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Natural killer (NK) cell immunotherapies for cancer can complement existing T cell
therapies while benefiting from advancements already made in the immunotherapy
field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer
advantages including eliminating donor variation and providing an ideal platform for
genome engineering. At the same time, extracellular vesicles (EVs) have become a
major research interest, and purified NK cell extracellular vesicles (NKEVs) have been
shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to
be developed into a standalone therapeutic with reduced complexity and immunogenicity
compared to cell therapies. This review explores the role iPSC technology can play in both
NK cell manufacturing and NKEV development.

Keywords: natural killer cells, extracellular vesicles, exosomes, induced pluripotent stem cells, manufacturing, genome
engineering, immunotherapy, cancer
INTRODUCTION

Natural killer (NK) cell adoptive cell transfer (ACT) is emerging as an important cancer
immunotherapy. Despite engineered T cell therapies advancing through clinical trials to
commercialization (1), some major challenges remain such as high rates of serious adverse side
effects, production inefficiencies, and high costs for autologous treatment generation (2). Recent
research has shown that NK cells can overcome these challenges to develop into an independent or
complementary class of cancer immunotherapies (3–6). A complementary field benefiting from
advances in NK cell development is that of NK cell extracellular vesicles (NKEVs), with purified
NKEVs having proven to reproduce key functions of their parent NK cells (7).

These developments coincide with induced pluripotent stem cell (iPSC)-derived cell therapies
reaching human clinical trials. A particular focus is on iPSC-derived cell products that can be given
to patients allogeneically, reducing long-term risks that have slowed translation. iPSC-derived allogeneic
cell therapies have the potential to create “off-the-shelf” products, allowing larger batches to be created,
reducing costs, and increasing reproducibility. Together, these developments set the scene for iPSC
technologies to offer advantages in the manufacture and translation of NK cell-based therapeutics.
NK CELLS

NK cells are members of the innate lymphoid family, identified as CD56+CD3-, which provide
frontline defense against infections and cancer, and clear damaged cells (8, 9). NK cells are typically
classified into two main subpopulations: Cytotoxic CD56dimCD16+ (CD56dim) NK cells account for
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~90% of the total NK population, and IFN-g-producing
immunoregulatory CD56brightCD16- (CD56bright) NK cells
make up the remaining ~10%(10).

NK cells can discriminate normal from abnormal cells, a process
called immune surveillance, via a repertoire of activating and
inhibitory receptors (11–13). Direct binding to target cell ligands
by a combination of natural cytotoxicity receptor (NCR) family
members and NKG2D stimulate NK cell activation and the
trafficking of constitutively expressed lytic granules to the site of
cell contact and into the target cell (14–16) or the secretion of
cytokines (5, 17). Alternatively, CD16 binding alone is sufficient to
activate antibody-dependent cellular cytotoxicity (ADCC) (11).

To protect host cells, HLA class I molecules are selectively
detected by NK cell inhibitory receptors such as NKG2A and
killer immunoglobulin-like receptors (KIRs) (18). Other NK cell
inhibitory receptors detect sialic acid, extracellular matrix
components, and aminophospholipids, and the expression of
immune checkpoints by NK cells, such as CTLA-4 and PD-1, can
be stimulated by specific signaling environments (18, 19).

NK cells can be used allogeneically for ACT due to their
ability to educate and establish “self-tolerance” to the host HLA
class I environment (20). The major sources for NK cell ACT
have been peripheral blood (PB-NK) and cord blood (CB-NK),
as well as the immortalized line NK-92 (21, 22). Both PB-NK and
CB-NK cells are derived from limited donor sources, introducing
batch-to-batch variation. NK-92 cells possess anti-cancer
potential (23, 24), and have shown efficacy in human clinical
trials (25). However, they lack CD16 expression and require
irradiation prior to transplantation to inactivate proliferation
(26), which in turn impairs therapeutic properties (27, 28). iPSC-
derived NK (iPSC-NK) cells have the potential to overcome these
limitations while offering additional advantages (29).
ENHANCING NK CELL FUNCTION

Over time, tumors develop immunosuppressive microenvironment
features (30) (Figure 1A) such as altered expressions of receptors
and ligands that activate or inhibit NK cells (18, 31, 32), the
recruitment of immunomodulatory cells into the tumor mass
(33), altered metabolism that results in lower oxygen and
increased lactate (34, 35), and the production of inhibitory
molecules including TGF-b, IL-10, PGE2, and immune
checkpoint proteins such as PD-L1 (32, 36).

