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The role of interconnectivity in 
control of an Ebola epidemic
J. C. Blackwood1,* & L. M. Childs1,2,*

Several West African countries - Liberia, Sierra Leone and Guinea - experienced significant morbidity 
and mortality during the largest Ebola epidemic to date, from late 2013 through 2015. The extent of 
the epidemic was fueled by outbreaks in large urban population centers as well as movement of the 
pathogen between populations. During the epidemic there was no known vaccine or drug, so effective 
disease control required coordinated efforts that include both standard medical and community 
practices such as hospitalization, quarantine and safe burials. Due to the high connectivity of the 
region, control of the epidemic not only depended on internal strategies but also was impacted 
by neighboring countries. In this paper, we use a deterministic framework to examine the role of 
movement between two populations in the overall success of practices designed to minimize the 
extent of Ebola epidemics. We find that it is possible for even small amounts of intermixing between 
populations to positively impact the control of an epidemic on a more global scale.

From late 2013, throughout 2014 and stretching into 2015, the West African countries of Sierra Leone, Guinea, 
and Liberia experienced the most devastating Ebola virus epidemic to date1,2. While previous outbreaks have been 
primarily confined to remote villages, this outbreak was much larger in part due to the arrival of the Ebola virus in 
large population centers3. Consequently, there were nearly 30,000 suspected cases and over 11,000 deaths over the 
course of the epidemic, the majority of which occurred in Liberia2. Control of the outbreak was further hindered 
by the spread of the virus in three neighboring countries with different public health agendas, varying levels of 
resources, and, at times, inconsistent strategies for treating of the disease4–6.

Successful control of the outbreak in western Africa relied on multifaceted approaches that implement both 
standard practices for treating cases (e.g. hospitalization) as well as community interventions (e.g. safe burial 
practices)1. Previous modeling studies have explored the dynamical impact of such management strategies on the 
Ebola epidemic in order to determine the most effective policies (reviewed in ref. 7). In addition to hospitalization 
and safe burial practices, mathematical models have investigated the effects of increasing the number of available 
beds in hospitals, expanding the number of Ebola treatment units (ETUs), accelerating case identification, and 
implementing a quarantine policy for infected individuals (e.g. ref. 8–15). However, these studies have assumed 
that treatment and prevention methods are implemented homogeneously within a population or introduce them 
within stochastic models of disease spread (e.g. ref. 16–19). Here, we determine the effectiveness of interventions 
when interacting populations implement policies that have not been coordinated.

Specifically, we consider a two-patch model that is connected by varying levels of movement between patches. 
Each patch alone may employ some combination of hospitalization, quarantine or enhanced burial safety to mit-
igate the spread of infections, but the policy in an individual patch has no bearing on that of a neighboring patch, 
despite the movement of individuals between the two areas. Through variation of several parameters related to 
disease management, we determined regions of parameter space that permit successful control. We first assumed 
that one population maximized the potential benefits of either (I) hospitalization, (II) hospitalization and safe 
burial practices, or (III) quarantine and safe burial practices. In contrast, the other population implemented 
varying levels of these management practices. We additionally considered a scenario in which populations used a 
combination of both hospitalization and quarantine.

We find that the positive benefits of effective intervention in one population can help overcome poor strategies 
in a connected population, which can lead to elimination of the pathogen on a more global scale (i.e. elimination 
in both populations). This holds for even low levels of movement between populations. In contrast, the same 
population with poor strategies would experience disease persistence in the absence of connectivity. Therefore, 
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the interconnectedness of regions, without regard to nation boundaries and policies, is an essential consideration 
for a coordinated response to emerging infections.

Theoretical Framework
We begin by introducing a transmission model of Ebola virus that ignores spatial structure but divides infectious 
individuals into groups based on their treatment status, allowing for variation in the infectivity arising from dif-
ferent treatment methods. Next, we introduce spatial structure into our model by including two populations that 
are connected by movement of individuals. Flexibility is embedded in the structured model to allow for poten-
tially different treatment strategies between populations. Additionally, we derive the basic reproductive number 
for both the non-spatial and spatial models.

