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A B S T R A C T   

Mucormycosis or “black fungus” has been currently observed in India, as a secondary infection in COVID-19 
infected patients in the post-COVID-stage. Fungus is an uncommon opportunistic infection that affects people 
who have a weak immune system. In this study, 158 antifungal phytochemicals were screened using molecular 
docking against glucoamylase enzyme of Rhizopus oryzae to identify potential inhibitors. The docking scores of 
the selected phytochemicals were compared with Isomaltotriose as a positive control. Most of the compounds 
showed lower binding energy values than Isomaltotriose (-6.4 kcal/mol). Computational studies also revealed 
the strongest binding affinity of the screened phytochemicals was Dioscin (-9.4 kcal/mol). Furthermore, the 
binding interactions of the top ten potential phytochemicals were elucidated and further analyzed. In-silico 
ADME and toxicity prediction were also evaluated using SwissADME and admetSAR online servers. Compounds 
Piscisoflavone C, 8-O-methylaverufin and Punicalagin exhibited positive results with the Lipinski filter and drug- 
likeness and showed mild to moderate of toxicity. Molecular dynamics (MD) simulation (at 300 K for 100 ns) was 
also employed to the docked ligand-target complex to explore the stability of ligand-target complex, improve 
docking results, and analyze the molecular mechanisms of protein-target interactions.   

1. Introduction 

Mucormycosis, is known as black fungus is an uncommon and deadly 
fungal infection, that was previously termed as ‘zygomycosis’ [1]. 
Mucormycosis is caused by fungi belonging to the Mucorales order and 
the family Mucoraceae, first reported in the history by Paultauf [2,3]. 
Rhizopus oryzae is the primary fungus responsible for around 70 % of all 
disease manifestation and 90 % of all rhinocerebral cases [4]. Generally, 
mucormycosis has emerged in immunocompromised patients, including 
uncontrolled diabetes, bone marrow transplantation, other types of 
metabolic acidosis, corticosteroid therapy, and solid organ, malignant 
haematological disorders and deferoxamine therapy in patients 

receiving haemodialysis [5,6]. Recently, the pandemic coronavirus 
disease-2019 (COVID-19) which is caused by SARS-CoV 2 is another 
fiery example of a patient’s immune system weakening whereby the 
patient becomes susceptible to such opportunistic fungal infections. 
There is no genetic link between COVID and mucormycosis, they are 
immunologically interconnected [7–13]. COVID-19 infection increases 
the level of pro-inflammatory cytokines like IL-1, IL-6, tumor necrosis 
factor alpha (TNF-α), and may decrease the number of immune cells that 
maintaining the immune system homeostasis such as CD4 + and CD8 +
T cells, which may lead to increased susceptibility for those patients 
with bacterial and fungal co-infections [14]. 

Just after the COVID-19 s wave, significantly high number of black 
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fungus cases were reported in India as post-COVID infections [15–17]. 
Incidences were found to be relatively high in the patients who received 
corticosteroid including patients admitted to intensive care units and 
longer duration of hospital stay. Corticosteroid was extensively used 
during COVID-19 in order to reduce inflammation in lungs and repairing 
damages caused by the overdriving of immune system of the body. 
Steroid therapy weakens the immune system of the host and both dia
betic and non-diabetic patients lead to a rise in blood sugar levels which 
both factors increase the susceptibility of host toward mucormycosis. 
Moreover, diabetic condition is counted as a high-risk factor for black 
fungal infection [18–21]. Therefore, if this condition of mucormycosis 
without any protection, it can readily enter the body and cause severe 
infection, leading the patient to inevitable death. The route of entry by 
this fungus is via inhalation of the spore, so it is advisable to keep the 
house mold-free [22,23]. The aggressive form of coronavirus infects the 
lungs, which makes the patients more prone to get infections that are 
airborne, including mucormycosis [24]. 

Black fungus affects multiple organs, predominantly, brain, lungs 
and sinuses, and it has symptoms are similar to COVID-19 infections 
including fever, cough, etc., which both diseases can be distinguished by 
the clinical investigations. Other symptoms that are linked to black 
fungus infections are as follows: swelling in one side of the face, head
ache, fever, nasal congestion, black lesions on the nose or inside the 
mouth [7,25–27]. Most common treatment strategies involve high doses 
of liposomal amphotericin B, and sometimes surgical resections when
ever required. The mortality rate for mucormycosis is higher than 50 % 
and depends on the affiliated diseases [5,22,28,29]. The study was done 
in India by Patel A. et al., whereby diabetes was a risk factor, with or 
without ketoacidosis occurring in 73.5 % of patients with mucormycosis 
[30].The death rate is 90–100 % in patients with disseminated disease, 
central nervous system infection or prolonged neutropenia [31–35]. 
Unfortunately, the unacceptably high mortality rate, limited options for 
therapy, the high cost of managing mucormycosis, and the highly dis
figuring surgical therapy, etc., drive the urgent need of newer thera
peutic drugs to treat the disease [6]. 

