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Abstract

Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electri-

cal activity in the atria, generally associated with erratic excitation underlain by re-entrant

scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiologi-

cal studies have shown an increase in AF prevalence in the developed world associated

with an ageing society, highlighting the need for effective treatment options. Catheter ablation

therapy, commonly used in the treatment of AF, requires spatial information on atrial electri-

cal excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-

invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal

associated with atrial activation compared to sinus rhythm, but has limitations in providing

specific spatial information. There is therefore a pressing need to develop novel methods to

identify and locate the origin of arrhythmic excitation. Invasive methods provide direct infor-

mation on atrial activity, but may induce clinical complications. Non-invasive methods avoid

such complications, but their development presents a greater challenge due to the non-direct

nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead

vest) may provide a viable approach. In this study, we used a biophysically detailed model of

the human atria and torso to investigate the correlation between the morphology of the ECG

signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from

rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then con-

structed from this correlation. The algorithm had success rates of 93% and 76% for correctly

identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm,

respectively. The general approach allows its application to any multi-lead ECG system. This

represents a significant extension to our previously developed algorithms to predict the AF

origins in association with focal activities.
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Author summary

Atrial tachy-arrhythmias are associated with irregular excitation waves arising from re-

entrant excitation, multiple wavelets or rapid focal activity. Identifying the origin of the

irregular activity may be vital for diagnosis and treatment of the disorder. Where invasive

and non-invasive methods provide approaches for such identification, both have associ-

ated disadvantages. In this study, we used a biophysically detailed model of the human

atria and torso to develop an algorithm based on the correlation between the electrocar-

diogram (ECG) signal from a 64-lead vest and the location of rapid focal and re-entrant

excitation. Using the properties of the atrial activation and the ECG signals, we developed

a focus-location algorithm which is able to distinguish rapid focal activity from re-entrant

scroll waves centred in the same location. Based on simulated data, the algorithm had suc-

cess rates of 93% and 76% for correctly identifying the origin of focal and re-entrant exci-

tation, respectively, and 88% for distinguish focal and re-entrant excitation, with no false

positives. Inherited from our previous algorithm, it is also easily generalizable to any

multi-lead ECG system.

Introduction

Atrial tachy-arrhythmias, including atrial fibrillation (AF), atrial tachycardia (AT) and flutter

(AFL), are the most common cardiac arrhythmias, predisposing to heart attack, stroke and

even possible cardiac death [1,2]. All three are characterised by rapid and irregular electrical

activation of the atria, with AF presenting the greatest complexity. Such rapid and irregular

electrical activity of the atria is normally associated with one or more of the following abnor-

mal excitation patterns: focal pacing (spontaneous rapid firing of non-pacemaker cells) [3,4],

fibrillatory conduction of multiple wavelets [5] and re-entrant excitation scroll waves (i.e.,

rotors) [4,5].

Epidemiological studies have shown an increase in AF prevalence in the developed world

associated with an ageing society, highlighting the need for effective treatment options [6,7].

Current treatment of AF involves the use of rate control, anticoagulation, cardioversion and

ablation [8]. The restoration of sinus rhythm in the atria may improve cardiac function, how-

ever several drug treatments have limited efficacy in long term maintenance of sinus rhythm

[6,9]. Developments aiming to reduce the critical mass required to sustain AF, such as cathe-

ter-based radio-frequency ablation therapy, have proven to be more effective in suppressing

AF substantially [9], although multiple procedures may still be necessary due to high recur-

rence rates [10].

For a successful AF ablation, it is vital to know the origins (i.e., the driving sources) of AF

prior to the procedure, because isolating the driving source from the rest of the atria is the pri-

mary goal of such therapy [9]. To identify such origins, both invasive and non-invasive tech-

niques have been developed. These include the low density endo-surface mapping technique

of 64-electrode basket catheters [11] and electrocardiogram imaging (ECGi) [12]. The main

limitation of using an invasive method is that it might produce further complications during

the surgery [13]. There is a pressing need to develop effective non-invasive methods to identify

AF origins which might provide all of the necessary information prior to the surgery. The