Model without explicit space. Our initial modeling framework considers an SEIR-type model in the 
absence of explicit space (Fig. 1). We assume that living infectious individuals can fall into one of three classes: 
infectious but untreated (IU, hereafter referred to as ‘undetected’), infectious but hospitalized (IH), or infectious 
but quarantined (IQ). Here, quarantine is only meant to indicate the complete isolation of infected individuals, not 
the separation of potentially infectious individuals from the general population. We assume that disease trans-
mission only occurs from living individuals that are either undetected or hospitalized. Additionally, transmission 
of Ebola may also occur from victims of disease-induced mortality. This typically occurs during funeral practices 
prior to burial; therefore, we create a class (F) comprised of deceased individuals capable of transmission. Given 
these different transmission routes, the overall force of infection is given by:

λ β β β= + +I I F
N

( ) 1
(1)U U H H F

k

where βU, βH, and βF are the per capita transmission rates from individuals in the undetected, hospitalized, and 
funeral classes, respectively. We assume that hospital treatment diminishes an individual’s overall infectivity so 
that βH ≤  βU. In our model, Nk is the total number of individuals in the population capable of contributing to 
onward infection including those in the funeral class, but excluding those who are quarantined (IQ) and effectively 
removed (D) from the population.

Upon infection, individuals enter an exposed (E) class and subsequently become infectious at a rate σ. Under 
the assumption that the birth and death rates (μ) are equal,

Figure 1. Schematic of the non-spatial model of Ebola transmission. A compartmental SEIR-model is 
used to follow Ebola transmission within a model. Here, j =  {Q, H} for quarantined and hospitalized classes, 
respectively. Infectious classes are shaded.
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µ λ µ= − −
dS
dt

N S S (2)b

λ σ µ= − +
dE
dt

S E( ) (3)

where Nb is the population size of individuals capable of reproduction, i.e. excluding individuals in the funeral 
and effectively removed classes.

After becoming infectious, individuals initially enter the undetected class and can remain in that class with 
probability bU until leaving the class at rate γU. Alternatively, individuals may subsequently enter the hospitalized 
or quarantined class with probabilities bH and bQ, respectively, at a rate δ. These classes can be described as:

σ δ γ µ= − + + +ˆ ˆ ˆdI
dt

E b b b I(( ) ) (4)
U

H Q U U U

δ γ µ= − +ˆdI
dt

b I I( ) (5)
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H U H H

δ γ µ= − +ˆdI
dt

b I I( ) (6)
Q

Q U Q Q

where γH and γQ are the rates at which individuals leave their respective infectious class. In order to ensure the 
proper exit rates from our compartments, we follow the convention of Legrand et al.10 in our equations but note 
that =

γ

δ γ µ+ + +

ˆ

ˆ ˆ ˆbU
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b b b( )
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 is the fraction of exposed individuals remaining undetected, rather than b̂U . 

Similarly, = δ
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 is the fraction of individuals who are hospitalized and =
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is the fraction of individuals quarantined. Throughout, parameters with a hat appear in equations, but are not true 
fractions, while figure axes use the true fraction undergoing a particular intervention.

Individuals are assumed to either succumb to infection (with probability =
γ

γ µ+

ˆ
di

di i

i
, where i =  {U, H, Q} is the 

respective infectious class) or recover (with probability γ

γ µ

−

+

d̂(1 )i i

i

). It is assumed that a fraction fi (where i =  {U, H, Q}  
is the respective infectious class) of deceased patients are provided with funerals, during which each patient 
remains capable of transmission. Individuals are then buried and enter an effectively removed class, D, in which 
they are no longer capable of transmission. Additionally, the remaining fraction 1 −  fi individuals directly enter 
the D class. We can describe these processes with the following differential equations:
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where j =  {H, Q}. Note that b̂U  is the relative fraction of individuals that remain undetected rather than entering 
the hospital or quarantine, so that + + =ˆ ˆ ˆb b b 1U H Q .