Considering these immune evasion mechanisms, various
strategies to enhance NK cell function have been developed (4,
37–39). Research into the optimal selection and dosing regimes of
cytokines used for expansion and activation (39–42) has identified
IL-15 as the preferred choice (43), while work on membrane bound
IL-15 and IL-21 has also shown advantages (44–46). Cancers with
decreased IL-15 expression correlate with decreased patient survival
(47), which led to the development of IL-15 superagonists (48–50)
and NK cell modifications that can overcome TGF-b-mediated
inhibition of the IL-15 pathway (51, 52).

Another approach has been co-treatment with small molecule
immunomodulatory drugs that activate NK cells and increase
Frontiers in Immunology | www.frontiersin.org 2
granzyme-B expression (53, 54) or that increase the expression of
NK activating ligands on cancer cells (55, 56). Increased NK cell
effects have also been achieved with the combined use of
biologics, such as tumor-specific monoclonal antibodies
(mAbs) that augment NK cell functions (57–63), or via bi-
specific or tri-specific engagers that bind to tumor-specific
antigens and NK cells to form immunological synapses (64–67).

Immune checkpoint blockade (ICB) deploying mAbs to block
inhibitory pathways has revolutionized our approach to cancer
treatment. PD-1/PD-L1 blockade has been shown to increase NK
cell cytotoxicity against cancer cells (68–70), and combined
treatment of lung cancer patients with allogeneic PB-NK cells and
the ICB drug Pembrolizumab increased patient survival (71). Other
ICB targets have been identified, and multiple mAbs targeting
inhibitory NK cell pathways have reached human clinical trials (72).

Finally, the growing importance of genetic strategies to
enhance NK cell function (73), as discussed later, has brought
iPSCs to the forefront of NK cell production (29).
EXTRACELLULAR VESICLES

Extracellular vesicles (EVs), including endosome-derived exosomes
(40-150 nm) and plasmamembrane-derivedmicrovesicles (50-1000
nm), are lipid nanoparticles secreted by most cell types that are
involved in intercellular communication (74). Due to the difficulty
determining the biogenesis pathway of individual vesicles, they are
classified according to size or density, biochemical composition, or
descriptions of conditions of the cell of origin (e.g. "NKEVs") (75).

In recent years EVs have become a major area of research
interest. For mesenchymal stem cells (MSCs), it became clear that
their immunomodulatory and regenerative functions primarily act
through secretory paracrine pathways, including via EVs (76, 77).
EVs have the potential to reproduce features of many parent cell
therapies while potentially simplifying translational pipelines due to
low immunogenicity and inability to replicate (78, 79).
Furthermore, progress has been made in EV manufacturing and
storage (80–84), critical areas for EV translation.

Mostly using MSC-EVs (85), interventional human clinical trials
are active for dystrophic epidermolysis bullosa (NCT04173650),
regeneration of macular holes (NCT03437759), acute ischemic
stroke (NCT03384433), periodontitis (NCT04270006), craniofacial
neuralgia (NCT04202783), inflammatory lung diseases
(NCT04388982, NCT04276987), and neurodegenerative diseases
(NCT04202770, NCT04388982). T-cell-derived EVs are being
investigated for pneumonia (NCT04389385). EVs are also being
investigated as liquid biopsy markers for diseases such as cancer
(NCT04053855, NCT04523389, NCT04852653, NCT04529915,
NCT03228277), diabetes (NCT03106246), neurodegeneration
(NCT03944603), and panic disorder (NCT04029740).
NATURAL KILLER CELL
EXTRACELLULAR VESICLES

