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Abstract 
Background: Circulating S100 calcium-binding protein (S100β) is a 
marker of brain inflammation that has been associated with a range 
of neurological conditions. To provide insight into the molecular 
regulation of S100β and its potential causal associations with 
Alzheimer’s disease, we carried out genome- and epigenome-wide 
association studies (GWAS/EWAS) of serum S100β levels in older 
adults and performed Mendelian randomisation with Alzheimer’s 
disease. 
Methods: GWAS (N=769, mean age 72.5 years, sd = 0.7) and EWAS 
(N=722, mean age 72.5 years, sd = 0.7) of S100β levels were 
performed in participants from the Lothian Birth Cohort 1936. 
Conditional and joint analysis (COJO) was used to identify independent 
loci. Expression quantitative trait locus (eQTL) analyses were 
performed for lead loci that had genome-wide significant associations 
with S100β. Bidirectional, two-sample Mendelian randomisation was 
used to test for causal associations between S100β and Alzheimer’s 
disease. Colocalisation between S100β and Alzheimer’s disease GWAS 
loci was also examined. 
Results: We identified 154 SNPs from chromosome 21 that associated 
(P<5x10-8) with S100β protein levels. The lead variant was located in 
the S100β gene (rs8128872, P=5.0x10-17). We found evidence that two 
independent causal variants existed for both transcription of S100β 
and S100β protein levels in our eQTL analyses. No CpG sites were 
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associated with S100β levels at the epigenome-wide significant level 
(P<3.6x10-8); the lead probe was cg06833709 (P=5.8x10-6), which 
mapped to the LGI1 gene. There was no evidence of a causal 
association between S100β levels and Alzheimer’s disease or vice 
versa and no evidence for colocalisation between S100β and 
Alzheimer’s disease loci. 
Conclusions: These data provide insight into the molecular regulators 
of S100β levels. This context may aid in understanding the role of 
S100β in brain inflammation and neurological disease.
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Introduction
The calcium-binding protein S100 beta (S100β) has been sug-
gested as a biomarker for central nervous system disease1. 
Expressed most commonly in astrocytes, its cytoplasmic loca-
tion and calcium-binding capability allows S100β to mediate 
calcium homeostasis, cell proliferation and survival intracellu-
larly, while also triggering the RAGE-associated inflammatory 
response when secreted extracellularly2. Part of pro-inflammatory  
danger-associated molecular patterns (DAMPs), elevated S100β  
is linked to cytokine cascades in the brain3,4.

Although the exact pathophysiology is still unknown, a number 
of small-scale studies have reported elevated circulating or  
cerebrospinal fluid (CSF) S100β levels in individuals with 
nervous system injury, neuroinflammatory conditions, white  
matter ageing and Alzheimer’s dementia and delirium4–9. Fol-
lowing traumatic brain injury, elevated S100β plasma levels 
have been shown to precede increases in intracranial pressure1.  
Blood-based levels of S100β have also been found to be elevated 
in small vessel disease and associated with cognitive decline10,11.  
Activated astrocytes expressing high levels of S100β have been 
profiled at plaques in the hippocampus, temporal lobe, fron-
tal lobe and pons in individuals with Alzheimer’s disease12.  

The S100β gene was also identified as a site of differential 
DNA methylation (DNAm) relating to Braak staging in a pre-
vious epigenome-wide association study (EWAS) of cortical  
post-mortem tissues (n=159)13. 

Whether S100β has a direct involvement in the pathogenesis of  
Alzheimer’s disease is still unclear. Further to its potential role 
in inflammatory exacerbation in the brain, research suggests that 
at nanomolar concentrations, S100β can have protective and  
neurotrophic effects14. Despite the widely discussed biological 
importance of S100β, the possible epigenetic regulators of the  
protein have not been investigated. One study using blood 
spots taken at birth has previously identified two genetic  
associations in relation to circulating S100β levels; rs62224256 
on chromosome 21, 21kb downstream of the pericentrin gene  
(PCNT) and rs28397289 on chromosome 6, within the human  
leukocyte antigen (HLA) region15. Elucidating the mechanisms  
that determine inter-individual variation in circulating S100β 
levels, in healthy individuals, may therefore provide insight  
into S100β’s role in health and disease. Further genetic mapping 
of S100β may also facilitate causal association tests with disease  
endpoints.