ECGi technology, based on the inverse problem solution [12], is a promising method in clini-

cal diagnosis. However, current algorithms require further information to constrain the solu-

tion to achieve a reliable reconstruction of cardiac excitation waves due to the ill-posedness of

the problem [14].
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Recent studies have also developed algorithms to identify non-invasively the location of

focal sources by using either the standard 12-lead [15–17] or multiple-lead (e.g. 64-lead) ECG

systems [18,19]. The success rates of these algorithms range from 40 to 90%. Most are based

on the correlation between the location of focal activity and the P-wave morphology or polarity

[16–18]. Whereas they are useful in identifying the origin of focal excitation, current algo-

rithms may not be applicable to identify re-entry or very rapid focal activity; at such rapid

rates, regular and irregular fragmented waves are typically observed and thus determination of

morphology or polarity of the main activation wave is non-trivial. Confounding the case for

re-entry, atrial flutter waves or F-waves are also likely to be more fragmented and more com-

plex in nature. It is also important to be able to distinguish very rapid focal activity from that

of re-entry at a comparable rate, as the underlying maintenance mechanisms in these condi-

tions are different and thus it is possible that different intervention may be required to termi-

nate the arrhythmia.

The aim of this study is to go-beyond our previous studies [17–19] in identifying the origins

of focal-related AF from body surface ECG to develop a novel algorithm based on rapid regu-

lar atrial waves in order to identify origins for both rapid focal and re-entrant activity from a

multi-lead ECG system.

Methods

Atrial-torso model

A previously validated biophysically detailed computational model of the three-dimensional

(3D) human atria and torso [17,18,20] was used to simulate ectopic focal and re-entry con-

ditions (Fig 1). The atrial model was segmented into the major anatomical structures and

accounts for electro-physiological heterogeneity between these regions (Fig 1A) [21]. The

model has been previously used and determined suitable for studying atrial arrhythmia

mechanisms [17,22]. The atrial model was placed into a previously developed and validated

male torso model which accounts for the segmented structure of lungs, liver, blood masses

and spinal cord and the respective electrical conductivities (Fig 1B) [18,20]. A table of con-

ductivity values used can be found in supplementary information (S1 Table). For further

Fig 1. Models and procedure used to develop the algorithm. Illustration of atria (A) and torso (B) models used in the study to simulate re-entry and

ectopic activity in the atria. (C) Electrode positions used to simulate the 64-lead ECG. (D) Simulated anterior (i) and posterior (ii) polarity map, as

compared to experimental data, validating the 3D atria-torso models.

doi:10.1371/journal.pcbi.1005270.g001
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test, a previously developed and validated female torso geometry [18] was implemented

(S1 Text). Both models have been used before to develop an algorithm to diagnose atrial

ectopic origin from multi lead ECG systems [18]. Details of the atrial cell models and 3D

simulation protocols can be found in Colman et al [22] or in S2 Text and single cell code S3

Text; details of the torso model development, validation and simulation protocols can be

found in Perez Alday et al [18].

Simulating atrial rapid ectopic foci and re-entry

Ectopic focal and re-entrant excitations were initiated in different regions of the atria (Fig

2Ai). 2D views and 3D vtk files can be found in supplementary information S. In order to

allow rapid excitation waves with rates at frequencies typical of AF/AT/AFL (i.e. 2.5–8 HZ

[22,23]) to be sustained in the atria, parameters of the Colman et al. model of single human atrial

myocytes were modified to incorporate experimentally observed AF-induced electrical remodel-

ling of ion channels [22], which resulted in shortened AP (Fig 2A). To simulate ectopic focal

activity, a sequence of external supra-threshold electrical pulses (with amplitude of 2nA and

duration of 2-3ms) was applied to various locations across different regions of the atria (Fig 2Ai).

Re-entrant excitation waves were initiated by a phase distribution method [24,25]. Although this

is an artificial method for initiating re-entrant excitation, it allows the location of the centre of

the rotor wave to be easily controlled. To avoid possible effects of the transition period of excita-

tion waves on their kinetics due to the unphysiological initiation procedure, data after 1 second

of initiation were analysed. In cases where re-entrant scroll waves were not localised to the initia-

tion point, i.e. there was a degree of meander, a small non-excitation area (0.5 cm in radius) was

incorporated around a specific region of the atria, in order to stabilise the rotor centre (Fig 2C).

