real-world situations

may be limited by the size of the manipulation apparatus

(micrometer size of the AFM cantilever or optical tweezers beads).

That size is, in some cases, three orders of magnitude larger than

the length of the average biopolymer. That also means that

thermal fluctuations of the manipulation apparatus can be much

higher than the fluctuations of the perturbed molecule, and thus

detrimental to the PMF calculation. Still, the influence of the

thermal environment can be put to a good use. Namely, if the

physical properties of the manipulation apparatus (stiffness of the

cantilever, for example) can be controlled, the influence of the

thermal environment could be adjusted, which means that the

PMF calculation could be improved also [34]. Maragakis et al.

[37] addressed the real-world instrumental noise present during

the RNA hairpin stretching with optical tweezers. They observed

that the fastest pulling experiments, the ones farthest-from-

equilibrium, contain smallest amounts of noise. The lower pulling

rates produce an underestimate of PMF if the instrumental noise is

high. Those results are in agreement with our own observation

that the excessive amounts of external noise may negatively affect

the PMF calculation. In this work, we showed that the thermal

fluctuations of the real-world manipulation tool, although suppos-

edly small, could produce an underestimate when coupled to the

Jarzynski equality or cumulant expansion formula. We also

showed that those random fluctuations, if controlled, could

significantly improve the PMF calculation. That is the most

important result coming out of this study.
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Figure 8. PMF reconstruction quality expressed as the relative RMSD, for the reconstructions calculated with the cumulant
expansion formula. The pulling trajectories were generated using the three stochastic perturbation protocols (constant variance noise, AM noise
and FM noise). The noise amplitude m was in the range between 80 and 130, for the chi-square distribution of the pulling point (panels a, b and c),
and between 160 and 210, for the Gaussian distribution of the pulling point (panels d, e and f). The full line represents the reconstruction quality for
the normal pulling and 10 m/s velocity. The dashed line is the reconstruction quality for the normal pulling and 1 m/s velocity.
doi:10.1371/journal.pone.0101810.g008
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34. Perišić O (2013) Pulling-spring modulation as a method for improving the

potential-of-mean-force reconstruction in single-molecule manipulation exper-
iments. Physical Review E 87: 013303.

35. Athanasios P (1991) Probability, Random variables and Stochastic processes.
McGraw-Hill, New York.

36. McCammon JA, Harvey SC (1988) Dynamics of proteins and nucleic acids.
Cambridge University Press.

37. Maragakis P, Ritort F, Bustamante C, Karplus M, Crooks GE (2008) Bayesian

estimates of free energies from nonequilibrium work data in the presence of
instrument noise. Journal of Chemical Physics 129: 024102.

38. Shiavi R (1999) Introduction to Applied Statistical Signal Analysis. Academic
Press.

39. Kou S, Xie XS (2004) Generalized Langevin Equation with Fractional Gaussian

Noise: Subdiffusion within a Single Protein Molecule. Physical Review Letters
93: 180603.

PMF Calculation with Adaptive External Noise

PLOS ONE | www.plosone.org 18 September 2014 | Volume 9 | Issue 9 | e101810