Here, we perform genome- and epigenome-wide association  
studies (GWAS/EWAS) of S100β in relatively healthy older 
adults from the Lothian Birth Cohort 1936 (LBC1936). We 
then use genetic instruments identified for S100β to test for  
bidirectional causal associations with Alzheimer’s disease, via  
two-sample Mendelian randomisation. Demographic information 
for the GWAS (N=769) and EWAS (N=722) sample groups are 
summarised in Table 1.

Methods
The Lothian Birth Cohort 1936
The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal 
study of cognitive ageing. Cohort members were born in 1936 
and took part in the Scottish Mental Survey 1947 at age 11 years.  
Approximately 60 years later, those individuals that were living 
mostly within the Edinburgh area were re-contacted (n = 1,091,  
recruited at mean age 70 years). Recruitment and testing of  
the LBC1936 cohort have been described previously16,17. Briefly, 
the data collection has included detailed phenotypic, biological 

Table 1. Demographics summary for the EWAS and GWAS sample populations.

Phenotype EWAS GWAS

n (%) Mean (sd) n (%) Mean (sd)

Maximum sample (n) 722 769

S100β (μg/L) 0.086 (0.035) 0.085 (0.034)

Sex (Female) 340 (47.1) 367 (47.7)

Age at S100β (years) 72.5 (0.7) 72.5 (0.7)

Body Mass Index (kg/m2) 27.9 (4.3) 27.9 (4.3)

EpiSmokEr 0.84 (5.2)

          Amendments from Version 1
A revised version of this manuscript was created in response 
to the review comments. This includes further clarifications 
of the methodology used for the Mendelian randomisation 
and colocalisation analyses. We have also added the variance 
explained in S100β levels by the lead SNP identified in our 
genome-wide association study. Finally, we have updated the 
Mendelian randomisation results from Alzheimer’s disease to 
S100β levels in Table 2, which differ marginally from the previous 
version. These updates do not alter the main findings of the 
Mendelian randomisation study, which is that there was no 
evidence for an association between S100β and Alzheimer’s 
disease and vice versa. The genome-wide and epigenome-wide 
association study summary statistics and findings have not 
changed.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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and cognitive sampling, over a series of follow-up waves 
(approximately every 3–4 years since recruitment). Body mass 
index (BMI) was measured at clinic visits and recorded in  
kg/m2. The S100β data available in this study were from the sec-
ond wave of testing, at around three years after the Wave 1 visit 
to the clinic. DNA methylation data were also collected at the 
same time-point as S100β sampling. Genotyping was performed  
on DNA from blood samples collected at Wave 1.

S100β measurement
Serum samples were obtained from participants during the main 
physical and cognitive testing appointment at Wave 2. After  
collection, samples were stored at −80 °C at the Wellcome Trust 
Clinical Research Facility, Western General Hospital, Edinburgh, 
until the conclusion of the wave. They were then transferred  
to the Department of Clinical Biochemistry, King’s College 
London using cold-chain logistics, where they were stored at  
−20 °C until assays were conducted using a chemilumines-
cence immunoassay S100β kit (catalogue number 314701, 
distributed by DiaSorin, Berks, UK) on a LIAISON chemi-
luminescence analyzer. The lag between sample dispatch at 
the end of sampling and assay completion (i.e., time stored at  
−20 °C rather than −80 °C) was an average of 44 days (SD = 26) 
for four batches. The minimal detectable concentration of the  
assay was 0.02 μg/L.

Genotyping
LBC1936 DNA samples were genotyped at the Edinburgh Clini-
cal Research Facility using the Illumina 610-Quadv1 array (Wave 
1; n = 1005; mean age: 69.6 ± 0.8 years; San Diego). Prepara-
tion and quality control steps have been reported previously18.  
SNPs were imputed to the 1000 G reference panel (phase 1, ver-
sion 3). Briefly, individuals were excluded on the basis of sex 
mismatches, relatedness, SNP call rate of less than 0.95, and 
evidence of non-European ancestry. SNPs with a call rate of  
greater than 0.98, minor allele frequency in excess of 0.01, 
and Hardy-Weinberg equilibrium test with P ≥ 0.001 were 
included in analyses. Only SNPs with a minor allele frequency 
> 0.05 and imputation quality > 0.6 were retained. The remain-
ing 8,489,963 SNPs were filtered to remove those that had 
a minor allele count < 25. A total of 7,307,523 SNPs were  
available for GWAS analyses.