The majority of the parameterization of our models is based upon the outbreak of Ebola virus in West Africa, 
beginning in late 2013 and extending into 2015. Although the incubation period varied slightly among the three 
countries, the measured mean incubation time across West Africa was 9–12 days20. The serial interval – average 
time from symptom onset of the index case to symptom onset of the secondary case – was consistently found to 
be 14–15 days20. As the mean time in the undetected infectious class (γU) was 10 days20, the time spent in the 
hospitalized and quarantined classes was calculated to account for time first spent in the undetected class and the 
serial interval20. In other words, =

γ δ γ+
1 1

U j
. The case fatality of all three countries over the course of the epidemic 

was ~70%20 with only a minor reduction in the case fatality rate when individuals received palliative care21. The 
relative fraction of exposures that result in disease and enter a given infectious class (b̂U , b̂H, b̂Q) varied based on 
the community of interest. Values for βU and βF were set assuming a reproductive number R0 =  1.85, consistent 
with estimates of the 2013–2015 Ebola epidemic in West Africa (see Appendix A for more details). Parameters for 
our models can be found in Table 1.

Importantly, many of the parameters in this model vary based on policy decisions and community inter-
ventions for Ebola control. For example, the probability of remaining in the community (here, undetected) 
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throughout the course of the infection (bU) increased in areas with insufficient hospital beds or health clinics. 
Furthermore, public health campaigns in countries affected by the epidemic highlighting the importance of care-
ful treatment of deceased individuals as well as allotment of resources to appropriately disinfect led to safer burial 
practices1. In our model, this corresponds to increases in the probability that safe burials (1 −  fj) are provided. We 
explore the benefits of such controls in the Results section.

Basic Reproductive Number in non-spatial model. To find the basic reproductive number in the 
non-spatial model, we used the next generation matrix (see Appendix A for details) and obtain that
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This quantity is straight forward to interpret biologically as R0 can be broken into contributions from each of 
the following: (i) transmission from the undetected class, divided by the exit rate from IU of individuals who do 
not enter IH or IQ plus the exit rate of individuals who eventually enter IH or IQ (this term plays into the remaining 
components of R0), (ii) transmission from the individuals who have left IU and enter the hospitalized class IH 
multiplied by the mean time spent in IU, and (iii) transmission from individuals in the F class multiplied by the 
mean time spent in F and by the fraction of individuals who eventually enter the F class from any of the infectious 
classes. Each of the contributions is reduced by the loss of individuals to natural mortality before infection can 
be transmitted.

For an initial look at R0, we assumed that there is no control, i.e. all individuals remain in the undetected class 
( =b̂ 1U  and = =ˆ ˆb b 0H Q ), then R0 simplifies even further to:

β
γ

β

α
= +

ˆ
R

f dU

U

F U U
0

which is the transmission rate from individuals in IU multiplied by the mean time spent in IU, added to the trans-
mission rate from individuals who die and have a funeral multiplied by the mean time spent in F. We parameter-
ize γU and dU from data20 which leaves the remaining unknowns are: βU, βF, and α. The value of α does not have 
a large effect on R0, but the longer the time spent in the funeral class, the faster that R0 increases with βF (Fig. 1A). 
For simplicity, we choose α =  1 for the remainder of the paper. Transmission from the undetected class (βU) 
causes faster increases in R0 relative to transmission from funerals (βF), due to the short amount of time in the F 
class (Fig. 1A).

