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Abstract

Background: Natural products represent an important source for agents of cancer prevention and cancer treatment. More
than 60% of conventional anticancer drugs are derived from natural sources, particularly from plant-derived materials. In
this study, 2a, 3a, 19b, 23b-tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid from the leaves of Sinojackia
sarcocarpa, was isolated, and its anticancer activity was investigated both in vitro and in vivo.

Principal Findings: THA possessed potent tumor selected toxicity in vitro. It exhibited significantly higher cytotoxicity to the
cancer cell lines A2780 and HepG2 than to IOSE144 and QSG7701, two noncancerous cell lines derived from ovary
epithelium and liver, respectively. Moreover, THA showed a dose-dependent inhibitory effect on A2780 ovary tumor growth
in vivo in nude mice. THA induced a dose-dependent apoptosis and G2/M cell cycle arrest in A2780 and HepG2 cells. The
THA-induced cell cycle arrest was accompanied by a downregulation of Cdc2. The apoptosis induced by THA was evident
by induction of DNA fragmentation, release of cytoplasmic Cytochrome c from mitochondria, activation of caspases,
downregulation of Bcl-2 and upregulation of Bax.

Conclusion: The primary data indicated that THA exhibit a high toxicity toward two cancer cells than their respective non-
cancerous counterparts and has a significant anticancer activity both in vitro and in vivo. Thus, THA and/or its derivatives
may have great potential in the prevention and treatment of human ovary tumors and other malignancies.
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Introduction

Natural products represent a rich reservoir for anticancer

compounds [1,2]. Over sixty percent of currently used anticancer

drugs are derived from natural sources such as plants, marine

organisms and microorganisms [3,4]. In particular, higher plants

have provided many effective, clinically useful anticancer drugs.

For examples, the vinca bisindole alkaloids, the epipodophyllo-

toxin analogs, the taxanes, and the camptothecins, are all effective

plant-derived anticancer drugs [5,6].

In the past decades, there is growing interest in another group of

natural compound: the triterpenoids. Triterpenoids are structur-

ally diverse organic compounds of more than 20,000 naturally

occurring variants that share a basic triterpenoid moiety [7,8].

These compounds are ubiquitously distributed throughout the

plant kingdom and have many biological activities. For examples,

several triterpenoids, including saponin, oleanolic acid, betulinic

acid, celastrol, pristimerin, lupeol, and avicins have been reported

to possess anti-inflammatory, hepato-protective, or antitumor

properties [9,10]. In particular, ursolic acid has been shown to

constitute a main active component in a number of oriental and

traditional medicine herbs with a variety of biological activities

including induction of differentiation, anti-proliferation, and

antitumor activities [11–13]. Mechanistically, triterpenoids have

been implicated in a wide range of biological pathways or

processes including nuclear factor-kappaB signalling, apoptosis,

transcription, angiogenesis, and tumor metastasis [14–16]. Thus,

these compounds are potential candidates for anticancer agents.

Recently, a number of compounds with anti-proliferative and/

or antitumor activities have been isolated from plants of the

Styracaceae family, suggesting that this family of plants may be a

new source for compounds with anticancer activities [17–23].

Sinojackia sarcocarpa is a member of the Styracaceae family [24]. It

consists of primarily deciduous arbor trees that are distributed in

the subtropical zone of the Eastern and Southern China, and was

once at the brink of extinction. Intriguing, this endangered status

has prompted a great effort in the development and optimization

of propagation and cultivation technologies for these plants. As

a result, it represents an attractive source for raw materials

of its family. Here, we report the identification of 2a, 3a, 19b,
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23b-tetrahydroxyurs-12-en-28-oic acid (THA), a new triterpenoid

molecule from Sinojackia sarcocarpa. More importantly, we have

shown that THA exhibited a significantly higher cytotoxic effect

towards an ovarian cancer cell line and a liver cancer cell line than

their respective noncancerous counterparts. The compound also

elicited a G2 arrest and a significant apoptotic response. It was

well tolerated and exhibited significant antitumor activity in nude

mice.

Methods

Reagents
Tissue culture plasticware was purchased from BD Biosciences

(USA). Column chromatography (silica gel 60), HPLC grade

acetonitrile and dimethylsulphoxide (DMSO) were from Merck

(Germany). Propidium iodide (PI) was product of Sigma (USA).