DNA methylation
DNA methylation from whole blood at Wave 2 of the Lothian Birth 
Cohort 1936 was measured using the Illumina 450 K methylation  
array at the Edinburgh Clinical Research Facility. Complete 
details of quality control steps taken to process the dataset have  
previously been described19. Briefly, raw intensity data were 
background-corrected and normalised using internal controls.  
Manual inspection facilitated the removal of low quality  
samples presenting issues relating to bisulphite conversion,  
staining signal, inadequate hybridisation or nucleotide extension.  
Further quality control analyses were performed to exclude 
probes with low detection rate <95% at P < 0.01 and samples  
with a low call rate (<450,000 probes detected at p-values  
of less than 0.01) were also excluded. Finally, samples were 

removed if there was a poor match between genotype and 
incorrect DNA methylation-predicted sex, or SNP control 
probes. DNA methylation at Wave 2 was processed in three  
sets (n=256, 461 and 5, for sets 1, 2, and 3, respectively). In 
total, there were 459,309 CpG sites used in EWAS analyses.  
Lothian Birth Cohort Wave 2 DNA methylation data were 
used to generate an epigenetic score for smoking – known as  
EpiSmokEr20 in the sample. This score utilises previously 
derived weights calculated in an independent sample and has  
been previously shown to robustly reflect smoking status20.

S100β sample preparation
There were 834 individuals with S100β concentrations recorded 
at Wave 2 of the Lothian Birth Cohort study. Six measure-
ments greater than four standard deviations from the mean 
were excluded, as per previous analyses that utilised this  
sample9. There were 769 individuals with genome-wide genetic 
data (mean 72.5 years, sd = 0.7) and 722 individuals with 
epigenome-wide DNA methylation data (mean 72.5 years,  
sd = 0.7) available. Table 1 summarises demographic infor-
mation for these sample populations. In the maximum sample 
available in GWAS and EWAS (N=722), serum S100β levels 
were higher in females (beta = 0.26, SE = 0.07, P = 2.2×10-4)  
and older individuals (correlation of 0.18 and beta = 0.16 per  
year, SE = 0.03, P = 2.9×10-6 in linear models) (Figure 1).

Body mass index (BMI) and smoking are common lifestyle 
covariates that have well-documented DNAm signatures21,22; 
we therefore tested whether these traits should be adjusted for 
in our analyses. S100β levels were positively associated with 
body mass index (BMI) (beta = 0.10 per kg/m2, SE = 0.03,  
P = 2×10-3), but did not associate with the DNAm-based score 
for smoking, EpiSmokEr (beta = -0.01 per unit increase in 
the DNAm smoking score, SE = 0.04, P = 0.78). For this  
reason, BMI was included as a covariate in all analyses.

S100β protein levels were transformed by rank-based inverse 
normalisation and regressed onto age, sex, BMI at Wave 2  
(kg/m2) and four genetic principal components of ancestry 
in separate analyses groups (EWAS N=722, GWAS N=769). 
Standardised residuals (mean = 0, variance = 1) from these lin-
ear regression models were brought forward as the protein  
level variable for the respective analyses.

Data quality control and preparation was conducted in R  
(Version 4.0.3)23

Genome-wide association study (GWAS)
Linear regression was used to assess the effect of each of the 
7,307,523 available SNPs on the levels of S100β via PLINK  
(Version 1.9)24. Genome-wide stepwise conditional analysis was 
performed through GCTA-COJO using the ‘cojo-slct’ option 
to identify independent variants. Individual level genotype data 
were used for the reference linkage disequilibrium (LD) struc-
ture along with default settings of the software25. The variance 
(r2) in S100β levels that could be explained by this variant was 
calculated as follows: r2 = 2 × MAF × (1-MAF) × beta2, where 
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beta = effect size of the SNP and MAF = the effect allele  
frequency.