Discovery and development by de nava design is a time-consuming 
and costly process, so, repurposing can be an appropriate strategy to 
search potent molecules from the pre-existing databases. The compu
tational approaches such as molecular docking and dynamics simula
tions, in silico ADMET and drug-likeness predictions are mostly used to 
discovery and development of drug candidates from several databases. 
Considering literature data, many active agents against fungal infections 
have been documented in the herbal medicine. The natural products 
comprising of a diverse range of secondary metabolites including fla
vonoids, coumarins, limonoids, terpenoids, phenolic compounds, tan
nins, quinones, saponins, xanthones, alkaloids, peptides, and 
biosurfactants were reported having in vitro antifungal properties 
[36–45]. Therefore, in recent year research on these phytochemicals and 
their derived compounds have been the subject of increased investiga
tion due to their importance in drug design. Plants have a variety of 
active compounds having antifungal activity against various fungus 
strains, these are important to humans. For instance, there are currently- 
two major drug classes in use (amphotericin B, the gold standard and 
armamentarium and the lipopeptide caspofungin) are the important 
antifungal drugs, which are derived from natural products [46–49]. 

In this work, 158 phytochemicals contain of terpenoids, limonoids, 
phenolic compounds, tannins, flavonoids, coumarins, quinones, sapo
nins, xanthones, alkaloids, peptides and other classes of compounds 
were screened based on their reported bioactivity to discovery of hit for 
therapeutic against protein of mucormycosis. In this study, we selected 
the glucoamylase enzyme of Rhizopus oryzae (RoGA) for screening of 
phytochemical. Glucoamylase (EC 3.2.1.3), also known as amylogluco
sidase; glucan 1,4-α-glucosidase; amylase; 1,4-α-D-glucanglucohydrolase 
is amylolytic enzyme, that yieldsβ-D-glucose from the starch and poly
saccharide by hydrolyzing α-1,4 and α-1,6 linkages, produced by the 
different sources such as fungi (Aspergillus, Penicillium spp. Rhizopus 

oryzae), yeast and bacteria [50,51]. Glucoamylase (GA) belongs to the 
family of the glycoside hydrolase 15 (GH15) due to its structural simi
larity to that enzyme group or family. Glycoside hydrolase family 15 
comprises enzymes with several known activities; glucoamylase; alpha- 
glucosidase; glucodextranase [52]. RoGA is comprising of starch binding 
domain at N-terminal and catalytic domain at C-terminal terminal, 
connected by an o-glycosylated linker. It can hydrolyze both amylose 
and amylopectin by breaking α-1,4 as well as α-1,6 glycosidic bonds and 
produce glucose units [53]. 

Glucose is an essential nutrient for the growth of fungal infections 
because these metabolites serve as carbon skeletons for the biosynthesis 
of other molecules as well as serving precursors for energy production 
and being involved in cellular signaling pathways in fungi [54]. GA 
among these, Rhizopus spp is well known for significant production of 
glucoamylase enzyme, which plays an important role in fungal growth 
and life cycle [55]. Glucoamylase is also produced within the human 
intestinal body as an essential enzyme besides carbohydrates and long- 
chain starches are broken down into sugars by this enzyme, which the 
body uses as fuel. The primary function of all essential enzymes is to 
break down most starches and carbohydrates to their purest forms so 
that the body can obtain nutrients from these foods [56]. 

Several studies have been reported that Glucoamylase inhibitors 
exhibited antimicrobial, antifungal, antibacterial activities and anti- 
diabetic for type II diabetes [57–59]. There are many studies have 
been revealed that Rhizopus oryzae would use its spore coat protein 
CotH3 of Mucorales to interact with glucose-regulated protein 78 
(GRP78) as a receptor on nasal epithelial cells to penetrate and destroy 
the cells. The ketone body levels (hallmark features of Diabetic ketoa
cidosis (DKA)), iron, and high glucose, increase expression of the CotH3 
and GRP78 proteins, potentially leading to frequently fatal cerebral 
mucormycosis and rhinoorbital [60–62].Increasing expression of the 
GRP78 receptor in COVID-19 patients may promote Mucorales spore 
binding, resulting in increased endothelial invasion and damage [63]. 
Teclegiorgis et al., found that inhibiting Rhizopus CotH3 expression 
blocked invasion even in mammalian cells overexpressing GRP78, 
showing the importance of this fungus protein in pathogenicity. It was 
also found that the Polyclonal antibodies produced toward both peptides 
in CotH3′s GRP78-binding domain inhibited fungal invasion and adhe
sion of endothelial cells in vitro and protected DKA mice from Rhizopus 
oryzae associated pulmonary mucormycosis [62]. Likewise, repression 
of GRP78 and CotH3 expression by GA inhibitors is probably due to their 
ability to block glucose production, which would protect endothelial 
cells from Rhizopus oryzae -induced endocytosis and subsequent 
damage. 

2. Experimental 

2.1. Ligand preparation 

A list of 158 bioactive compounds was collected from various herbals 
that were reported as anti-fungal agents [64–113]. The 3D structure of 
phytochemicals were downloaded from Pubchem database (https://p 
ubchem.ncbi.nlm.nih.gov/) in SDF format. The structures that were 
not available in PubChem were drawn using the Avogadro tool (version 
1.2.0) (https://avogadro.cc/) [114]. The structures were further con
verted into PDBQT format using Open Babel software (version 2.3.1) 
(https://openbabel.org/wiki/Main_Page) [115]. MMFF94 force field 
and conjugate gradient optimization algorithm were used to minimize 
the ligand energy in 200 steps using PyRx-Python prescription 0.8 
[116]. 