This allowed sustained re-entrant activity with its origin (i.e. tip) located in a specific region of

the atria to be produced. The inclusion of a small area of non-excitable tissue did not produce a

marked change in tissue’s volume or morphology of the measured potential on the body surface.

In simulations, cases when re-entrant excitation waves had a significant degree of meander were

used to test the ability of the algorithm to track the tip of the scroll waves spatio-temporally.

To test the algorithm’s ability to distinguish between focal and re-entrant activities centred

on the same spatial locations, a set of focal stimuli simulations were matched in location and

excitation rate to re-entrant simulations centre at multiple locations.

Simulating body surface potential

A boundary element method (BEM) was used to calculate the potential on the surface of the

torso [26]. From the body surface potential (BSP), 64-lead ECG signals were obtained by select-

ing elements of the torso mesh corresponding to the position of the electrodes as described in

previous studies [18,20]. The P-wave of the 64-lead ECG during control conditions matched the

experimental data of multiple patients [18,27] (see S1 Fig), validating the development of the

heart-torso model.

Measurement of potentials of positive and negative poles

From the measured atrial-waves, the dynamical evolution of the spatial distribution and ampli-

tude of the atrial-wave dipole was computed from the 64-lead ECG, following the same method

as used in previous experimental studies [18,27]. The dipole pattern on the body surface was

reconstructed by selecting the maximum positive potential value (positive pole) and the mini-

mum negative potential value (negative pole) of the 64-lead ECG at every time step [27]. The

amplitude and the spatial pattern of the atrial-wave dipole based on the 64-lead ECG changed

with time as the atrial activation evolved. In the model, both the amplitude and the temporal
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evolution of the dipole location agreed with the experimental data [18] during control condi-

tions (S2 Fig), further validating the model development.

Fig 2. Illustration of different atrial activation associated with different body surface atrial waveform morphology. (A) Different stimulated

points (circle) and tip of re-entry across the surface of the atria (i), atrial action potentials (ii) and their corresponding body surface atrial-waves at

different excitation rates (iii): top 3Hz; bottom 5Hz. (B) Snapshot of atrial activation at control conditions at a fast rate, (i) and its corresponding ECG

exhibiting distinct P-wave in lead V1 (ii). (C) Snapshot of atrial activation when the tip of the re-entry is located in the SAN (i), and its corresponding atrial

waves of lead V1 (ii). (D) Snapshot of atrial activation with the focal ectopic activity located in the right atrial appendage (RAA) (i) and the corresponding

atrial waves of lead V1 (ii). A red sign represents a positive polarity in the atrial-wave (magenta/shaded area), the blue sign is a negative polarity and a

purple sign represents a biphasic atrial-wave (magenta/shaded area).

doi:10.1371/journal.pcbi.1005270.g002
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Algorithm to locate the atrial source

In a previous study, we developed an algorithm to identify the location of atrial ectopic focal

activity, using the polarity map on the body surface potential that was produced from a 64-lead

ECG system, which was split into two sets of quadrants (anterior/posterior) [18]. The algorithm

was based on the fact that a negative polarity P-wave in a certain lead implied an excitation wave

propagating away from the positive electrode of that lead. Thus, the quadrant of the 64-lead elec-

trode positions with the largest number of electrodes with negative P-waves would correlate

directly to the origin of the focal excitation. The success rate of the algorithm was 93%, meaning

that it correctly identified the origin of atrial focus in 75/80 simulations.

However, the previous algorithm was only able to detect slow ectopic focal atrial activation

from body surface potential mapping and cannot be applied directly to detect the origin of

atrial excitation waves due to rapid focal or re-entrant activity because of the complexity of the

body surface waveform, which produces fibrillatory waves. Determining the polarity of fast

atrial waves is not trivial since it may consist of positive, negative and biphasic waves, depend-

ing on the time period investigated (Fig 2C(ii) and 2D(ii)). Furthermore, re-entrant and focal

excitation patterns may present different characteristics of fragmented fast atrial waves, and

the ability to distinguish between these types of excitation could provide valuable information

for directing treatment. Thus, in order to apply our previously developed algorithm to both

rapid focal and re-entrant excitation, new tools were developed. The first tool was to determine

the polarity of the atrial wave associated with main atrial activation, in order to identify the

location of the source. The second tool was to quantify the differences between focal and re-

entrant activity. Further details of these algorithmic developments are provided below.