Expression quantitative trait loci (eQTL) colocalisation
We cross-referenced sentinel cis pQTLs that were selected 
by GCTA-COJO analyses with publicly available cis eQTL 
data taken from the eQTLGen consortium26. The cis eQTLs  
were subset to the same chromosome as the cis pQTL.  
A 200 kb region (either upstream or downstream) was extracted 
from our GWAS summary statistics for S100β to capture cis 
effects within 100 kb of the target gene27. eQTLs for this region 
were then extracted from the eQTLGen consortium sum-
mary statistics for the S100β region. The shared SNPs across  
transcripts for S100β and S100β protein levels were then 
tested for colocalisation using the coloc package28 (Version 
5.1.0) in R, with five hypotheses in Bayesian tests with default  
priors28. In addition to the null hypothesis (no causal vari-
ant), hypothesis 1 indicated a causal variant was present for  
S100β protein levels only. Hypothesis 2 indicated that there 
was a causal variant for the S100β transcript only. Hypoth-
esis 3 indicated that there were independent causal variants  
for both S100β transcription and S100β protein levels. Hypoth-
esis 4 indicated that there were two association signals that 
contributed to both S100β gene expression and S100β pro-
tein levels. A posterior inclusion probability (PP) > 0.95 was  
taken as the threshold for hypothesis testing.

Mendelian randomisation
Two-sample, bidirectional Mendelian Randomisation (MR) was 
used to test for potentially causal associations between S100β 

protein levels and Alzheimer’s disease. Associations from sepa-
rate GWAS were used as genetic instruments. As allele assign-
ment is randomised, the SNPs associated with the exposure 
are randomised to the effects of confounders and likely to be 
causally upstream of the exposure29. Summary statistics from a 
GWAS performed by Jansen et al.30 were used as the Alzheimer’s  
disease dataset (13,367,299 SNPs, with N=71,880 cases, and 
N=383,378 controls). The GWAS summary statistics for S100β 
were sourced from the analyses in this study that used sam-
ples from the Lothian Birth Cohort 1936 (N=769). Importantly, 
the Alzheimer’s disease summary statistics were based on a 
meta-analysis of cohorts that were independent of the Lothian 
Birth Cohort 1936. All analyses were performed using the 
TwoSampleMR package (Version 0.5.6) in R29. One assessment 
quantified the association between S100β levels as the exposure 
and Alzheimer’s disease as the outcome. A second assessment 
then quantified the association between Alzheimer’s disease 
as the exposure and S100β levels as the outcome. In each 
of the MR analyses, clumping was used to prune SNPs for  
linkage disequilibrium (LD) at r2 < 0.001. When testing the  
association with S100β as the exposure and Alzheimer’s dis-
ease as the outcome, only one of the 154 SNPs with P<5×10-8 
(rs8128872; the sentinel variant identified by GCTA-COJO 
analyses in our GWAS of S100β) remained after LD pruning.  
The effect estimate for S100β to Alzheimer’s disease was there-
fore determined using the Wald ratio test (a ratio of effect 
per risk allele on trait to effect per risk allele on protein lev-
els). An F statistic for the strength of the association between 
the sentinel SNP and the exposure was calculated using the 
method: F = ((N-k-1) / k) × (r2 / (1-r2)), where N = sample size,  

Figure 1. S100β in Wave 2 of the Lothian Birth Cohort 1936 (N=722). A, Violin plot to illustrate differences in S100β by sex. B, Scatterplot 
with regression line and 95% CIs for S100β by age at serum sampling with a Pearson’s correlation coefficient (r) annotated. S100β is plotted 
in μg/L units in all instances and age is given in years.
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k = number of SNPs and r2 = variance explained in S100β  
levels by the genetic instruments. The r2 statistic was calcu-
lated as follows: r2 = 2 × MAF × (1-MAF) × beta2, where beta 
= effect size of the SNP and MAF = the effect allele frequency. 
When testing causal associations with Alzheimer’s disease as 
the exposure and S100β as the outcome, 30 of the 2,357 SNPs  
with P<5×10-8 remained after LD pruning and 29 were present 
in the S100β summary statistics. Multi-method MR was then  
performed using the 29 SNPs from the Jansen et al.30  
summary statistics. As multiple independent variants were identi-
fied, a multi-method MR approach was chosen29. Unity between 
the estimates from these methods indicates that the results are 
more likely to be robust. The MR Egger approach did not find 
strong evidence of horizontal pleiotropy present (non-significant  
MR-Egger intercept).