2.2. Receptor preparation 

The 3D crystal structure of Glucoamylase enzyme(PDB ID: 4BFO) 
was retrieved from RCSB protein data bank (https://www.rcsb. 
org/structure/4BFO) [117]. The resolution of the obtained structures 
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was 1.18 Å. The file was opened using BIOVIA Discovery Studio 

Visualizer (v17.2.0.16349). The protein preparation was carried out by 
eliminating the native inhibitor and other heteroatoms, including water 
molecules. The receptor was then saved as pdb format. AutoDock Tool 
[118] was used to add polar hydrogen atoms to the receptor, to deter
mine Kollman charges, and Partial charges were assigned. Then, the 
prepared file was saved as pdbqt format. 

2.3. Molecular docking 

The original ligand was re-docked on the target receptor to validate 
the docking method, BIOVIA Discovery Studio Visualizer (DSV) was 
used to eliminate this ligand from the receptor. The grid box parametric 
dimension values were adjusted as X  = -21.75700, Y = -0.386824 and Z 
= 11.718029. The exhaustiveness value was set as 8 to obtain an effi
cient binding conformation pose of the protein–ligand complex. After
ward, the retrieved phytochemicals were docked against the protein of 
target with PDB ID:4BFO. AutoDock Vina [119]. was used to perform the 
docking simulation. Finally, AutoDock Vina generated a docked com
plex for each ligand with various conformation and affinity scores (in 
kcal/mol) and ranked them based on the lowest binding energy theory 
(kcal/mol) of docked complexes (whereby more negative value means 
greater binding affinity). The best protein–ligand complex docked pose 
were analyzed and graphically visualized by DSV (https://www.3ds. 
com/products-services/biovia/). 

2.4. In-silico predicted ADMET profiles 

In-silico prediction of ADME properties of the selected phytochemi
cals was carried out using SwissADME online server [120], while 
toxicity was predicted using the Organ toxicity and Genomic toxicity 
model from admetSAR 2.0 [121] as reported in literature [122]. The 
organ toxicity is classified under the category: Drug-induced liver injury, 
Human ether-a-go-go-related gene (hERG) inhibition, acute toxicity, Eye 
injury and Eye corrosion. The genomic toxicity is classified: ames 
mutagenesis, carcinogenesis and micronucleus assay. The smile notation 
for all the selected 10 compounds was considered as the starting point 
and input to the SwissADME and admetSAR 2.0 webserver and thereby 
ADME and toxicity predictions were carried out. 

2.5. Molecular dynamics (MD) simulations 

The best docked poses of Dioscin and Piscisoflavone C obtained from 
the docking was used further for MD simulation and evaluating their 
conformational space and inhibitory potential. The GROMACS package 
(Ver. 2019.2) with GROMOS96 43a1 force field was carried out to 
analysis the MD simulation. Parameter files and topology of ligands 
were prepared utilizing the latest CGenFF via CHARMM-GUI [123,124]. 
The SPC water models that extended 10 from the protein was used to 
solvate the structures of both complexes in a triclinic box [125]. In order 
to mimic physiological salt concentration, 9 Na+ and 9 Cl− ions (0.15 M 
salt) were added to neutralize the systems for both cases, as shown in 
Fig. 1. In the NPT/NVT equilibration run, both systems were introduced 
to periodic boundary conditions (1.0 bar, 300 K) utilizing a Leap-frog 
MD integrator for a 100 ns [126]. For electrostatic interactions, the 
particle-mesh Ewald protocol was applied [127]. The force-based 
switching algorithm was applied to truncate interactions (non-bonded) 
above 10 and 12 Å [128]. Minimization of energy was used to eliminate 
bad contact inside the system via the steepest descent with 5000 steps. 
Additionally, to avoid the cold solute-hot solvent problem, the indexing 
system applied temperature coupling into both water and non-water 
components. Furthermore, for NVT/NPT equilibrations run, a modi
fied Berendsen thermostat and a Parrinello-Rahmanbarostat were per
formed. Trajectory analysis was carried out using GROMACS analysis. 
Calculation of the root mean square deviation (RMSD) and root mean 
square fluctuations (RMSF) of receptor were carried out utilizing 
gmxrms and gmx rmsf, respectively. The gmx sasa and gmx gyrate tools 

Fig. 1. Protein-ligand complex(a) Dioscin and (b) Piscisoflavone C in triclinic 
box solvated with water molecules and neutralized with 9 Na+ and 9 Cl− ions 
(0.15 M salt). 

Fig. 2. The molecular structure of the best 10 screened phytochemicals.  
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were used to calculate the solvent accessible surface area (SASA) and 
radius of gyration (RG), respectively. Hydrogen bonds were analyzed by 
gmxh bond tool. Grace Software was utilized to generate the plots. The 
complex structure was visualized by PyMol and VMD [129,130]. The 
simulation time for the ligand-receptor was 10.4 and 10.3 h for Dioscin 
and Piscisoflavone C, respectively, for 100 ns. 

3. Results 

3.1. Molecular docking 

Selected 158 anti-fungal phytochemicals were docked against target 
enzyme. The native ligand, Isomaltotriose was used as the control for 
comparative purpose. Molecular docking of these phytochemicals 
revealed binding affinity ranging from − 4.1 to − 9.4 kcal/mol. Among 
the 158 phytochemicals screened, 123 phytochemicals showed docking 
energy values higher than Isomaltotriose (-6.4 kcal/mol). The in
teractions of the best 10 compounds (Fig. 2) is depicted in Table 1. These 
compounds that have higher potential making hydrogen bond and hy
drophobic interactions with Tyr32, Lys34, Lys35, Phe58 and Ser57 were 
common interacting residues. 