The broad-spectrum caspase inhibitor z-VAD-fmk, anti-human

p21 (C-19), Bcl-2 (100), Bax (N-20), procaspase-3 (N-19),

procaspase-8 (8CSP03), procaspase-9 (4i31), Cyclin D1 (DCS-6),

Fas (B-10), Cdc2 (B-5), and PARP (H-250), together with all

secondary antibodies (anti-mouse, anti-goat and anti-rabbit

immunoglobulin G) were purchased from Santa Cruz Biotech-

nology, Inc. (USA). The anti-human Cytochrome c (4272) and

beta-actin (13E5) antibodies were from Cell Signaling Technology,

Inc. (USA). Anti-c-Myc (K422) was from Bioworld Technology,

Inc. (USA). Cell culture media, fetal bovine serum (FBS),

phosphate-buffered saline (PBS), sodium pyruvate, non-essential

amino acids, penicillin/streptomycin and other cell culture

supplies were obtained from Invitrogen (USA).

Cell culture
The Immortalized non-tumorigenic human ovarian surface

epithelial cells IOSE144 and human cancer cell lines HCT116,

HepG2, A2780, A549, PC3, MCF-7 and Eca109 were originally

obtained from the American Type Culture Collection (ATCC),

QSG7701 and other cell lines used in this study were from the Cell

Resources Centre of Shanghai Institute for Biological Sciences,

Chinese Academy of Sciences (China). Cells were grown in RPMI-

1640 or DMEM, with 10% FBS, 1% penicillin/streptomycin

solution (100 IU/ml penicillin, 100 mg/ml streptomycin) and

2 mM L-glutamine in a 5% CO2 atmosphere at 37uC.

THA preparation
The plant leaves of Sinojackia sarcocarpa were collected from the

forest in Sichuan, China. The isolation process of THA was

demonstrated in the Supporting information (Fig. S1). Briefly, the

dried leaves of Sinojackia sarcocarpa (10 kg) were extracted with

20 liter of 95% ethanol for 3 hour at room temperature and then

subjected to sonication. The material was concentrated with

vacuum to obtain a viscous extract of approximately 150 g. This

extract was suspended in water and extracted first with petroleum

ether and then EtOAc. This yielded approximately 20 grams of

EtOAc extract. The EtOAc extract (20 g) was further fractionated

by a silica gel column chromatography into 20 fractions. Finally,

fraction 6 (4.0 g) was subjected to HSCCC separation using a

standard hexane–ethyl acetate–methanol/water (10:5:3:1, v/v)

two-phase solvent procedure, yielding 460 mg final dried powder.

The structure of the major compound in this powder was

determined based on data from UV, IR, MS, 1H NMR, and
13C NMR spectra analyses.

Cell viability and clonogenic survival assays
The cell viability was determined by MTT assay. Briefly,

2,56104 cells per well were plated in triplicate in 96-well plates.

After 24 hr incubation at 37uC in 5% CO2, the cells were treated

with the THA at following concentrations: 2.5, 5, 10, 20, 40, 80

and 160 mg/ml, a DMSO treated group was kept as control. After

incubation for 72 hr, 10 ml of the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, Sigma, USA) stock solution

(5 mg/ml) was added into each well. The plates were incubated in

37uC, 5% CO2 for another 4 hr. The medium was carefully

removed from each well and 100 ml of DMSO was added. The

plates were gently agitated until the color reaction was uniform

and absorbance of the converted dye was measured at a

wavelength of 550 nm with Microplate Reader (BioRad Model

550). Microsoft-Excel 2000 was used for data analysis. The

percentage of viability was calculated as: % Viability = [OD of

treated cells/OD of control cells]6100. The IC20, IC50, IC80 were

defined as the THA concentrations that reduced the absorbance of

the treated wells by 20%, 50%, 80% as compared with the control

cells. To verify that THA does not react with the MTT assay

reagents, we also performed the MTT assay in the absence of cells.

The clonogenic survival assay was modified from the previous

report [25]. Briefly, cells were plated at a low density (500 viable

cells per well) in triplicate in 6-well culture plates without (control,

with DMSO) or in the presence of the THA. Seven days later, the

cells were fixed with 2% formaldehyde in PBS and stained with

hematoxylin, and colonies of more than 20 cells were scored.