Colocalisation 
Colocalisation analysis can be used to derive the probability that 
common genetic variants are shared between two phenotypes in 
a given region of the genome. The coloc package (Version 5.1.0) 
was used to conduct colocalisation analyses for the sentinel 
SNP in the S100β region and the Jansen et al.30 summary sta-
tistics for Alzheimer’s disease GWAS. Each dataset was sub-
set to a 200 kb section (upstream or downstream) surrounding  
the sentinel SNP on chromosome 21. Rare variants with MAF 
< 0.01 and variants with missing MAF were excluded from 
the analysis. A total of 1,346 variants were included for Alzhe-
imer’s disease and 1,010 variants were included for S100β. 
A single causal variant assumption is made in the analysis  
that there is one causal variant per trait and the probability 
of colocalisation between loci can be derived. Four hypoth-
eses were used in Bayesian tests with default priors28, as per the 
eQTL colocalisation tests, but for the presence of Alzheimer’s 
disease causal variants in the same region as S100β. In addi-
tion to the null hypothesis (no causal variants in the region 
assessed), hypothesis 1 indicated a causal variant was present  
for Alzheimer’s disease only. Hypothesis 2 indicated that there 
was a causal variant for S100β levels only. Hypothesis 3 indi-
cated that there were independent causal variants for both  
Alzheimer’s disease and S100β levels. Hypothesis 4 indicated 
that a common variant contributed to both Alzheimer’s disease 
and S100β levels. A posterior inclusion probability (PP) > 0.95  
was taken as the threshold for hypothesis testing.

Epigenome-wide association study (EWAS)
DNA methylation data were regressed onto age, sex, DNAm 
set, DNAm batch, BMI at Wave 2 (kg/m2), the DNAm-based  
smoking score EpiSmokEr20, four genetic principal compo-
nents and the measured levels of five immune cells (eosinophils, 
basophils, lymphocytes, neutrophils and monocytes). EWAS 
was conducted using OmicS-data-based complex trait analysis  
(OSCA)31. The MOMENT method was used to test for asso-
ciations between S100β levels and DNAm at individual CpG 
sites. MOMENT is a mixed-linear-model-based method that 
is able to account for unobserved confounders and the corre-
lation between distal probes that may be introduced by these 
confounders. CpG sites were the independent variables and  
the dependent variable was the S100β protein residuals.

Results
Genetic profiling of S100β
The linear regression genome-wide association study identi-
fied 154 SNPs (Figure 2, full summary statistics are available 
in the Extended Data) on chromosome 21 that were associated  
with S100β levels at P<5×10-8 (N=769). There was no  
evidence of genomic inflation (lambda = 0.99; Figure 3). Con-
ditional and joint analysis (GCTA-COJO) resulted in the 
identification of one independent pQTL rs8128872 (COJO  
beta = -0.46, SE = 0.05, P = 3.2×10-18) associated with S100β  
levels. The rs8128872 variant was found to explain 9% of the 
variance in S100β levels. The pQTLwas a cis variant (located 
1,419,889 base pairs downstream of the transcription start site  
of the S100β gene on chromosome 21). There was strong  
evidence (posterior probability (PP) > 0.95) that two independ-
ent causal variants existed for both transcription of S100β and 
S100β protein levels in our eQTL analyses for the S100β locus 
(Hypothesis 3: Posterior Probability (PP) = 1.0, Hypotheses 1, 2  
and 4 = 0).

Two-sample Mendelian randomisation (MR) was used to test 
for a causal association between S100β serum levels (using 
our cis GWAS data) and Alzheimer’s disease. As only one sig-
nificant SNP remained after LD pruning (F = 76.67, indicating  
a strong effect of the instrument on the S100β exposure), the 
causal effect estimate was determined using the Wald ratio. 
There was no evidence of an effect of S100β serum levels  
on risk of Alzheimer’s disease (P = 0.95); (Table 2). Simi-
larly, there was no evidence to suggest that a causal relationship  
was present between Alzheimer’s disease and serum S100β  
(P > 0.05). Colocalisation analyses provided further evidence 
that the loci for Alzheimer’s disease and S100β were not local-
ised together (Hypothesis 2: Posterior Probability (PP) = 0.99,  
Hypothesis 3: PP = 0.01, Hypotheses 1 and 4 = 0).