Determining the polarity of atrial waves

At slow pacing rates, it is straightforward to determine the polarity of individual P-waves: the

long period of the diastolic phase means that the ECG signal remains at a baseline during this

interval, with a clear deflection from the baseline corresponding to atrial activation during the

systolic period (Fig 2B). This deflection is the P-wave, and may be positive, negative or biphasic

(with both positive and negative portions). The duration (i.e., the time interval) of the P-wave

corresponds to the time interval of atrial activation.

The challenge for determining the polarity of the atrial wave at rapid pacing rates is that the

diastolic period is absent, leaving the ECG signal absent of a stable baseline. Therefore, there is

no clear distinction between successive deflections (Fig 2C(ii) and 2D(ii)). Determination of

the polarity of the atrial wave in such case is thus non-trivial; any polarity can be extracted

from the same signal, depending on the time interval which is considered (Fig 2C(ii) and 2D

(ii)). However, the polarity in the interval during which a large volume of the atrial mass is

excited (i.e. main atrial activation) can be determined and is suitable for our algorithm. Thus

the time interval corresponding to the main atrial activation must first be determined.

Analysis shows that the dipole signal provides sufficient information to determine the time

interval of main atrial excitation (Fig 3). Fig 3 illustrates results for three different cases of atrial

activation originating from the same location but with increasing complexity (i.e. slow focal

pacing, rapid focal pacing, and re-entrant excitation).

At the slow rate, determination of the polarity of the P-wave is straightforward and can be

seen to be positive in lead V1 (Fig 3A–black line). Note that the time interval of the P-wave

indeed corresponds to the time interval of the atrial activation (Fig 3A(i) (ii)). Also, both posi-

tive and negative poles of the body surface dipole have one significant deflection, and the time

interval of this deflection corresponds directly to the time interval of atrial activation and

therefore the P-wave (Fig 3 –red and blue lines). The positive and negative dipole signals can
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be combined as a “dipole sum” (defined as the sum of the modulus of the negative and positive

poles), giving a single signal with a significant deflection corresponding to the time interval of

atrial activation (Fig 3 –green line).

At rapid rates where F-waves rather than P-waves are observed, there are no clear markers

for the time interval of atrial activation in the ECG signal (Fig 3B and 3C–black line). The

dipole sum, however, still presents a signal with one easily identifiable prominent deflection;

the time interval of this deflection corresponds to the main atrial activation (Fig 3B(i),(ii)),

even in the case of more fragmented atrial waves resulting from re-entrant activity (Fig 3C(i),

(ii)). The portion of the atrial wave within this time interval therefore gives the polarity associ-

ated with the main atrial activation. In examples shown in Fig 3, the polarity is positive in lead

V1 for all cases but the polarity will vary spatially across the body surface according to lead

position.

Thus, by selecting the ECG segment corresponding to the main atrial activation (obtained

from dipole sum, Fig 3 magenta/shaded regions), the polarity (positive, negative or biphasic)

of each lead in this segment is determined.

Atrial source location based on the atrial-wave polarity map

Having identified the polarity of the fast atrial waves in each lead, the resulting 64-lead polarity

distribution feeds directly into our original atrial source location algorithm [18].