Model with explicit space. To explicitly include space in our population, we mechanistically took into 
account movement of subpopulations, (as in ref. 22), allowing the ability to incorporate populations of different 
sizes (see Appendix A for equations). Individuals are separated based on their status as home or visiting, and 
parameters are derived from the current local population for the individuals. Individuals leave their home popu-
lation at rate ρ and return at rate τ. For consistency, there is movement between patches of susceptible, exposed, 
infectious and recovered individuals but not of individuals in the funeral and effectively removed class. Infection 
can only occur when both susceptible and infectious individuals are present in the same population.

Several parameters can differ between populations depending on their respective intervention policies. For 
example, case detection, hospitalization rates, and quarantine status may vary. Therefore, we allow for differences 

Symbol Description Value Range Source

βU Transmission rate from undetected cases 0.0969 [0, 0.184] see text

βF Transmission rate from funerals 1.26 [0, 2.502] see text

bj Fraction of exposures that enter infectious class Ij 1 [0, 1] varies

1/σ Mean time spent in the E class 10d – 20

1/γU Mean time spent in infectious class IU 10d – 20

1/δ Mean time spent undetected 3.5d – 20

1/γj Mean time spent in infectious class Ij, j =  {H, Q} 6.5d – see text

dj Fraction of individuals in class Ij who die 0.7 – 20

fj Fraction of deceased given an unsafe funeral 1 [0, 1] varies

1/α Mean time spent in the funeral class 1d [1, 5]d 10

1/μ per capita death rate 55y 46–62y 24

1/ρ Movement from home population 0 [0, 500] varies

1/τ Movement into home population 0 [0, 500] varies

Table 1.  Model parameters.
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in bU, bH, and bQ. While we assume that the average time spent infectious (1/γj) is an intrinsic property of the 
disease, it is possible that the probability of surviving the disease varies (i.e. d̂j). Burial practices may also differ 
between populations so that, for example, different communities are more or less likely to hold a traditional burial 
which leads to differences in the value of fj.

Basic reproductive number in spatial model. Similar to the previous model without explicit space, we 
used the next generation matrix to compute the basic reproduction number numerically (see Appendix for details 
of F and V next generation matrices). Although we do not find an analytic form for the reproductive number due 
to the complexity of this model, we numerically determine R0 in our simulations.

Under simplifying assumptions, however, we recover an expression for R0 that resembles that for the 
non-spatial model. For example, excluding demographics (μ =  0) and intervention (b̂H1 =  b̂H2 =  b̂Q1 =  b̂Q2 =  0), 
assuming equal movement (ρ =  τ) and equal population sizes, and all other parameters equal between the two 
populations (i.e. βU1 =  βU2, βF1 =  βF2), the basic reproduction number becomes: = +β

γ

β

α

ˆ
R f d

0
U

U

F U U .
Relaxing these assumptions such that the populations are no longer identical (i.e. βU1 ≠  βU2, βF1 ≠  βF2) but still 

excluding movement (τ =  ρ =  0), then the next generation matrix has two non-zero eigenvalues:
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the larger of which is the value for R0. Indeed, in the absence of movement (τ =  ρ =  0) the two populations act 
independently and the analysis of the non-spatial model is recovered for each subpopulation. Importantly, the 
value for R0 directly depends on both populations. This paints a more global picture of the overall success of the 
Ebola epidemic.

Results
We consider four strategies for disease intervention. Given that one population has optimally implemented an 
intervention strategy (hereafter referred to as “population 1”), we determine implications for control of an epi-
demic when a second population (hereafter referred to as “population 2”) has sub-optimal management in the 
presence of movement between populations. In the final strategy, we investigate two interventions employed at 
varying levels in the same population. When referring to a parameter specific to a particular population, we will 
include a second index in the subscript to identify whether we are referring to population 1 or 2. The methods we 
consider are:

(i) Hospitalization. We assume that population 1 successfully hospitalizes all infectious individuals as we as elim-
inated hospital transmission ( =b̂ 1H1 , bH1 ≈  1, βH1 =  0). In contrast, population 2 has varying levels of hospi-
talization (bH) and transmission within hospitals (βH).