Epigenetic profiling of S100β
No CpGs were significantly associated (P<3.6×10-8) with 
S100β levels in the EWAS study (N=722) (Figure 2, full  
summary statistics are available in the Extended Data). The 
site with the lowest p-value (P = 5.8×10-6) was cg06833709, 
which is located within the LGI1 region, known to encode the  
leucine-rich glioma inactivated 1 protein (known as epitempin). 
There was no evidence of genomic inflation (lambda = 0.94,  
Figure 3).

Discussion
We have characterised the genetic and epigenetic profiles of 
S100β, a circulating protein that has been associated with 
brain inflammation and neurological disease pathology. We 
identified a genome-wide significant cis-pQTL (rs8128872,  
P = 5.0×10-17) that was associated with inter-individual  
variability in circulating S100β levels and found evidence 
that this pQTL was likely to be distinct from the eQTL for 
S100β transcription. Mendelian randomisation suggested 
no evidence of a causal association between S100β and  
Alzheimer’s disease or vice versa. Furthermore, there were no 
CpG probes that had epigenome-wide significant associations  
with S100β.

Page 6 of 13

Wellcome Open Research 2022, 6:306 Last updated: 27 JAN 2022



Figure 2. Miami plot of the GWAS (upper panel; N=769) and EWAS (lower panel, N=722) of S100β. Blue lines indicate a suggestive 
threshold of P<1×10-5; red lines indicate genome-wide thresholds of P<5×10-8 (GWAS) and P<3.6×10-8 (EWAS).

Figure 3. QQ Plots and Genomic Inflation statistics for the GWAS (A) and EWAS (B) of S100β in the LBC1936 sample. Lambda (λ) values are 
annotated in each case.

Whereas the study size was modest for our GWAS and EWAS, 
previous investigations of similar sample sizes have identi-
fied genome-wide SNP and epigenome-wide CpG correlates of  

protein levels32–35. These include proteomic analyses in the 
age homogeneous Lothian Birth Cohort 1936 sample that we 
use in our study34,35. Despite this, larger GWAS and EWAS  
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efforts may help to identify additional loci, which could be 
used for genetic correlation and more detailed Mendelian  
randomisation analyses.

Our identification of a single sentinel SNP for S100β suggests 
that though limited, there is some evidence for genetic regula-
tion of this protein in blood. The cis-pQTL that we identify  
(rs8128872) adds to the genetic profile of S100β generated 
in a previous GWAS analysis, which identified two SNPs in  
the PCNT and HLA regions15. While our EWAS suggested that 
there is no epigenome-wide signature of differential DNAm 
relating to circulating S100β levels, the CpGs with the low-
est P values in associations were situated within loci such as  
LGI1. The leucine-rich glioma inactivated 1 protein is encoded 
by LGI1, primarily locates at neuronal synapses and dys-
regulation of this protein due to LGI1 autoimmunity has been 
directly associated with limbic encephalitis36,37. Whether meth-
ylation at this CpG is associated with S100β should therefore  
be confirmed by replication.

The lack of evidence for a causal relationship between S100β 
and Alzheimer’s disease suggests either that 1) S100β levels 
in the blood are not directly related to the disease, or 2) any 
associations are more modest than this study is powered to reli-
ably detect. The GWAS sample size was relatively small and 
it is imperative that our GWAS and Mendelian randomisation 
results are independently validated by future cohorts that have 
S100β measurements available. This will further elucidate the 
likelihood of a causal relationship between S100β and Alzheim-
er’s disease. Studies implicating S100β as a candidate marker 
for dementia are often performed in cerebrospinal fluid5,7,8,  
which may provide a closer reflection of brain pathology and 
comparisons between blood and CSF S100β levels may there-
fore yield differing conclusions. However, in the Lothian Birth  
Cohort 1936 sample we use in this study, serum S100β lev-
els have cross-sectionally been associated with poorer general 
fractional anisotropy9, a marker of brain ageing that is associ-
ated with increased risk of cognitive decline and dementia38.  
Given its role as a mediator in inflammatory cascades within the 
brain2,4, it is likely that S100β serum levels may be modulated 
by multiple factors that could be independent of Alzheimer’s  
disease, or indirect from the dementia-associated pathology 
occurring in the brain. This may be evidenced by our lack of 
causal association to Alzheimer’s disease and these pathways 

should be explored to delineate targets for therapeutic inter-
ventions that may alter neuroinflammation through S100β  
mediation.