3.2. In silico predicted ADMET profiles 

3.2.1. Predicted ADME profiles 
The physico-chemical properties of the top ten compounds were 

given in the Table 2. 

3.2.2. Predicted toxicity results 
The organ toxicity and genome toxicity were summarized in Table 3. 

3.3. Molecular dynamics simulation 

The best docked conformations of each Dioscin and Piscisoflavone C, 
which exhibited significant results based on in-silico predicted ADMET 
analysis, were selected for 100 ns MD simulation. The best conformation 
was utilizing to set up dynamics simulation process in a high-throughput 
manner for analyzing the mechanism of ligands binding dynamics with 
target receptor under clearly expressed water conditions. 

4. Discussion 

Molecular docking studies investigating for mucormycosis inhibitors 
exhibited that the natural compounds are already reported for inhibiting 
the growth of Rhizopus oryzae. The fungal cell walls and enzymes have 
been previously founding as an attractive target for the discovery of new 
antifungal agents. According to the results obtained, it has been shown 
that the higher dock score was against the receptor of Rhizopus oryzae, 
and even comparatively higher than the native ligand, Isomaltotriose. 
Evidence from several in vivo, in vitro, and animal studies suggests that 
phenolic compounds such as phenols, coumarins, flavonoids, tannins, 
quinines, xanthones and stilbenoids from natural sources have anti
fungal properties and, it’s also shown that their activity is mainly due to 
the site (s) and the number of hydroxyl groups in a compound are 
assumed to be related to their relative toxicity to microorganisms. As 
previously stated, increasing toxicity is related to more hydroxylation 

Table 1 
The docking score of the best 10 screened phytochemicals and their interactions 
with the enzyme.  

Entry Compounds B.E 
(kcal/ 
mol) 

Interactions 

H-Bond Hydrophobic Others 

1 Hopeanolin  ¡8.8 Tyr32, 
Lys34, 
Phe58 

π-π stacked: 
Tyr32, Phe58; 
π-alkyl:Phe58 

Glu68 
(π-anion) 

8 Vaticanol E  ¡8.7 Lys34, 
Lys35, 
Ser57 

π-alkyl:Phe58  

11 Vaticanol B  ¡8.5 Tyr32, 
Lys34, 
Ser57, 
Phe58 

π-π stacked: 
Tyr32, Phe58, 
Trp70; π-alkyl: 
Tyr32, Phe58 

Glu68 
(π-anion) 

12 alpha-Viniferin  ¡8.6 Asn29, 
Tyr32, 
Tyr67, 
Glu68 

π-π stacked: 
Tyr32, Phe58; 
alkyl: Phe58, 
Pro61 

Glu68 
(π-anion) 

13 Pauciflorol A  ¡8.7 Asn29, 
Tyr32, 
Ser65 

π-π stacked: 
Tyr32, Phe58; 
π-alkyl: Tyr32, 
Phe58 

Glu68 
(π-anion) 

31 Dioscin  ¡9.4 Lys34, 
Lys35, 
Ala56, 
Ser57, 
Phe58 

π-alkyl: Tyr32, 
Phe58 

Phe58 
(π-sigma) 

114 8-O- 
methylaverufin  

¡8.3 Lys34, 
Lys35, 
Phe58 

π-alkyl: Tyr32, 
Phe58, Trp70 

Ala55 
(π-sigma) 

118 Piscisoflavone 
C  

¡8.3 Asn29, 
Lys34 

π-π stacked: 
Tyr32, Phe58; 
alkyl:Pro61 

Glu68 
(π-anion) 

139 Punicalin  ¡8.3 Tyr32, 
Lys34, 
Lys35, 
Ala56, 
Ser57, 
Phe58   

145 Punicalagin  ¡8.2 Lys34, 
Lys35, 
Ser57 

π-π stacked: 
Tyr32, Phe58; 
π-alkyl: Ala55   

Isomaltotriose  ¡6.4 Tyr32, 
Lys34, 
Ser57, 
Phe5  

Tyr32 
(π-sigma) 

B.E: Binding Energy. 

Table 2 
Results of predicted ADME properties of the 10 best compounds.  

Entry Formula M.W FC HBA HBD MR TPSA X3 WS GI.A B.P Pg LV B.S S.A 

1 C42H28O10  692.67  0.14 10 5 186  162.98  4.9 P.S Low No Yes 1  0.11 7.05 
8 C42H32O9  680.7  0.14 9 8 189.88  171.07  6.84 P.S Low No Yes 2  0.17 6.24 
11 C56H42O12  906.93  0.14 12 10 252.25  220.76  9.12 Ins Low No Yes 3  0.17 7.55 
12 C42H30O9  678.68  0.14 9 6 187.09  149.07  6.83 P.S Low No Yes 2  0.17 6.41 
13 C42H32O9  680.7  0.14 9 8 189.88  171.07  6.84 P.S Low No Yes 2  0.17 6.24 
31 C45H72O16  869.04  0.96 16 8 216.42  235.68  1.34 M.S Low No Yes 3  0.17 10 
114 C21H18O7  382.36  0.33 7 2 97.87  102.29  3.3 M.S High No Yes 0  0.55 4.85 
118 C21H18O5  350.36  0.19 5 1 100.56  68.9  3.72 M.S High Yes No 0  0.55 3.83 
139 C34H22O22  782.53  0.18 22 13 180.45  385.24  − 0.29 M.S Low No Yes 3  0.17 6.74 
145 C20H16O5  336.34  0.15 5 2 96.09  79.9  3.94 M.S High No No 0  0.55 3.76 