(ii) Hospitalization and safe burial practices. Population 1 is as in method (I), with the addition that all hospital 
deaths are treated with safe burials (fH1 =  0). We assume that all cases are hospitalized in population 2 
( =b̂ 1H2 , bH2 ≈  1), but it varies in its ability to eliminate transmission within hospitals (βH2) as well as its use 
of safe burial practices following death after hospitalization (fH2).

(iii) Quarantine and safe burial practices. We assume that population 1 successfully quarantines all infected indi-
viduals ( =b̂ 1Q1 , bQ1 ≈  1) and that all deaths are treated with safe burials (fQ1 =  0). In contrast, population 2 
has varying levels of quarantine (bQ2) and usage of safe burial practices (fQ2).

(iv) Hospitalization and quarantine. In this final scenario, we assume that population 1 has optimally implemented 
a single intervention strategy but that population 2 uses a mixed strategy implementing both hospitalization 
and quarantine with varying degrees of success (bH2 and bQ2).

To be consistent with the 2013–2015 West African epidemic, we assume that R0 =  1.8520. However, the relative 
magnitudes of the transmission rate of individuals with undetected infections (βU) and the transmission rate 
during traditional funerals (βF) is not well known. We therefore obtain a more global picture of the dynamics by 
varying the values of βU and βF while maintaining the value R0 =  1.85 in the absence of intervention strategies. To 
assess when an the epidemic can be prevented for each of the above strategies, we then identify regions of param-
eter space where the intervention strategy forces R0 <  1.

Hospitalization. Assuming that population 1 has achieved complete hospitalization without the possibility 
of further transmission, we determine the plausibility of control when population 2 varies in its ability to detect 
and hospitalize infected individuals (bH2) as well as the transmission rate in the hospital (βH2). The relative balance 
of transmission for the hospitalized class and the funeral class will depend on the transmission rate from each of 
these classes, βH2 and βF2, respectively. R0 <  1 can only be achieved if transmission from IH individuals is low and 
a substantial portion of the population enters the hospital (above and to the left of the red curve corresponding 
to R0 =  1 in Fig. 2A inset).

Over a range of combinations of βU and βF, all corresponding to R0 =  1.85, we find when hospitalization is able 
to control the epidemic, i.e. the contour corresponding to R0 =  1 (Fig. 2). Here, control is only possible if IU trans-
mission is high relative to F transmission, βH is relatively small, and bH is high (Fig. 2 upper left corner). In other 
words, assuming that transmission within hospitals is small, increasing hospitalization rates can have the most 
positive effect when the majority of transmission is driven by undetected cases rather than unsafe burial practices.

Interestingly, when there exists no movement between the subpopulations, the region where the epidemic is 
controllable is smallest (Fig. 2A), as no benefit is accrued from movement of individuals from the region where 
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hospitalization is ubiquitous. Thus, a larger proportion of the population needs to enter the hospital for control to 
be achieved. As movement between the two population increases, the controllable region grows, particularly for 
increases in the hospital transmission rate (βH2) (Fig. 2B,C).

Hospitalization and safe burial practices. The second method for control is similar to the first, but addi-
tionally assumes that all hospital deaths in population 1 are treated with safe burials. Assuming that population 2 
is now successful in hospitalizing all cases ( =b̂ 1H2 , bH2 ≈  1), we vary its ability to reduce transmission within 
hospitals (βH2) as well as the fraction of individuals having a traditional burial following death within a hospital 
(fH2). We find there is a linear relationship between βH2 and fH2 (i.e. the contour corresponding to R0 =  1 is a line). 
When fH2 and βH2 are both low, below and to the left of lines in Fig. 3, the epidemic is controllable as it is possible 
to force R0 <  1 through hospitalizations.