Detection of apoptosis
The cells were plated in 6-well plate at a seeding density of

56105 cells/well and treated with different concentrations of THA

(0, 5, 10, 20, 40 mg/ml). After 48 hr of treatment, the cells were

Figure 1. Chemical structure and purity of THA. (A) The purity of
THA was determined by HPLC. (B) The chemical structure of THA was
identified as 2a, 3a, 19b, 23b-tetrahydroxyurs-12-en-28-oic acid.
doi:10.1371/journal.pone.0021130.g001
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harvested and washed with PBS twice. The floating and

trypsinized adherent cells were collected and stained with Annexin

V-FITC (Invitrogen, USA) following the manufacturer’s instruc-

tions. Samples were analyzed with a FACSAriaTM flow cytometer

(Becton Dickinson, USA) after incubation in the dark at room

temperature for 5 min. Cells positive for early apoptosis (Annexin

V-FITC stained only, see Q4 in figure) and for late apoptosis

(Annexin V-FITC and PI stained, see Q2 in figure) were

combined.

DNA fragmentation analysis
The appearance of DNA fragmentation was determined by

agarose gel electrophoresis [26]. The cells were treated as above

and washed with cold PBS. The cell pellets were lysed with 2%

SDS containing 10 mg/ml RNase A and incubated at 37uC for

2 hr. 5 M NaCl was added to a final concentration of 1 M, and

cells were scraped and stored at 4uC for 24 hr. The lysed cells were

centrifuged for 30 min at 12,000 rpm. DNA unassociated with

intact chromatin residing in the supernatant was extracted by

phenol-chloroform and precipitated with ethanol. DNA (10 mg)

was resolved by agarose gel electrophoresis in 16Tris-acetate-

EDTA for 1 hr on 1.5% agarose gel impregnated with ethidium

bromide.

Cell cycle measurements
56105 A2780 and HepG2 cells were seeded in 6-well plates and

allowed to adhere overnight and then the medium was removed

and replaced with fresh medium containing 0, 10, 20 and 40

mg/ml concentrations of the THA and 1% FBS. After 48 hr of

incubation, the cells were harvested by centrifugation at 1000 rpm

for 5 min. The cell pellets were washed twice with PBS followed

by fixation with ice-cold 70% ethanol and storage at 220uC
overnight. After centrifugation, the pellets were washed with

cold PBS, suspended in 500 ml PBS with 50 mg/ml PI (final

concentration), 0.1 mg/ml RNase A, 0.05% Triton X-100, and

incubated at 37uC for 40 min in the dark. The cell cycle

distribution was determined on the Becton Dickinson FACSCa-

liburr. The experiment was repeated thrice under the same

conditions.

Western blot analysis
Cell extracts were prepared from control as well as cells treated

with different concentrations of THA (0, 5, 10, 20, 40 mg/ml).

Briefly, the cells were washed twice with ice-cold PBS and scraped

into 100 ml lysis buffer containing 50 mM Tris (pH 7.4), 5 mM

EDTA, 0.5% NP-40, 1 mM PMSF, 150 mM NaCl and incubated

on ice for 20 min with intermittent mixing. The extract was

centrifuged for 20 min at 4uC at 12000 rpm. Cytosolic proteins

were prepared using a nuclear/cytosol fractionation kit (Pierce,

USA). Equal amount of protein was loaded on a 10–12% SDS-

PAGE gel and transferred electrophoretically to Amersham

Hybond-P PVDF membrane in sodium phosphate buffer. The

membrane was blocked in 5% milk in PBST and incubated at

room temperature for 2–4 hr with first antibody. After three

washings with 0.1% Tween-20 in TBS, the membrane was

incubated for 2 hr at room temperature with HRP-conjugated

secondary antibody. Protein bands were visualized by the ECL

system (Amersham Biosciences, USA).

Xenograft growth assay
Pathogen-free female athymic nude mice (nu/nu, 4–6 weeks)

were purchased from Shanghai Experimental Animal Centre

(Shanghai, China). All animals were fed with commercial diet and

all animal studies were approved by the Wenzhou Medical

College, Institutional Animal Care and Use Committee (approval

ID WAC-2009003). The xenograft model was established as

reported [27]. Briefly, A2780 cells were harvested and resus-

pended in serum-free RPMI 1640 medium containing 20% (v/v)

Matrigel (BD Biosciences, USA). Aliquots of cells (56106 cells/

0.2 ml) were injected subcutaneously into the inguinal region of

nude mice. Mice bearing palpable tumors (,50 mg) were

randomly divided into treatment and control groups (n = 5

mice/group). THA was diluted in saline and was administered

via i.p. injection at doses of 25 and 50 mg/kg (inject once every

other day for 3 weeks). The control group received saline only.