There are several limitations to our study. First, the Lothian 
Birth Cohort 1936 are of European ancestries, have little vari-
ation in age and selection biases may exist in this cohort, who 
are considered to be of higher socioeconomic class to the wider  
Scottish population16. Therefore, these findings may not gen-
eralise to individuals of different ethnic backgrounds, age pro-
files or socioeconomic groups, though this also means that we  
are not largely reliant on statistical adjustment for these con-
founders. Second, our data are from relatively healthy indi-
viduals, none of whom reported a diagnosis of dementia at  
recruitment. It is plausible that analyses in individuals in spe-
cific diagnoses groups may yield differing findings. Finally, 
while the amount of information regarding brain pathology and  
neurological disease biology is limited when using blood meas-
urements, many blood-based biomarkers have been found to 
predict and offer insight into Alzheimer’s disease39. Therefore, 
approaches that seek to triangulate between blood, cerebrospinal  
fluid and brain tissues may strengthen the identification of  
biomarker signals in future.

Conclusion
We have established evidence for modest genetic, but not epi-
genetic contributions to the levels of S100β, a protein marker 
for brain inflammation and neurological disease. We found no 
evidence for a causal relationship between serum S100β and  
Alzheimer’s disease. Future studies should seek to corrobo-
rate these findings across blood, cerebrospinal fluid and brain  
tissue.

Data availability
Underlying data
Lothian Birth Cohort 1936 data are not publicly available due 
to them containing information that could compromise par-
ticipant consent and confidentiality. Lothian Birth Cohort 1936 
data are available on request from the Lothian Birth Cohort  
Study, University of Edinburgh.

If you are interested in working with the Lothian Birth Cohort 
1936 data, you must complete a Data Request Form, indicating  
the variables you wish to access from the Data Dictionaries.  

Table 2. Mendelian Randomization summary statistics for two-sample, bidirectional tests between S100β serum 
levels and Alzheimer’s disease.

Exposure Outcome Method N SNP Odds Ratio Beta SE P

S100β Alzheimer’s disease Wald ratio 1 1.0002 3×10-4 4.9×10-3 0.95

Alzheimer’s disease S100β MR Egger 29 N/A 0.33 0.51 0.52

Alzheimer’s disease S100β Weighted median 29 N/A -0.21 0.53 0.69

Alzheimer’s disease S100β Inverse variance weighted 29 N/A -0.53 0.38 0.16

Alzheimer’s disease S100β Simple mode 29 N/A -1.02 0.98 0.31

Alzheimer’s disease S100β Weighted mode 29 N/A -0.03 0.49 0.96
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Reporting guidelines
Zenodo: The STROBE reporting checklist for observational  
studies, https://doi.org/10.5281/zenodo.5591776

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Ethical approval and consent
Ethical approval for LBC1936 was obtained from the Multi-Centre  
Research Ethics Committee for Scotland (MREC/01/0/56) and 
the Lothian Research Ethics committee (LREC/1998/4/183; 
LREC/2003/2/29). All participants provided written informed  
consent and the study was performed in accordance with the  
Helsinki declaration.
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are all the source data underlying the results available to ensure full reproducibility?
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Are the conclusions drawn adequately supported by the results?
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An interesting and important study to evaluate the possible biologically motivated causal 
relationship between S100 and Alzheimer's disease. Too often biomarkers are reported for a 
variety of neurodegenerative diseases and no definite (or often plausible) biological link is made. 
Here, the authors have used 2-stage Mendelian randomisation to attempt to investigate whether 
SNPs associated with S100 levels and/or a methylation epigenetic readout are causally related to 
Alzheimer's disease. 
 
They first performed an analysis in the Lothian birth cohort to 'build' the eugenic instruments and 
then applied them to the very large GWAS datasets available for Alzheimer's. They do not find any 
evidence that genetically encoded determination of S100 and its methylation is linked to AD. This 
is useful to the community. 
 
My minor comments:

Could they detail what amount of the variance of expression is captured by the instrument? 
 

○

Also, I think for clarity, explaining a bit more about the trio probability assessments in the 
Coloc analyses would help the non-specialist reader.

○
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