M.W: Molecular weight (g/mol), FC: Fraction Csp3, HBA: Number of H-bond acceptors, HBD: Number of H-bond donors, MR: Molar Refractivity, TPSA: Topological 
polar surface area (Å2), X3: XLOGP3,WS: Water Solubility Class, GI.A: Gastrointestinal Absorption, B.P: Blood Brain-Barrier permeant, Pg: P-glycoprotein substrate, LV: 
Lipinski Violation, B.S: Bioavailability Score, S.A: Synthetic accessibility. 
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[80,108,113]. Moreover, phenol compounds with higher degree of 
oxidation were shown more inhibitory activities [131]. Studies also 
indicated that the antifungal activities of flavonoids like iso
piscerythrone, allolicoisoflavone A, piscisoflavones A, B and C, lico
flavone A, papyriflavonol A, quercetin, hesperidin, neohesperidin and 
naringin, because of their ability to bind to extracellular and soluble 
proteins, as well as to bind to fungal cell walls. The more lipophilic 
nature of flavonoids may also account for the disrupted fungal mem
branes [69,80,90,96,99,107]. A large number of studies have estab
lished that terpenoids such as estragole, encelin and panicutine exhibit 
antifungal activity. Terpenes’ mechanism of action is not fully 
explained, but it is thought to include membrane disruption due to their 
lipophilic nature. The addition of a methyl group to the hydrophilicity of 
kaurene diterpenoids drastically decreased their antimicrobial activity 
as reported by Mendoza et al., [132]. Encelin, a known sesquiterpene 
lactone extracted from the Mexican species Montanoa speciosa, has a 
significant effect on fungal cell development and morphogenetic pro
cesses [133]. Limonoids are highly oxygenated and modified triterpenes 
and to date, more than 300 limonoids are isolated, which include: 
obacunone, corosolic acid, maslinic acid, hydroxyseneganolide, ole
anane, epoxyazadiradione,7-deacetylgedunin, oleanolic acid, ursolic 
acid, limoninglucoside, azadiradionolide, eugenol,1,3-dideacetyl-7- 
deacetoxy-7-oxokhivorin, seneganolide A, B., methyl 6-hydroxyango
lensate and gedunin. Limonin is the first isolated limonoids found in 
medicinal plants, such as citrus, neem, tulsi and licorice. Limonoids have 
been identified as having various biological properties including anti
bacterial, antifungal, antiviral, antimalarial, and anticancer 
[72,78,80,106]. Saponins are steroidal or terpenoid-based glycosides 
with surface-active properties such as saponin and sapindoside B. CAY- 
1, a triterpene saponin from the Capsicum frutescens, was reported to be 
potent against 16 different fungal strains, including C. neoformans, 
A. fumigatus, and Candida spp. It has been shown that the antifungal 
properties of CAY-1 can be attributed to the breakdown of fungal cell 
membrane integrity [91,134,135]. Nowadays, an alkaloid namely, 2- 
(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate 
was extracted from the Daturametel and displayed in vivo and in vitro 
activities against both species (Candida and Aspergillus). The antifungal 
alkaloids such as β-carboline, derived alkaloids including two phenyl
ethylamine along with tryptamine, and N-methyl-N-formyl-4-hydroxy- 
beta-phenylethylamine from Cyathobasis fruticulosa, haloxylines A and 
B, new piperidine from Haloxylon salicornium all displayed antifungal 
potentials. The reduced fungal growth of Aspergillus flavus has been 
shown to correlate with reduced aflatoxin production in laboratory 
studies [136]. Jatrorrhizine isolated from Mahonia aquifolium was the 
most potent towards all fungal species [68,80]. Fig. 3 shows the 
experimental part of this research. 

The docking studies revealed that the Dioscin binds to the target 
enzyme with highest dock score of − 9.4 kcal/mol. The illustration of 
molecular docking for the interactions of Dioscin and receptor was 
depicted in Fig. 4a, b. The analysis of the best docked pose of Dioscin 

exhibited that the amino acid residues including Lys34, Lys35, Ala56 
and Ser57 had formed hydrogen bond interactions. Additionally, Phe58 
established two interactions including hydrogen bond, π-alkyl and 
π-sigma. Moreover, Dioscin interacted with residue Tyr32 via π-alkyl 
interaction. The Piscisoflavone C which exhibited significant in silico 
ADMET profile was selected for further docking studies. The interactions 
between Piscisoflavone C and residues in 4BFO were shown in Fig. 5a, b. 
The binding energy formed was − 8.3 kcal/mol, which was higher 
compared to the energy recorded by the Isomaltotriose interaction 
(Table 1). As presented in Fig. 4a, b, this phytochemical made two 
hydrogen bonds with amino acid residues Asn29 and Lys34. Further
more, the Piscisoflavone C exhibited three hydrophobic interactions 
with Tyr32 and Phe58 via π-π stacked interaction and Pro61involved in 
alkyl interaction. It also established π-anion with Glu68. 