The tumor growth and body weight of the mice were monitored

every other day. Tumor sizes were determined using calliper

measurement and tumor volumes (mm3) were calculated using the

standard formula: length6width6height60.5326. Tumors were

harvested 3 weeks after treatment and individually weighed.

Statistical analysis
All data represent three independent experiments and are

expressed as the mean 6 SD unless otherwise indicated. Statistical

comparisons were made by two-tailed Student’s t-test. Significance

was considered as P,0.05.

Results

Isolation of cytotoxic compounds from Sinojackia
sarcocarpa

A two-step extraction procedure was first used to obtain an

extract enriched in alkaloids and flavanoids. This extract was then

fractionated by column chromatography into 20 fractions. The

purification process is illustrated in Figure S1. Individual fractions

Table 1. Growth inhibitory activity of the THA compound on
different cancer cell lines.

Cell lines Inhibitory concentration (mg/ml)

IC20 IC50 IC80

QSG7701 67.5 .100 .100

HepG2 14.2 29.7 52.0

IOSE144 60.0 .100 .100

A2780 11.2 24.3 34.8

A549 12.0 25.0 72.0

H1299 20.0 50.0 76.5

AGS 20.1 28.6 37.8

Eca109 6.3 26.0 36.0

CaEs17 15.2 27.0 38.7

MCF-7 37.5 55.0 72.0

MB-MDA-231 44.0 59.2 75.0

PC3 13.8 29.5 37.0

SHG-44 6.0 31.0 59.0

U251 20.3 33.7 63.6

HCT116 7.2 19.5 34.5

ARO 21.6 25.0 29.5

FRO 23.9 29.6 36.4

IC20, IC50, and IC80 were the concentrations of drug that inhibit growth by 20%,
50%, and 80%, respectively, relative to the control.
doi:10.1371/journal.pone.0021130.t001
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Figure 2. THA is much more potent in inhibiting the clonogenic survival ability of cancerous cells versus their noncancerous
counterparts. (A) Ovary cancer cell A2780 and ovary epithelial cell IOSE144. (B) Hepatocelluar carcinoma cell HepG2 and normal liver cell QSG7701.
(C) The photos of clonogenic growth assay. Note the trend of the pronounced increase in growth suppression in the two cancer cell lines as the
concentration of THA increases (from left to right). Cells were exposed to various concentrations of THA for seven days followed by clonogenic assay.
All assays were done in triplicate (*, P,0.05; **, P,0.01; ***, P,0.001 versus noncancerous counterparts).
doi:10.1371/journal.pone.0021130.g002
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from the column chromatography were then used and tested for

their cytotoxic effect on the colon cancer cell line HCT116. The

results from preliminary experiments showed that Fraction 6

exhibited the most profound cytotoxic effect on HCT116 cells.

Thus, Fraction 6 was further purified by HSCCC, resulting in a

total of 460 mg dried powder (from a 10 kg starting raw material).

HPLC analysis revealed that this powder contained primarily a

single compound with 97.97% purity (Fig. 1A). The identity of the

major constituent of the powder was then determined by a series of

analyses including IR absorptions, 1H NMR spectrum, 13C NMR

spectra analysis. The data from these analyses in aggregate

indicated that the compound was 2a, 3a, 19b, 23b-tetrahydrox-

yurs-12-en-28-oic acid (THA) (Fig. 1B) and that it has a molecular

formula of C30H48O6 and molecular weight of 504.35. To our

knowledge, this is a novel triterpenoid that has not been reported

in the literature previously.