Fig 4 demonstrate the correlation used by the algorithm to determine the origin of non-

meandering atrial re-entrant activations, centred on the sino-atrial node (SAN) (left), right

atrial appendage (RAA) (middle) and pulmonary veins (PV) (right). In each case, the time

interval has been obtained by selecting the largest deflection in the dipole sum evolution pat-

tern (Fig 4A- vertical dashed lines) as described in the previous section. Then, an atrial-wave

polarity map is created (Fig 4B) from the time interval selection. Once the polarity map has

Fig 3. Dipole and atrial activation evolution in different atrial activations located in the pulmonary veins (PV). (A) Slow ectopic atrial activation

focus in the PV (non fibrillatory waves observed). (B) Fast focal activation focus in the PV (F-waves observed). (C) Re-entrant activation around the PV

(F-waves observed). Red line: Positive dipole. Blue line: Negative dipole. Green line: Dipole sum. Black line: lead V1 (ECG). The Magenta regions

represent the time interval of the main atrial wave, selected from the peaks in the dipole pattern. (i)-(ii) Snapshots of the atria activation at the beginning

and end of the time interval selected.

doi:10.1371/journal.pcbi.1005270.g003
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Fig 4. Illustration of the correlation used by the algorithm for activation from three atrial sites. (A): Dipole

sum (green line) (i), lead V1 (black line) (ii) and Lead 47 (Grey line)(iii), (i) were used to identify the time interval

(section between dotted lines) of re-entrant patterns where the tip was located in the sino-atrial node (SAN), right

atria (RA) and pulmonary veins (PV). The amplitude in all cases has been normalized. (B): Atrial-wave polarity map

in the anterior (i) and posterior (ii) part of the torso for atrial activation initiated at different locations of the atria (SAN,

RA and PV). A red sign represents a positive polarity in the atrial-wave, the blue sign is a negative polarity and a

purple sign represents a biphasic atrial-wave. The black square represents the electrode position of lead V1, and
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been created (Fig 4A and 4B), the location of the source of the atrial activation can be found

through the Perez Alday et al. algorithm [18] (S3 Fig), which associates the two set of torso

quadrants (Qti) (Fig 4B) with the two set of atria quadrants (Qai) (Fig 4C (i)-(ii)).

Differentiating ectopic focal from the re-entrant activity

Our simulations demonstrate that re-entrant excitation waves are characterised by more frag-

mented ECGs (Fig 3C) compared to focal activity (Fig 3A and 3B). This might be attributable to

the fact that the wave propagation through the atria due to focal excitation is more uniform and

symmetric (around the origin of excitation) than re-entrant excitation. Performing Fourier

Transformation analysis (FFT) of the signal from lead V1, commonly used for AF analysis due

to its large atrial signal [28] (closest is lead 15 in the 64-lead configuration), allows the fragmen-

tation of the signal V1 to be quantified, providing a way to distinguish the cases of focal from

re-entrant excitation waves, with the same excitation rate and origin (Fig 5). FFT MATLAB

function was applied to analyze the simulated ECG signals.. From the FFT, as would be expected

the dominant frequency (DF) shows no marked difference between the focal and re-entrant

cases due to the same activation rates. However, the re-entrant cases exhibited considerably

more power at higher frequencies. To quantify this, the ratio of the area under the normalized

power spectrum density (PSD) in the ranges 0 –(2 x DF) Hz and 0–50 Hz (AFFTr2DF) was cal-

culated. The use of the threshold of 2xDF was chosen because it is the value at which the distinc-

tion between focal and re-entrant excitation was the most significant (S4 Text). The ratio

showed dramatic differences between re-entrant and ectopic activations (Fig 5A, 5B and 5C).

By plotting the AFFTr2DF against its DF for all simulations (Fig 5D), it was clear that a ratio of

above 0.675 corresponded to focal activity, a ratio below 0.655 corresponded to re-entrant activ-

ity and a ratio in the range 0.655 to 0.675 could correspond to either (overlapping area in Fig

5D).

Algorithm flow chart

The new tools developed were integrated into a flow chart of the algorithm as illustrated in

(Fig 6). The first step of the new algorithm was to compute the dipole sum from the body sur-

face potential distribution. Then, by selecting the time interval corresponding to the largest

peak in the dipole sum, which is attributable to a large volume of the atrial mass that has been

excited, a polarity map can be created. The next step was to implement the previous algorithm

we have developed [18] to identify the source of atrial activation based on the body surface

potential distribution. The last step was to differentiate focal from re-entrant activities based

on the spectral characteristics of the fast atrial waves.