As illustrated in Table 2, Piscisoflavone C is eligible for further 
studies based on Lipinski filter i.e. drug-likeness and has 55 % of pre
dictive bioavailability with a synthetic accessibility score of 3.83. This 
compound is predicted for moderately soluble with a high gastrointes
tinal (GI) absorption rate, permeable to BBB (Blood-brain barrier) and a 
non-effluxable compound as it is non-substrate to P-glycoprotein (Pgp,) 
but might be not readily metabolized by Cytochrome P450 (CYP) class 
enzymes due to the inhibitory activity predicted for CYP2D6 and pre
dictively can take a longer time to be excreted from the system. Com
pound 8-o-methylaverufin is eligible for further studies based on 
Lipinski filter i.e. drug-likeness with 55 % of predictive bioavailability 
score, synthetic accessibility score of 4.85. 8-o-methylaverufin is pre
dicted for moderately soluble with a high GI absorption rate, non- 
permeable to BBB (Blood-brain barrier) and can be effluxed out as it is 
predicted to be a substrate for Pgp. Moreover, the prediction as an in
hibitor to CYP1A2 and CYP2C19 may affect the metabolizing rate and 
process of metabolism and excretion. Meanwhile, Punicalagin is eligible 
for further studies based on the Lipinski filter i.e., drug-likeness with 55 
% of predictive bioavailability with a synthetic accessibility score of 
3.76. This compound is moderately soluble with a high GI absorption 
rate, non-permeable to BBB (Blood-brain barrier) and non-effluxable 
compound as it is non-substrate to Pgp, but might not be readily 
metabolized by CYP class enzymes and predictively can take a longer 
time to be excreted due to its predictive inhibitory properties to 
CYP2C19 and CYP2D6 enzymes. However, Hopeanolin violates the 
Lipinski filter i.e., drug-likeness with a higher molecular weight of more 
than 500 kDa. Compounds Vaticanol E, alpha-Viniferin and Pauciflorol 
A violate the Lipinski filter with a molecular weight of more than 500 
kDa and more than 5 hydrogen bond donors. Compounds Vaticanol B, 
Dioscin and Punicalin all violate the Lipinski filter with a molecular 
weight of more than 500-kilodaltons, more than 5 hydrogen bond do
nors and more than 10 hydrogen bond acceptors. Hopeanolin, Vaticanol 
E, Vaticanol B, alpha-Viniferin, Pauciflorol A, Dioscin and Punicalin 
have a poor predictive bioavailability score ranging between 11 % and 
17 % with high synthetic accessibility scores ranging from 6.24 to 10.0. 
Furthermore, Hopeanolin, Vaticanol E, alpha-Viniferin and Pauciflorol 

Table 3 
Results of predicted toxicity of the 10 best compounds.  

Entry 1 8 11 12 13 31 114 118 139 145 

Organ Toxicity 
Acute Oral Toxicity II III III III III III III III III III 
Eye corrosion – – – – – – – – – – 
Eye irritation – – – – – – – + – +

Hepatotoxicity + + + + + – + + + +

Human either-a-go-go inhibition + + + + + + – – + –  

Genomic toxicity 
Ames mutagenesis + – – – – – + – + – 
Carcinogenicity (trinary) Danger N.R N.R Warning N.R N.R N.R Danger N.R N.R 
micronuclear + + + + + – – + + +

N.R: Non-required. 
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Fig. 3. Flowchart of the research work.  
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Fig. 4. The putative binding site of Dioscin on target protein (PDB ID: 4BFO). (A) Three-dimensional representation of important interactions. (B) 2D schematic 
diagram showing amino acids residues involved in interactions. 
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Fig. 5. The putative binding site of Piscisoflavone C on target protein (PDB ID: 4BFO). (A) Three-dimensional representation of important interactions. (B) 2D 
schematic diagram showing amino acids residues involved in interactions. 
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A predicted for a poor solubility, low GI absorption rate, non-permeable 
to BBB (Blood-brain barrier) and can be effluxed out as it is predicted as 
a substrate to Pgp, but might be readily metabolized by CYP class en
zymes and predictively can easily be excreted through the system, 
because they fall under the prediction of the substrate to CYP class of 
enzyme. The compound Vaticanol B exhibited insolubility, low GI ab
sorption rate, non-permeability to BBB (Blood-brain barrier), but it can 
be effluxed out as it is predicted to be a substrate to Pgp, but might be 
readily metabolized by CYP class enzymes and predictively can easily be 
excreted from the system, due to its prediction as a substrate to CYP class 
of enzyme. The Dioscin and Punicalin predicted for a moderately solu
ble, low GI absorption rate, non-permeable to BBB (Blood-brain barrier), 
the substrate to CYP class of enzyme hence might be readily metabolized 
and easily be excreted from the system. But and can be effluxed out as it 
is predicted as a substrate to Pgp. 

The acute oral toxicity was calculated using admetSAR, following 

compounds exhibited a grade III oral acute toxicity (Table 3): Vaticanol 
E, Vaticanol B, alpha-Viniferin, Pauciflorol A, Dioscin, 8-o-methylaveru
fin, Piscisoflavone C, Punicalin and Punicalagin. Grade II oral toxicity 
was reported only for Hopeanolin. No compound was reported for Eye 
corrosion, whereas Piscisoflavone C and Punicalagin were reported for 
Eye irritation. Liver injury/hepatotoxicity was predicted and found only 
Dioscin to be safe with no hepatotoxicity. The inward rectifying voltage 
gated potassium channel in the heart (IKr), which is important in cardiac 
repolarization, is encoded by the human ether-a-go-go-related gene 
(hERG). Inhibition of the hERG current promotes the QT interval, 
resulting in Torsade de Pointes, a potentially fatal ventricular tachyar
rhythmia. 8-o-methylaverufin, Piscisoflavone C and Punicalagin were 
predicted as non-inhibitor to hERG. On the other hand, AMES toxicity 
test was used to know whether a compound is mutagenic or not, 

Fig. 6. (a). Protein-ligand structure of Dioscin at (a)1 ns, (b) 10 ns, (c) 20 ns, (d) 50 ns and (e) 100 ns MD run, giving a visual impression of the sequence of events 
and the dynamics of the process. Fig. 6 (b). Protein-ligand structure of Piscisoflavone C at(a) 1 ns, (b) 10 ns, (c) 20 ns, (d) 50 ns and (e) 100 ns MD run, giving a 
visual impression of the sequence of events and the dynamics of the process. 