THA inhibits cancer cell growth in vitro
A preliminary study indicated that THA did not react with the

MTT assay reagents in the absence of cells (Fig. S2).Therefore,

MTT assay was used to assess the anti-proliferation activity of this

compound. Fifteen cell lines representing ten types of human

malignancies (liver, ovary, lung, gastric, esophageal, breast,

prostate, gliomas, colon and thyroid) were cultured with THA at

concentrations in the range of 2.5,160 mg/ml for 72 hr, and a

strong reduction in cell viability was observed in a dose-dependent

manner. The concentrations that reduced growth by 20% (IC20),

50% (IC50), and 80% (IC80) are summarized in Table 1. An

important attribute of an effective anticancer drug is cancer

selectivity in its cytotoxic effect. Thus, having succeeded in

purifying a cytotoxic triterpoid from Sinojackia sarcocarpa, we asked

whether it exhibited any cancer selectivity in cell killing. First, we

compared the cytotoxic effect of this agent on two different pairs of

noncancerous-cancerous cell lines: 1) the noncancerous QSG7701

hepatocyte line and the HepG2 hepatocellular carcinoma line; 2)

the noncancerous IOSE144 ovarian epithelial line and the A2780

ovarian cancer line, respectively. The results of the initial MTT

assay experiments showed that in both cases, THA was

significantly more toxic to the cancerous cell lines than to their

noncancerous counterparts (Table 1). Clonogenic survival exper-

iments also demonstrated that THA is much more potent in

inhibiting the clonogenic survival ability of the cancer cells than

their noncancerous counterparts (Fig. 2A, 2B, 2C). These results,

therefore, suggest that THA exhibits a certain level of cancer

selectivity in terms of its cytotoxic effect under our in vitro tissue

culture condition.

THA possesses antitumor activity in vivo
The selective killing property of THA suggests that it could have

antitumor activity, i.e. suppressing the growth of tumors without

Figure 3. THA significantly inhibits ovary tumor growth in A2780 xenograft tumor model. (A) Time course of tumor growth at the
indicated THA concentrations in mice bearing A2780 tumor. (B) The corresponding body weight changes during the THA treatments. (C) The tumor
weights measured at autopsy after three weeks of THA treatment. (D) The photo of the autopsied tumors after three weeks of THA treatment
(*, P,0.05; **, P,0.01; ***, P,0.001 versus saline control).
doi:10.1371/journal.pone.0021130.g003
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Figure 4. THA induces dose-dependent apoptosis in human ovarian and hepatocelluar carcinoma cells. (A) Cell apoptosis analyzed with
Annexin V-FITC kit, A2780 and HepG2 cells were treated with DMSO or the indicated concentration of THA for 48 hr. (B) Apoptosis index of A2780
and HepG2 cells. Data are representative of the values from three independent experiments. Cells positive for early apoptosis and for late apoptosis
were combined, and the percentage of cellular apoptosis in control cells was regarded as 100%. (C) Comparison of the cell apoptosis induced by THA
in the cancerous A2780, HepG2 cell and noncancerous cells IOSE144 and QSG7701. Cells were treated with 30 mg/ml THA for 48 hr. (D) z-VAD-fmk
partially prevented the THA induced apoptosis in A2780 and HepG2 cells. Cells were treated with 80 mM z-VAD-fmk for 1 hr before adding
THA(40 mg/ml) for another 48 hr. (E) Dose-dependent effects of THA on DNA fragmentation in A2780 and HepG2 cells visualized by gel
electrophoresis. (*, P,0.05; **, P,0.01; ***, P,0.001 versus the control, respectively).
doi:10.1371/journal.pone.0021130.g004
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inflicting a serious adverse effect on the host. To address this

important issue, we assessed the potential antitumor activity of

THA. A preliminary study indicated that a three-week course of

daily i.p. injection of THA at concentrations as high as 50 mg/kg

body weight did not cause any obvious adverse effects on either the

daily food intake and body weight of mice (data not shown),

suggesting that low doses of THA (50 mg/kg body weight or

below) are well tolerated in mice. We then asked whether such a

‘‘non-toxic’’ doses of THA could have any antitumor activity in

vivo using an A2780 xenograft tumor model. THA was

administered via i.p. injection every other day for 3 weeks to

mice in the treatment groups. Therapeutic effects were evaluated

by examining tumor size and tumor weight. Consistent with the in

vitro findings, THA showed a dose-dependent inhibitory effect on

tumor growth (Fig. 3A). THA (at doses of 25 and 50 mg/kg)

resulted in 39% (P,0.01) and 61% (P,0.001) tumor growth

inhibition (compared to control mice treated with saline) in the

A2780 xenograft tumor model (Fig. 3C, 3D). At this dose range,

the agent did not cause a significant impact on the body weight or

any other vital signs of the animals (Fig. 3B). Thus, within the

‘‘non-toxic’’ range, THA exhibited a significant antitumor activity

to xenograft tumors derived from the A2780 ovarian cancer cell

line.