Although NKEVs have yet to reach clinical trials (85), they have
become a significant research focus (7). NKEVs are continuously
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FIGURE 1 | Functions of NK cells and NKEVs. The key functions of NK cells are immune surveillance, cytotoxicity and tumor suppression, and immune modulation,
all of which involve both NK cells and NKEVs. (A) NK cell immune surveillance depends on the interaction of activating and inhibitory receptors with target cells. In
suppressive TMEs, NK cells are inhibited by PD-L1 on tumor cells and tumor cell-secreted TGF-b and IL-10. Decreased oxygen concentration, increased lactate
production, and decreased available nutrients also inhibit NK cells. NKEVs exhibit tumor affinity, and NKEV delivery of miR-186 to NK cells decreases TGFBR1/2
expression, fortifying them in suppressive TMEs. (B) Cytotoxicity and tumor suppression by NK cells depends on either CD16 regulated ADCC or degranulation of
vesicles containing perforin and granzyme B in response to the combined activation of activating receptors. NKEVs directly deliver cytotoxic effector cargo of perforin,
granulysin, granzyme A and B, as well as miRNAs miR-186 and miR-3607 to tumor cells. (C) NK cells produce immunomodulatory cytokines and chemokines in
response to activation, directly activating CD8+ T cells, and stimulating dendritic cells to activate both CD8+ and CD4+ T cells, which subsequently attack tumors.
Meanwhile, NKEVs increase CD80, CD86 and HLA-DR expression on monocytes, increase CD25 expression and decrease PD-1 expression on CD3+ T cells, and
increase the total NK cell population and the CD56dim NK cell fraction.
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produced by NK cells and are involved in key mechanisms of NK
cell function including immune surveillance, cytotoxicity, and
immune modulation (86–90) (Figure 1).

NKEVs express NK markers such as CD56, NKG2D, and
cytotoxic effector proteins (e.g. perforin, granzymes A and B,
granulysin, and FasL) (86, 87), as well as EV markers Rab5B,
CD63, CD81, CD9, and TSG101 (87). Purified NKEVs are
cytotoxic against diverse cancer cells (Figure 1B) including
hematological cancers (Jurkat, K562, DAUDI) (87),
neuroblastoma (CHLA-136) (91), breast carcinoma (MCF-7
(91), MDA-MB-231/F) (92)), ovarian cancer (A2780) (93), and
melanoma (B16F10) (94). In mouse glioblastoma xenograft
models NKEVs exhibit tumor affinity (92, 95) (Figure 1A).

As well as NK cell effector proteins, NKEVs carry miRNAs that
have specific roles in cancer suppression. For example, Sun et al.
showed that miR-3607, enriched in purified NKEVs, was required for
NK cells to inhibit the malignant transformation of pancreatic cancer
cells (Mia PaCa-2, PANC-1) by directly targeting IL-26, suppressing
proliferation, migration, and invasion (96). Neviani et al. showed that
miR-186 in NKEVs is partially responsible for their cytotoxic effect
against neuroblastoma cells (CHLA-136, CHLA-255, and LAN-5)
while fortifying other NK cells against the suppressive effect of TGF-b
(97) (Figure 1A). NKEVs containing miR-207 have also been shown
to reduce neuroinflammation (98).

NKEVs contain immunomodulatory proteins (88, 99, 100) and
promote M1 macrophages in a mouse pseudomonas aeruginosa-
induced lung injury model (101), reproducing immunomodulatory
features of NK cells. Federici et al. reported that NKEVs stimulate
CD25 expression on CD3+ T cells, HLA-DR and costimulatory
molecule expression on monocytes, and increase the total NK cell
population and the CD56dim NK cell fraction in vitro (88)
(Figure 1C). Shoae-Hassani et al. showed that NK cells
cocultured with neuroblastoma cells (SK-N-SH and CHLA-255)
produce NKEVs that confer enhanced neuroblastoma cell
cytotoxicity to fresh NK cells (102).