We find this line for various relative contributions of transmission from IU and F, with contributions from each 
denoted RU

0  and R F
0 , respectively (see details in Appendix A):

β σ
σ µ γ µ
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+ +
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+ +
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( )( )

( )( )

U F

U U

U

F

U

F U U U

0 0 0

0

0

For intermediate values of βH2 and fH2 the ability to control the epidemics differs on whether βH2 is high and 
fH2 is low, or vice versa. When βH2 is high fH2 is low, transmission is high in hospitals but few individuals who die 
have unsafe burials. Here, R0 can only be brought below one by reducing the number of individuals who have 
unsafe burials. Control is more feasible if transmission at funerals is the main contributor to R0, rather than unde-
tected cases ( >R RF U

0 0 ). In other words, even when F transmission is high, reducing the number of individuals 
receiving an unsafe burial (low fH2) can still bring R0 below one.

Contrarily, when βH2 is low and fH2 is high, transmission is low in hospitals but most individuals receive a safe 
funeral. As transmission in the hospital class is reduced, more individuals who die following hospitalization can 
have an unsafe burial and still force R0 below one. Control is more feasible if transmission from undetected cases 
is the primary contributor to R0, rather than cases originating from unsafe burials ( >R RU F

0 0 ). Higher values of 
βU correspond to minimal transmission during funerals, and therefore, more individuals can have unsafe burials 
and R0 can still be forced to be below one.

Similar to the previous section, the amount of movement between the populations contributes to the ability 
for the total population to control the epidemic (Fig. 3B,C). The control available in one subpopulation assists the 
lower level of control introduced in the other and has a greater impact as the movement between the two groups 
increases.

Figure 2. Control of the epidemic through hospitalization under varying movement between 
subpopulations. Each contour corresponds to the combinations of βH2 and bH2 where R0 =  1 when population 1 
achieves full hospitalization ( =b̂ 1H1 , bH1 ≈  1) allowing no onward transmission in the hospital (βH1 =  0) 
considering varying levels of movement: (A) none, (B) low (τ =  ρ =  0.05), and (C) high (τ =  ρ =  500). The red 
highlighted contour in (A) is equivalent to the solid red line in the inset. Each line represents a particular choice 
of βU and βF such that R0 =  1.85 when no control measures are introduced. Above and to the left of contours 
R0 <  1 and the epidemic can be controlled. While below and to the right, the epidemic can never be controlled 
and R0 >  1 (U =  uncontrolled area), as illustrated by values of R0 in the inset of (A). Standard values are used for 
other parameters as indicated in Table 1. For reference, the filled black circles indicate where both populations 
implement identical controls: bH =  1, βH =  0.
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Quarantine and safe burial practices. In the third method for control, we assume that population 1 
quarantines all infected individuals and that all deaths following quarantine are treated with safe burials. We first 
look at the effect of varying bQ2 (fraction of individuals who enter the Q class) and fQ2 (fraction of individuals who 
have a traditional funeral following disease-induced death in the Q class). In this case, there is no need to vary the 
infectivity of individuals in IQ as they never contribute to infections, i.e. βQ =  0. Here, if there is little transmission 
from F and high transmission from IU individuals, then the system is controllable as long as enough individuals 
enter the Q class (Fig. 4A). However, if transmission during F is at an intermediate or high level, then it is not 
possible to control if there are a large number of quarantined individuals still having funerals (large fQ).

For intermediate values of bQ2 and fQ2 the ability to control the epidemic depends on whether both bQ2 and 
fQ2 are high, or both are low. When bQ2 is high, the proportion of individuals progressing to funerals (fQ2) can 
be relatively high, even above 50%, and R0 can be brought below one. As there is no transmission in the IQ class, 
funerals resulting from this class are the primary contribution to onward infections. Indeed, if bQ2 is low, so most 
infected individuals remain undetected, regardless of the those safely buried following quarantine, the epidemic 
is never controllable (Fig. 4). Contrarily, when bQ2 is low, some individuals must receive a funeral for control to 
be achieved.