Results

Success rate of algorithm

Location. The algorithm (Fig 6) was developed based on simulated data of re-entrant exci-

tation waves and ectopic focal activities with their origins located at 10 different sites across

the atria. The algorithm was then tested with 20 further simulations to determine its success

the grey circle represents the electrode position of lead 47. (C): Rotor tip (red dot) identified by the algorithm in each

simulation. The anterior (ii) and posterior (i) parts of the atria and torso (B-i,ii) are shown for each case. In each case

the algorithm correctly identifies the correct quadrant: SAN the tip is located in the quadrant Qa5 (i), for RA the tip is

located in the quadrant Qa2 (ii), and for PV the tip is located in the quadrant Qa7 (iii).

doi:10.1371/journal.pcbi.1005270.g004
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rate (i.e. the proportion of cases in which the algorithm correctly identified the origin of atrial

arrhythmias).

In the test for re-entrant excitation, the success rate of determining the atrial quadrant con-

taining the tip of the scroll wave was 75%. In the cases which the origin of the scroll wave was

not identified by the algorithm, it was due to the tip of the scroll wave being close to the

boundary of two nearby quadrants (i.e., within 0.5 cm). The direction of the rotation of the

scroll wave played an important role as well.

In the test for ectopic focal excitation the success rate for detecting the atrial quadrant

where the rapid focal activity was located was 92%. This is comparable with the success rate of

our previous algorithm [18] for slow ectopic foci (93%). The consistency between the present

and the previous algorithm suggests the newly devised tool for identifying the polarity of the

fast atrial wave is valid.

Fig 5. Normalized power spectral density for ectopic focal and re-entrant activation. Normalized power spectral density for ectopic focal (blue) and re-

entrant (red) activity located in (A) SAN; (B) PV and (C) RAA. The darker shadow corresponds to the area between 0–2 x DF. (D): a scatter plot of (AFFTr2DF)

against the DF, the magenta area is the overlapping area where both activities can occur. AFFTr2DF is the ratio of the area under the power spectrum density

in the ranges 0 –(2 x DF) Hz and (2 x DF)– 50 Hz: AFFTr2DF = Area0-2DF/Area0-50Hz

doi:10.1371/journal.pcbi.1005270.g005
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Further refinements to the spatial resolution of the quadrants was performed with the aim

to improve the specificity of the algorithm for locating the focal origin site, by dividing each

quadrant into sub-quadrants, as described in [18,19]. Though such a spatial refinement

improved the detection accuracy in terms of the spatial resolution, the success rate of detection

showed a slight decrease, down to 87% and 72% in ectopic and re-entrant activation

respectively.

Focal vs Re-entry. The success rate to differentiate ectopic activity from re-entrant activa-

tion with the same frequency was 88%. Note that the algorithm never produced a false positive,

because in the remaining 12% of the cases the FFTAr was within the overlapping area where

ectopic and re-entrant activity could not be distinguished (Fig 5D, magenta shaded area).

White noise added test. The algorithm was tested with random noise added to ECG sig-

nals. During this test, a dipole sum was obtained with the same characteristics as previously

described. The AFFTr2DF values were affected by the addition of noise; however, the changes

did not produce large differences. Further information can be found in S5 Text.

Determining the time-dependent location of meandering re-entry. The algorithm

showed good feasibility for tracking the tip of scroll waves with a significant degree of mean-

der. This was done by selecting the time intervals when the tip of the rotor was in two different

positions across the atria (Fig 7).

Discussion

Major contribution

By using a biophysically detailed computer model of human atria-torso and identifying the

correct polarity of the fast atrial waves, we have developed a novel algorithm to locate the ori-

gin of atrial fibrillation in association with both of ectopic focal and re-entrant activity. The

success rate of the algorithm was 92% and 75% for focal and re-entry activation, respectively.

The properties of the FFT allowed re-entry and focal activation to be distinguished with a suc-

cess rate of 88%.

Fig 6. Schematic illustration of the algorithm to identify the location of atrial focal origin or re-entry

from atrial wave polarity maps.

doi:10.1371/journal.pcbi.1005270.g006
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Further test

The algorithm was also tested with a different torso geometry. During this test, dipole sum and

AFFTr2DF values were obtained and the algorithm successfully identified the quadrant where

the origin of the arrhythmia was located. Further information can be found in supporting

information S1 Text.