EVs may lack the signaling or metabolic pathways required to
respond to inhibitory tumor microenvironment (TME) signals.
Accordingly, some groups have shown experimentally that NKEVs
retain tumor affinity, tumor suppressive, and immunomodulatory
properties in simulated immunosuppressive TMEs using TGF-b, IL-
10, and LPS (88, 97). The addition of NKEVs also reduced PD-1
expression on CD3+ T cells even in the presence of TGF-b and IL-
10 (88).

Overall, mounting evidence suggests that NKEVs are an
integral component of NK cell functions (39, 103), with
purified NKEVs demonstrating therapeutic properties (7, 39).
PRIMING NK CELLS FOR
EV PRODUCTION

NKEVs collected from IL-15-primed NK cells had increased
concentration of cytotoxic effectors (92), improved cytolytic
activity against cancer cells of glioblastoma, breast cancer, and
thyroid cancer, showed improved tumor affinity, and inhibited
glioblastoma growth in xenograft mice (92). In NK cells IL-15
Frontiers in Immunology | www.frontiersin.org 4
regulates the small GTPase Rab27a (92), which was shown in MSCs
to increase EV secretion by promoting maturation of endosomal
multivesicular bodies (MVBs) containing exosomes (104). Zhu et al.
showed similar effects in NK cells with IL-15 priming more than
doubling particle number and EV-contained protein (92).

Hypoxic TMEs suppress NK immune surveillance via
hypoxia-induced tumor cell shedding of MICA and MICB
(105, 106), inhibit NK-mediated cell killing by reducing KIR
expression (106), decrease intracellular perforin and granzyme B
concentration (107), and reduce degranulation (106). Yet CD16
function is largely maintained, facilitating ADCC (106). To
compound this, the NK cell response to the hypoxic TME
actually assists blood vessel maturation (108). However,
activity of the hypoxia-induced HIF-1a pathway promotes the
infiltration of NK cells into tumors and the expression of
granzyme B (108). Away from the TME, NK cells cultured in
hypoxia for 48 hours produce larger yields of NKEVs with
increased total protein, FasL, perforin, and granzyme B
concentrations, increased cytotoxicity against breast (MCF-7)
and ovarian (A2780) cancer cells in vitro, and increased
inhibition of the migration and proliferation of these cancer
cells (93). These results are similar to the effects of IL-15 priming,
and the two approaches have been shown to be synergistic (109).

Harnessing these NK priming approaches and developing
knowledge in this area, as well as more generally into the
conditions that maximize NKEV yield and potency, may prove
critical in NKEV manufacturing optimization, as seen for other
EV sources.
iPSCs IN NK CELL MANUFACTURING

iPSC-derived cell therapies are now featured in many clinical
trials, including those using iPSC-NK cells (NCT04106167,
NCT03841110) (110). The expansion potential of iPSCs
eliminates the need for multiple donors, increasing cell product
reproducibility, and epigenetic rejuvenation during iPSC
reprogramming erases DNA modifications, producing cells
that are biologically young (111–113). This has been shown to
cause immune cells to exit exhausted states and adopt
phenotypes effective at killing cancer cells (114).

For NK cell-based ACT, chemically defined differentiation
protocols have been used to produce iPSC-NK cells with
cytotoxicity and immunomodulatory function comparable to
primary NK cells (29, 115–117). In cancer patients NK cells
are known to undergo functional decline (118–120), similar to
that observed in aged patients (121). This decline suggests iPSC-
NK cell therapies have advantages, where biologically young,
functional cells can replenish the diminished NK cell activity of
older and sicker patients.

One of the key advantages of using iPSC technology for cell
therapy is its suitability to genome engineering (122). A myriad of
genetic NK cell enhancement strategies have been developed to
improve targeting and homing to cancer cells, resist
immunosuppressive TMEs, and increase cytotoxicity and
persistence (73).
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For example, deletion in iPSCs of CISH, which encodes the
CIS protein, a negative regulator of IL-15, resulted in iPSC-NK
cells with better metabolic fitness and increased IL-15 sensitivity
(123). Another example is the addition to iPSCs of a cleavage
resistant CD16 variant that resulted in enhanced iPSC-NK cells
with superior ADCC compared to both unmodified iPSC-NK
cells and primary NK cells, and caused comparatively more
regression of hematopoietic malignancies and solid tumors
when combined with a mAb treatment (124).