As quarantine, by definition, limits transmission (βQ =  0), when population 1 achieves safe burial practices 
(fQ1 =  0), the ability to control is greatly affected by the amount of movement between populations (Fig. 4B,C). At 
lower levels of movement, the transition of an epidemic from uncontrollable to controllable is more dependent 
on the proportion of the population entering quarantine (Fig. 4B). With a high level of movement, even a minor 
reduction in the proportion of individuals receiving unsafe burials for a small proportion of the second popula-
tion leads to control the epidemic (Fig. 4C).

Combining hospitalization and quarantine. In contrast to our examination of the use of only hospi-
talization or only quarantine, populations have the opportunity to apply hospitalization and quarantine in com-
bination, typically with some proportion of the population remaining undetected. When two populations are 
linked through movement of individuals, the use of both hospitalization and quarantine leads to control of the 
epidemic more often than a single intervention alone (Figs 5 and 6). When one subpopulation chooses to apply a 
single intervention, a combination intervention strategy in the other population can lead to control the epidemic 
(Fig. 5). When quarantine is chosen as the sole strategy, the total population will have a controllable epidemic for 
a wider range of mixing since there is no onward transmission from the quarantined population (βQ =  0) (Fig. 6).

Discussion
Several countries in West Africa, in particular Liberia, Sierra Leone and Guinea, experienced significant morbid-
ity and mortality during the Ebola epidemic from 2013–2015. At the time of this epidemic there was no known 
vaccine or drug, so effective disease control required coordinated efforts that include both standard strategies, 
such as hospitalization, as well as community efforts, such as safe burial practices. Not only are such efforts diffi-
cult to implement in practice, but there is also added complexity with connectivity between populations that have 
different policies in place, as was the case in these three countries. In this paper, we explore the role of movement 
between two theoretical populations in the overall success of practices designed to minimize the extent of Ebola 
epidemics.

Figure 3. Control of the epidemic through hospitalization and safe burial practices under varying 
movement between subpopulations. Each contour corresponds to the combinations of βH2 and fH2 where 
R0 =  1 assuming maximized hospitalization ( =b̂ 1H , bH ≈  1) in both populations while population 1 has no 
funerals (fH1 =  0) and no transmission from the hospitalized class (βH1 =  0) considering varying levels of 
movement: (A) none, (B) low (τ =  ρ =  0.05), and (C) high (τ =  ρ =  500). Each line represents a particular choice 
of βU and βF such that R0 =  1.85 when no control measures are introduced. Above and to the right of contours 
R0 >  1 and the epidemic can never be controlled (U =  uncontrolled area), while below and to the left, the 
epidemic can be controlled and R0 <  1 (C =  controlled area). Standard values are used for other parameters as 
indicated in Table 1. The contours end prior to reaching the axes to ensure βH ≤  βU. For reference, the filled 
black circles indicate where both populations implement identical controls: βH =  0, fH =  0.
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We used the basic reproductive number, R0, as a metric for evaluating the overall success of a management 
strategy. In our simulations, we considered two populations with varying management practices and then deter-
mined when control is possible as movement between spatial locations increases. We first assumed that one 
population maximized the potential benefits of either (I) hospitalization, (II) both hospitalization and safe burial 
practices, or (III) quarantine and safe burial practices. In contrast, the other population implemented varying 
levels of these management practices. We additionally considered one final scenario in which one populations 
used a combination of hospitalization and quarantine.