Fig. 7. The root mean square deviation (RMSD) plot of solvated protein 
backbone and ligand complex during 100 ns MD simulation for unbound pro
tein (blue), Dioscin (brown color) and Piscisoflavone C (green color). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. The root mean square fluctuation (RMSF) plot of solvated unbound 
protein (blue), protein–ligand complex (Dioscin, brown color) and (Pisciso
flavone C, green color) plotted against residue numbers. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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excluding Hopeanolin, 8-o-methylaverufin and Punicalin, all others are 
predicted as non-mutagenic in nature. As per carcinogenicity prediction, 
Hopeanolin, alpha-Viniferin and Piscisoflavone C gave positive signals 
for carcinogenesis, whereas others were marked safe. The micronuclear 
assay prediction reported a genotoxicity positive score for Hopeanolin, 
Vaticanol E, Vaticanol B, alpha-Viniferin, Pauciflorol A, Piscisoflavone 
C, Punicalin and Punicalagin. The compounds that were marked safe are 
Dioscin and 8-o-methylaverufin (Table 3). 

The complexes simulations were showed no loss of structural integ
rity and compactness, which suggests good performance of the applied 
force field and adequate quality of the experimental structures were 
used as starting states for the simulations [137–139]. The conforma
tional changes of the complex were studied during 1, 10, 20, 50 and 100 
ns MD simulation run was depicted in Fig. 6 (a,b). The different struc
tures represented in Fig. 6 (a,b) provide a visualization of the dynamics 
of the process and the sequence of events. Only the ligand is displayed as 
space-filling for better exhibition of the occurring motions, while the 
receptor is shown by its backbone. Molecular dynamics data are pro
cessed by calculating the RMSD (from the starting structure) to analyze 
structural stability. It is observed from Fig. 7 Piscisoflavone C complex 
exhibits the lowest RMSD than Dioscin complex. Even RMSD of the 
unbound-protein is slightly higher than the Piscisoflavone C, which in
dicates the greater stability of Piscisoflavone C. From the RMSD diagram 

the stable complex conformations of Dioscin and Piscisoflavone C were 
observed after ~ 60 and 85 ns, respectively, having RMSD values of ~ 
2.8 and 2.2 Å, respectively (Fig. 7). According to the literature, RMSD 
value of less than 3.0 Å is the most acceptable, as the lower the RMSD 
value shows greater stability of complex [140,141]. The obtained results 
indicated that Piscisoflavone C forms a more stable protein–ligand 
complex than Dioscin and does not make any considerable conforma
tional change in the protein structure during simulation study. The 
flexibility of each residue is computed to gain a better understanding of 
how the binding of a ligand changes the protein flexibility since RMSF 
aids in understanding the area of the protein that is being varied during 
the simulation. To assess the average fluctuation and flexibility of in
dividual residues, the RMSF of protein and complexes were plotted using 
100 ns MD trajectory, as shown in Fig. 8. The RMSF plot shows that the 
fluctuations of residues are occurring in the receptor at several times 
during the ligand-bound state and the binding makes the protein most 
flexible in all areas in contrast to unbound -protein and the other com
plex. The protein structure is found to have the lowest RMSF at some key 
residues, which indicates that even in unliganded state, the protein is not 
very much flexible. Overall, the residues are found flexible for both of 
unbound -protein and ligand-bound complexes. The lowest RMSF value 
of ~ 0.067 Å was found in the complex of Piscisoflavone C-receptor. The 
findings show that ligand–protein interaction brings protein chains 

Fig. 9. Superimposed structure of unbounded protein (red) and protein after simulation (green)(a) Dioscin and (b) Piscisoflavone C. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. RR distance map patterns of spatial interactions of the protein(a) Dioscin and (b) Piscisoflavone C showing the average distance and standard deviation for 
all amino acid pairs. 
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closer together and reduces the space between them, shown in Fig. 9. 
The standard deviation and average distance for all pairs of residue 
between two conformations are represented by RR (residue-residue) 
distance map (two-dimensional representations of protein 3D structure) 
and it was used for comparing and analyzing the structures of protein. 
The RR distance maps are represented in Fig. 10, which plots patterns of 
spatial interactions [142,143]. In the map, the white diagonal shows the 
zero distance between two residues, while the blue and red elements 
represent the residue pairings with the longest distance variances in the 
two conformations. A radius of gyration (Rg) plot was used to analyze 
the compactness of the ligand-bound protein. The lowest Rg value of ~ 
12.75 Å was shown by Piscisoflavone C; on the other hand, Dioscin 
shows an Rg value of ~ 13.15 Å. Therefore, the order of compactness 
and rigidness should be Piscisoflavone C > unbound -protein > Dioscin. 
A decrease in Rg for complex along with the simulation time was found 
means an increase in the compactness of the structure (Fig. 11). A 
minute reduce in the Rg value of protein was observed upon interacting 

with Piscisoflavone C. As a result of the interacting of Piscisoflavone C, 
the microenvironment of receptor was altered, resulting in conforma
tional changes in the structure of receptor. 