It was also shown that when white noise was added with a signal to noise ratio of 10, the

performance of the algorithm was not affected as the changes of the FFTAr values were small

(S5 Text). However, further test need to be implemented.

FFT analysis was applied to experimental AF signals, where AFFTr2DF values were obtained

to compare simulated and experimental data. Similar AFFTr2DF values were obtained with

simulated and experimental data. Further information can be found in S6 Text.

Comparison to previous/other algorithms

Previous studies have been focused on differentiating ectopic activity against re-entry [29–32].

Most use atria-electrocardiograms to detect and characterize complex fractionated signals, FFT

and DF atria maps [29,30,33]. The success rate of these algorithms is in the range of 60–80%

[29,30,34], however, as it is an invasive method, it might unduly lengthen the ablation proce-

dure [35]. By using a 12-lead ECG system, algorithms to detect ectopic activity have been devel-

oped [16,36], however, the success rates range within 55–78% [15,16,18] and it has been proved

that the 12-lead ECG system does not produce enough information to identify the origins when

fast atrial waves are presented or under re-entrant activity [15,18,32]. Other attempts have used

multi-lead ECG systems and body surface mapping [31,32,37], to correlate to atrial DF or add

extra information like phase mapping [32]. However, it has been difficult to validate the time

interval, location and the source of the atrial activation when fast atrial waves are presented.

Fig 7. Comparison of quadrants position and atrial-waves polarity maps in meandering re-entrant activation. (A) Snapshot at two different

instant of re-entrant activation in the atria. (B) Snapshot at two different instant of re-entrant activation of the atria-torso model from a posterior superior

right view. (C) Simulated 64-lead ECG atrial-waves polarity map at two different instant of re-entrant activation. We observed the polarity pattern of the

atrial waves of the experimental and simulation, in the anterior (i), (iii) and posterior (ii), (iv) part of the body. The red positive sign represents a positive

atrial-wave, the blue negative sign represents negative atrial-wave, and the purple positive/negative sign represents a biphasic atrial-wave.

doi:10.1371/journal.pcbi.1005270.g007
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Nevertheless, they are promising methods that can add extra useful information. Ours is the

first attempt to distinguish the main activity and find the position of the focus and tip of the re-

entry from a multi-lead ECG.

The present algorithm can also be used together with other invasive or non-invasive mapping

methods, with potential to reduce procedures times in locating the origin of atrial arrhythmias.

Limitations

The torso model lacks considerations of some other tissue types or organs (such as muscles, fat

tissue, bowel, kidneys and spleen) that may affect the amplitude of simulated surface poten-

tials. However, the absence of those tissues does not have a big effect on the polarity of the

atrial-waves, which is the characteristic used in the present algorithm, as demonstrated previ-

ously [18].

In the algorithm, two-sets of quadrants were defined to cover the torso. The spatial resolu-

tion of the 8 quadrant was about 40mm. The finer spatial resolution with lower accuracy was

20mm. Though this provided roughly the site of the AF origin, it is the information needed for

identifying which part of the atria for ablation (i.e., left or right atrium, the low or upper part

of the atrium). The diameter size in current ablation procedures varies from 3mm to 10mm

[9,13,38,39]. Therefore, the current algorithm can be used in clinical studies, but it may require

further investigation and refinement to provide the essential information in all case.

Future work

In the present study, we only tested the effectiveness of the algorithm for detecting single atrial

focal activity and a single centre of a rotor activity. However, a possible extension is to identify

multiple wavelets, using the dipole evolution patterns. For that purpose, consideration of com-

bined use of the present algorithm with vecto-cardiograms, phase relationships, correlation anal-

ysis and inverse problem reconstruction may be necessary, warranting further investigation.

Conclusion

A novel algorithm has been developed to locate the origins of rapid and irregular atrial excita-

tion waves, associated with both ectopic focal and re-entrant activity. This represents a signifi-

cant progress to previously developed algorithms to predict AF origins in association with

focal activities.
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13. Anné W, van Rensburg H, Adams J, Ector H, Van de Werf F, Heidbüchel H. Ablation of post-surgical
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