Chimeric antigen receptor (CAR)-NK cells, emerging as a key
area of cancer immunotherapy development, are also better
suited to using iPSC technology. Despite clinical approval of
autologous CAR products, allogeneic products avoid patient cell
morbidity due to aging or disease and the possible contamination
of cancer cells (125). Using iPSC technology has allowed
researchers to compare the effectiveness of CAR combinations
(116), and two CAR iPSC-NK cell clinical trials are underway
(NCT04245722 and jRCT2033200431).

In addition to genome engineering, iPSCs are compatible with
synthetic biology. Tumor-derived TGF-b suppression of NK cell
cytotoxicity (47) is ameliorated by knocking out TGF-b receptors
(51). Intracellularly, TGF-b upregulates miR-27a-5p (126), which if
inhibited also increases the cytotoxicity of NK cells (127).
Intracellular targets like miR-27a-5p can be targeted by miRNA
switches to enhance NK cell function in a context-dependent way.
miRNA switches are synthetic mRNAs that can activate the
expression of specific miRNAs or proteins in response to
endogenous biomolecules (128). Moreover, miRNA switches can
be designed to orthogonally, meaningmultiple miRNA switches can
be combined to tune NK cell cytotoxic and metabolic (129)
responses to specific signaling environments. Employed in iPSC-
NK cells, this approach could be used to engineer “intelligent” NK
cells with programmed context-dependent functions.
iPSCs IN NKEV DEVELOPMENT

While research on NKEVs has increased, investigations into iPSC-
NK cell-derived EVs (iPSC-NKEVs) remain unreported, raising the
question of whether iPSC-NK cells also produce EVs (Figure 2).
This may represent an important, currently underexplored
therapeutic opportunity considering recent research from both
NKEVs and EVs from other iPSC-derived cells (130, 131).

Therapeutic properties of iPSC-derived cardiomyocyte- (132–
134), neuron- (135), neural stem cell- (136, 137), and MSC- (138–
141) EVs, as well as iPSC-EVs (142–144), have already been
demonstrated, as has the potential to improve performance for
certain applications using bioengineering (145). Using iPSCs as a
source for EV production may also help address EV manufacturing
andtranslationalchallengessuchasheterogeneityandscalability(146).

For iPSC-NK cells, Cichocki et al. have shown that they can
reproduce key features of NK cells, including dose-dependent
cytotoxicity against diverse cancer cells (lung carcinoma (A549),
hepatocyte carcinoma (HepG2), ovarian adenocarcinoma (SKOV-
3), myeloid leukemia (K562), and melanoma (SK-MEL2)),
inflammatory cytokine production, in vivo immunomodulation
Frontiers in Immunology | www.frontiersin.org 5
(including activation and recruitment of circulating T cells),
infiltration into solid tumor spheroids in vitro, and the ability to
slow tumor progression in vivo (115). Other groups have reported
functional iPSC-NK cells (116), and given the documented role of
NKEVs in these NK cell processes, these results underline the
importance of investigating iPSC-NK cells for EV production.

Similarly to the epigenetic rejuvenation discussed for iPSC-
NK cells, Man et al. reported that epigenetic rejuvenation of
osteoblast progenitors via histone deacetylase (HDAC)
inhibition results in the production of EVs with enhanced
function (147). Other studies have shown that, compared to
older MSCs, young MSCs produce EVs with better therapeutic
properties (148, 149) that are enriched in miRNAs and proteins
involved in immunomodulation (148, 150, 151). Interestingly,
studies directly comparing therapeutic potential have shown
improved efficacy of iPSC-derived MSC-EVs compared to
adult donor MSC-EVs in in vitro studies of wound healing
(152) and in in vivo disease model studies of osteoarthritis
(153). Together, these findings suggest that rejuvenated iPSC-
derived cells may be a superior resource for EV manufacturing
compared to other sources, although donor age prior to iPSC
reprogramming does impact some EV properties (154).