As shown in Fig. 12, Grid-search on a 16x16x19 grid, rcut = 0.35, 
was used to calculate the hydrogen bond interactions established be
tween ligand and protein, which was then plotted versus time. On 
calculating hydrogen bonds between ligands (32 atoms for Dioscin and 
63 atoms for Piscisoflavone C) and protein (1100 atoms), 164donors and 
303 acceptors were observed for Dioscin, whereas, 171 donors and 318 
acceptors were observed for Piscisoflavone C. The average number of 
hydrogen bonds per timeframe was found to be 0.038 and 0.770out of 
25,174 and 27,189 possible for Dioscin and Piscisoflavone C, respec
tively. Overall, it was observed that the ligand interaction with receptor 
dramatically enhanced the number of hydrogen bonds. During MD 
simulation in ligand-receptor bound conditions, the SASA of receptor 
was calculated. Interactions of the ligand-receptor leads to change of the 
SASA values (Fig. 13). The analysis displays the receptor folds and its 
stability when it binds to a ligand. The decrease of SASA vale of protein 
upon binding of ligand suggests that the structure of the receptor has 
altered, with a decreased pocket size and more hydrophobicity around 
it. The result of the MD simulation indicates the Piscisoflavone C com
plex is more stable and compact as compared to the Dioscin. 

5. Conclusion 

Mucormycosis is a rare opportunistic fungal infection, that attack 
individuals with weak immune system. Considering its high prevalence 
as post COVID-19 infection, the development of new antifungal agents, 
preferably with a novel mechanism of action, is an urgent medical need. 
In the present study, virtual screening of natural products was per
formed against the glucoamylase enzyme of Rhizopus oryzae through 
molecular docking. Docking studies revealed that most of the tested 
compounds showed good binding affinity with target enzyme. As per the 
in-silico predicted, ADMET analysis of compounds, Piscisoflavone C, 8-o- 
methylaverufin and Punicalagin exhibited positive outcomes consid
ering no violation to Lipinski filter and drug-likeness properties and mild 
to moderate of toxicity. Molecular dynamics simulation of 100 ns run 
unveils that ligand Piscisoflavone C formed a more stable complex with 
receptor throughout the simulation time in comparison with Dioscin. 
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[47] M.F. Jiménez-Reyes, et al., Natural compounds: A sustainable alternative to the 
phytopathogens control, J. Chil. Chem. Soc. 64 (2) (2019) 4459–4465. 

[48] M.J. Abad, M. Ansuategui, P. Bermejo, Active antifungal substances from natural 
sources, Arkivoc 7 (11) (2007) 116–145. 

[49] M. Krogh-Madsen, et al., Amphotericin B and Caspofungin Resistance in Candida 
glabrata Isolates Recovered from a Critically Ill Patient, Clin. Infect. Dis. 42 (7) 
(2006) 938–944. 

[50] S. Raveendran, et al., Applications of Microbial Enzymes in Food Industry, Food 
technology and biotechnology 56 (1) (2018) 16–30. 

[51] P. Kumar, T. Satyanarayana, Microbial glucoamylases: characteristics and 
applications, Crit. Rev. Biotechnol. 29 (3) (2009) 225–255. 

Fig. 13. Solvent accessible surface area (SASA) analysis for unbound protein 
(blue), protein–ligand complex (Dioscin, brown color and Piscisoflavone C, 
green color) during 100 ns simulation time. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of 
this article.) 

N. Hamaamin Hussen et al.                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2468-1113(22)00035-4/h0005
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0005
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0010
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0015
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0015
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0020
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0020
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0025
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0025
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0025
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0030
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0030
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0035
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0035
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0040
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0040
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0045
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0045
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0050
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0050
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0055
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0055
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0060
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0060
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0060
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0060
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0065
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0065
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0070
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0070
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0075
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0075
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0075
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0080
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0080
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0085
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0085
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0095
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0095
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0095
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0100
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0100
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0105
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0105
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0110
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0110
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0120
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0120
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0125
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0125
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0130
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0130
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0135
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0135
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0140
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0140
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0145
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0145
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0145
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0150
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0150
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0150
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0155
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0155
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0155
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0160
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0160
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0160
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0165
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0165
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0170
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0170
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0175
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0175
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0175
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0180
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0180
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0185
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0185
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0190
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0190
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0195
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0195
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0200
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0200
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0200
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0205
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0205
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0210
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0210
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0215
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0215
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0215
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0220
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0220
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0220
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0230
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0230
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0235
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0235
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0240
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0240
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0245
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0245
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0245
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0250
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0250
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0255
http://refhub.elsevier.com/S2468-1113(22)00035-4/h0255


Computational Toxicology 24 (2022) 100247

13

[52] Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an expert 
resource for Glycogenomics. Nucleic Acids Res, 2009. 37(Database issue): p. D233- 
D238. 

[53] J.-Y. Tung, et al., Crystal structures of the starch-binding domain from Rhizopus 
oryzae glucoamylase reveal a polysaccharide-binding path, Biochem. J. 416 (1) 
(2008) 27–36. 
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