Importantly, in all scenarios we showed, a control strategy that is effective (R0 <  1) in a spatially isolated pop-
ulation may no longer be effective in the presence of connectivity with another population that has weaker man-
agement policies in place. This results from deriving a more global value of R0 that accounts for interconnected 
populations that are simultaneously experiencing Ebola outbreaks; in the presence of space, R0 depends on the 
dynamics within each spatial location as well as on interactions between them. Interestingly, the consequences 
of connectivity is most substantial when movement rates are relatively small. Here, while local control in one 
population may be independently effective, the more global picture demonstrates that the epidemic will continue 
to progress. In contrast, Ebola management is possible under a wider range of implementation strategies for the 

Figure 4. Control of the epidemic through quarantine under varying movement between subpopulations. 
Each contour corresponds to the combinations of bQ2 and fQ2 where R0 =  1 assuming all infectious individuals in 
population 1 are in quarantine ( =b̂ 1Q1 , bQ1 ≈  1) and none receive funerals (fQ1 =  0) considering varying levels 
of movement: (A) none, (B) low (τ =  ρ =  0.05), and (C) high (τ =  ρ =  500). Each line represents a particular 
choice of βU and βF such that R0 =  1.85 when no control measures are introduced. Above and to the left of 
contours R0 >  1 and the epidemic can never be controlled (U =  uncontrolled area), while below and to the right, 
the epidemic can be controlled and R0 <  1 (C =  controlled area). Standard values are used for other parameters 
as indicated in Table 1. The contours end before the axes to ensure βH ≤  βU. For reference, the filled black circles 
indicate where both populations implement identical controls: bQ =  1, fQ =  0.

Figure 5. Control of the epidemic using a combination of hospitalization and quarantine in one 
subpopulation and only hospitalization in the other. Each contour corresponds to the combinations of bQ and 
bH in subpopulation 2 where R0 =  1 assuming all infectious individuals are hospitalized in the subpopulation 1 
( =b̂ 0U1 , =b̂ 0Q1 , =b̂ 1H1 ) considering varying levels of movement: (A) none, (B) low (τ =  ρ =  0.05), and (C) 
high (τ =  ρ =  500). Each line represents a particular choice of βU and βF such that R0 =  1.85 when no control 
measures are introduced. To the left of contours R0 >  1 and the epidemic can never be controlled 
(U =  uncontrollable area). Standard values are used for other parameters as indicated in Table 1 except unsafe 
burials which occur with 50% probability (fj =  0.5).
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second population as movement rates increase. This is because the total population becomes more homogeneous, 
and the second population can benefit directly from the first population’s policies.

In general, the overall success of each management scenario depends on the associated levels of control in the 
second population. In our model quarantine is more effective than hospitalization because of the differences in 
transmission rates from individuals in the hospitalized as compared to the quarantine class; while transmission is 
lower in hospitals as compared to undetected individuals, transmission is eliminated from individuals in quaran-
tine. In practice, however, quarantine may not completely abrogate transmission as both infected and uninfected 
individuals may be forced together. While hospitalization is necessary to minimize the morbidity and mortality 
associated with infected patients, hospitals must take measures to minimize the transmission from individuals 
infected with Ebola to health care workers and other patients in the hospital.

Our results highlight the direct benefit of safe burial practices on the controllability of Ebola epidemics. This is 
most evident in Fig. 5; including safe burial practices in addition to a combination of hospitalization and quaran-
tine greatly increases the range of successful management implementations. In fact, when all Ebola-related deaths 
are provided traditional burials, Ebola epidemics are almost never controllable. Analysis of previous epidemics 
has also indicated the importance of transmission during traditional funeral practices23. As a result, proper safe 
burial has become an important tenant of Ebola control4–6.

We evaluated the potential success of several controls designed to combat Ebola when policies differ between 
two distinct populations. Our findings indicate that the effectiveness of policies for Ebola management can very 
dramatically depending on how connected a given location is to neighboring regions. The potential imbalance 
of resources could impact even the populations receiving the bulk of resources, if the populations are intercon-
nected. As the worldwide travel and porous borders are common, no population can consider itself in isolation. 
More generally, this study highlights the critical importance of considering spatial structure when evaluating 
disease management strategies.
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