Engineering EVs to increase potency and specificity has
already shown promising results in other cell types, and the
same principles may translate to NKEVs. Upregulated
expression of miRNAs can increase the concentration of
miRNAs in EVs, improving therapeutic performance (155–
157). Clinical trials are in progress using modified EVs for
drug del ivery in pancreatic (NCT03608631), colon
(NCT01294072), and lung cancer (NCT01159288) (85). While
there are yet to be published reports of groups modulating the
biochemical composition of NKEVs genetically, the principle of
NKEV engineering has been established by Han et al., who used
electroporation to load NKEVs with the chemotherapy drug
paclitaxel, enhancing their ability to suppress the proliferation
and induce the apoptosis of breast cancer cells (158). In MSCs,
Böker et al. showed that overexpression of the EV tetraspanin
CD9 resulted in increased exosome biogenesis (159),
highlighting the role iPSC engineering can play in optimizing
production efficiency as well as modulating EV composition.
CONCLUSION AND FUTURE DIRECTIONS

While the EV industry has moved into a phase of production
optimization and human clinical translation, NKEVs are at an
earlier stage of development. On the one hand, this means that they
can benefit from advancements in purification, storage, and scale-up
technologies, but, on the other hand, key translational questions
remain relatively unanswered. One question concerns the extent of
NKEV heterogeneity, and how this relates to NK cell sub-
populations and states. Another concerns the production
efficiency of NKEVs, which depends on their potency and yield,
and ultimately the number of particles required for effective
therapeutic doses. For EVs from other cell types, appropriate
doses have been determined (160), and production yields have
July 2022 | Volume 13 | Article 890894
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been documented and linked to manufacturing processes (80, 161).
For NK cells, Jong et al. reported that 1-3 x 109 activated NK cells
cultured in the G-Rex100 culture system for 48 hours contained ~7
x 107 particles/ml, implying production yields of ~5-14 particles/
cell/day (91). Other cell types have been reported to have much
higher EV production yields (161). Indeed, Jong et al. compared
their NKEV production data to HEK293 (~1841 particles/cell/day)
and MSCs (~938 particles/cell/day) (91). Further reports on NKEV
production efficiency and detailed investigation of effective
therapeutic doses will provide important context to these early
numbers. If it is confirmed that iPSC-NK cells secrete NKEVs, then
the ability to expand iPSCs to vast numbers before differentiation
could be exploited for iPSC-NKEV production.

For NK cell ACT, iPSCs offer advantages in key areas of
manufacturing and translation, promising to provide a cell
source for biological ly young, “off-the-shel f” , and
bioengineered enhanced iPSC-NK cells. With iPSCs already
making an impact in the clinic, iPSC-NK cells can benefit from
advances in manufacturing (162) and genome engineering
strategies (163) to create iPSC-NK cells that have context-
dependent functions and enhanced potency and specificity. For
NKEVs, future work may soon confirm that their composition
can be genetically controlled, and, similarly to enhanced NK
Frontiers in Immunology | www.frontiersin.org 6
cells, this could lead to the development of enhanced NKEVs
with the potential to be purified as a stand-alone therapeutic or
deployed as an addition to engineered iPSC-NK cells that can
home to tumor sites and secrete enhanced NKEVs in situ.
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FIGURE 2 | iPSCs in EV production. iPSCs can be differentiated into various cell types that have therapeutic potential. iPSC-NK cells have the advantages of increased
expansion potential, the production of biologically young cells, and less donor variation compared to primary NK cells. For EV production, several iPSC-derived cells and
iPSCs themselves have been shown to produce functional EVs. However, for NK cells, studies investigating iPSC-NKEVs have not been reported, raising the important
question of whether iPSC-NK cells produce EVs. NKEVs can reproduce the functions of NK cell therapies while reducing the complexity and immunogenicity of the final
therapeutic product, thus increasing safety. These features highlight how iPSC-NKEVs represent an important direction for NKEV research.
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