THA induces cell apoptosis
Previously, it has been reported that some triterpenoids could

induce apoptosis in cultured human cancer cells [28,29]. Thus, we

also examined whether THA could induce apoptosis in cancer

cells. After treating the A2780 and HepG2 cells with different

doses of THA, the percent of apoptotic cells was assessed by

Annexin V-FITC and propidium iodide staining, followed by flow

cytometric analysis. Exposure of A2780 and HepG2 cells to THA

for 48 hr resulted in a significant dose-dependent increase in

apoptotic cells (Fig. 4A). At 40 mg/ml concentration, there was

,10.6-fold (p,0.001) increase in the population of A2780 cells

undergoing apoptosis compared to the untreated control cells

(DMSO). Similar apoptosis index patterns were obtained when the

HepG2 were exposed to THA (Fig. 4A, 4B). Ovary epithelial cell

IOSE144 and normal liver cell QSG7701 were resistant to THA,

under 30 mg/ml exposure, the total apoptotic cells were

significantly lower when compared to the A2780 and HepG2

cells (Fig. 4C). The THA induced cell apoptosis can partially be

Figure 5. THA induces G2/M cell cycle arrest in A2780 and HepG2 cells. A2780 and HepG2 cells were treated with 0,40 mg/ml THA for 48 hr
and the cell cycle distribution was analyzed by the Becton Dickinson FACSCaliburr. (A) Histograms of the cell cycle distribution. (B, C) The percentage
of cells in different phases. The results are the mean data from triplicate repeats under the same conditions (*, P,0.05; **, P,0.01 versus the control).
doi:10.1371/journal.pone.0021130.g005
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blocked by pan-caspase inhibitor z-VAD-fmk (Fig. 4D). In order to

confirm that the cancer cell death was caused by apoptosis, we also

performed a DNA fragmentation assay and found that THA dose

dependently increased apoptotic DNA fragmentation in A2780

and HepG2 cells 48 hr after THA treatment (Fig. 4E). These data

showed that THA is also a potent inducer for apoptosis and it

exerts its growth inhibition by inducing apoptosis.

THA induces a G2/M cell cycle arrest
THA is structural similar to ursolic acid, a triterpenoid that also

exhibits a potent anti-proliferative effect in human cancer cells.

Previous, it has been shown that ursolic acid treatment caused a

G1 arrest [30]. Thus, we also examined the effect of THA

treatment on cell cycle progression. We found that THA induced a

dose-dependent cell cycle arrest in the G2/M phase of A2780 and

HepG2 cells (Fig. 5A). Treatment of A2780 cells with THA at the

concentration of 40 mg/ml for 48 hr resulted in significant cell

cycle arrest at G2/M phase which was accompanied by a decrease

in G0/G1 phase cells. Also, a slight increase in the S phase

population was observed after each THA treatment. The amount

of G2/M-phase cells was tripled in the treated A2780 cells,

compared to the controls, whereas G0/G1-phase cells were re-

duced by nearly 56% (p,0.01; Fig. 5B). A similar result was also

observed in HepG2 cells (Fig. 5C). Thus, THA and ursolic acid,

despite their structural similarity, have different effects on cell cycle

progression, suggesting that they exert their growth inhibitions via

different mechanisms.

THA alters the expression of apoptosis-related proteins
To examine the possible pathway of anti-proliferative, pro-

apoptotic, and cell cycle arrest upon treatment with THA, we

compared the expression of various proteins involved in these

processes by Western blot. Consistent with its effect on apoptosis,

THA induced changes in the expression of apoptosis related

proteins in A2780 and HepG2 cells. The expression of procaspase-

3, -8, -9, and c-Myc were clearly decreased in a dose-dependent

Figure 6. THA changes the expression of proteins related to apoptosis and cell cycle arrest. A2780 and HepG2 cells were exposed to
various concentrations (0, 5, 10, 20 and 40 mg/ml) of THA for 48 hr, and protein levels were determined by Western blot. (A) The expression changes
of caspases, PARP, c-Myc and cell cycle related proteins. (B) The release of cytoplasmic Cytochrome c from mitochondrion induced by THA treatment.
(C) The expression of the apoptosis related proteins Bax and Bcl-2.
doi:10.1371/journal.pone.0021130.g006
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manner. Cyclin D1 expression was slightly decreased, but there

was no change for the Fas expression (Fig. 6A). Moreover, the

PARP cleavage was induced, where the 116 kd protein was

cleaved to an 89 kd catalytic fragment (Fig. 6A). THA also

induced changes in the expression of cell cycle regulatory proteins,

and the expression level of Cdc2 were decreased clearly (Fig. 6A).

In addition, cytosolic release of Cytochrome c from mitochondrion

was detected in both cells (Fig. 6B). Moreover, A2780 and HepG2

cells exposed to THA showed a dose-dependent reduction in the

level of Bcl-2 protein, with a concomitant increase in the level of

Bax and the Bax/Bcl-2 ratio, compared with the control cells

(Fig. 6C).

Discussion

Triterpenoids represent an emerging class of promising

anticancer agents [7,9]. Here we have reported the isolation

of 2a, 3a, 19b, 23b-tetrahydroxyurs-12-en-28-oic acid (THA),

a novel triterpenoid compound from the leaves of Sinojackia

sarcocarpa. We showed that this compound exhibited a high degree

of cancer-selectivity in its cytotoxic effect in both in vitro and in vivo

settings. Together, our data have strongly demonstrated that THA

represents an attractive candidate as an anticancer agent. It is a

new addition to the class of triterpenoid compounds which possess

anti-proliferative/anticancer activities.

To elucidate the anti-cancer mechanism of THA, we investi-

gated cell apoptosis, the cell cycle and the expression of the

proteins following THA treatments. Our data showed that THA

treatment induced strong cell apoptosis in both A2780 and HepG2

cells (Fig. 4). Apoptosis is an active physiologic process of cellular

self-destruction, with specific biochemical changes in the nucleus

and cytoplasm via either the intrinsic (mitochondrial) or extrinsic

pathways [31,32]. The intrinsic pathway is characterized by the

release of Cytochrome c from the mitochondria to the cytoplasm

and activation of the caspase-dependent and -independent

pathway [33]. In this study, we found that THA treatment

induced the release of Cytochrome c from the mitochondria in a

dose-dependt manner, resulting in the activation of procaspase-9

and procaspase-3. Moreover, these changes are associated with a

significant increase in the cleavage and activation of PARP, a

target protein of caspase-3 (Fig. 6A, 6B). Together, these data

indicate the involvement of intrinsic pathway in THA-induced

apoptosis. THA is structurally related to ursolic acid, a major

member of the triterpenoid family with anti-proliferative/antican-

cer activities that have already been reported [34,35]. Interest-

ingly, both agents significantly suppress the expression of Bcl-2 and

increase the expression of Bax. Bcl-2 and Bax are important

members linked to mitochondrial control during apoptosis: Bax, a

pro-apoptotic member, favors the leakage of apoptogenic factors

from mitochondria, and Bcl-2, an anti-apoptotic member,

negatively regulates this leakage [36,37]. The changes in the

levels of Bcl-2 and Bax expression are consistent with those of

caspases and Cytochrome c, supporting the conclusion that the

intrinsic pathway is the major mechanism of apoptosis following

THA exposure. However, we have noted that despite their

structural similarity, THA and ursolic acid appears to have

different effects on cell cycle progression. For examples, THA

causes a G2/M arrest, while ursolic acid induces primarily a G1

arrest [30]. This difference strongly suggests that these two drugs

may exert their growth suppression on human cancer cells via

distinctive mechanisms. Intriguingly, we have also noticed a slight

increase in the S phase population following THA treatments,

indicating that THA also has an effect on S phase progression.

This has also raised the possibility that the G2/M arrest and

growth suppressive effect of THA could have originated, at least

partly, from its effect on S phase progression. Future experiments

will shed new lights on the underlying mechanisms or potential

targets of these various types of triterpenoids, and will hopefully

promote the development of these agents as anticancer drugs.

Supporting Information

Figure S1 The isolation process of 2a, 3a, 19b, 23b-
tetrahydroxyurs-12-en-28-oic acid (THA) from the leaves
of Sinojackia sarcocarpa.
(TIF)

Figure S2 THA did not react with the MTT assay
reagents. Various concentrations of THA were added in the

96-well plate in the absence of cells, MTT assay was performed

and the absorbance of 550 nm was measured.

(TIF)
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