
International  Journal  of

Environmental Research

and Public Health

Article

Comprehensive Evaluation of Differential Methylation
Analysis Methods for Bisulfite Sequencing Data

Yongjun Piao 1,2,† , Wanxue Xu 3,†, Kwang Ho Park 4 , Keun Ho Ryu 5,* and Rong Xiang 1,*

����������
�������

Citation: Piao, Y.; Xu, W.; Park, K.H.;

Ryu, K.H.; Xiang, R. Comprehensive

Evaluation of Differential

Methylation Analysis Methods for

Bisulfite Sequencing Data. Int. J.

Environ. Res. Public Health 2021, 18,

7975. https://doi.org/10.3390/

ijerph18157975

Academic Editor: Paul B. Tchounwou

Received: 10 May 2021

Accepted: 20 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Medicine, Nankai University, Tianjin 300071, China; ypiao@nankai.edu.cn
2 Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of

Gynecology Obstetrics, Tianjin 300199, China
3 Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third

Hospital, Beijing 100191, China; xwx@mail.nankai.edu.cn
4 Department of Computer Science, College of Electrical and Computer Engineering, Chungbuk National

University, Cheongju 28644, Korea; khblack@dblab.chungbuk.ac.kr
5 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
* Correspondence: khryu@tdtu.edu.vn (K.H.R.); rxiang@nankai.edu.cn (R.X.)
† These authors are contributed equally to this work.

Abstract: Background: With advances in next-generation sequencing technologies, the bisulfite
conversion of genomic DNA followed by sequencing has become the predominant technique for
quantifying genome-wide DNA methylation at single-base resolution. A large number of compu-
tational approaches are available in literature for identifying differentially methylated regions in
bisulfite sequencing data, and more are being developed continuously. Results: Here, we focused
on a comprehensive evaluation of commonly used differential methylation analysis methods and
describe the potential strengths and limitations of each method. We found that there are large
differences among methods, and no single method consistently ranked first in all benchmarking.
Moreover, smoothing seemed not to improve the performance greatly, and a small number of repli-
cates created more difficulties in the computational analysis of BS-seq data than low sequencing
depth. Conclusions: Data analysis and interpretation should be performed with great care, especially
when the number of replicates or sequencing depth is limited.

Keywords: differentially methylated regions; DNA methylation; BS-seq

1. Background

DNA methylation is a major epigenetic marker that involves the transfer of a methyl
group to the C5 carbon residue (5 mC) of cytosines, mediated by a family of DNA methyl-
transferases [1]. A number of cytosine variants, such as 5-hydroxymethylcytosine [2,3],
5-formylcytosine, and 5-carboxylcytosine [4,5], have also been discovered. DNA methyla-
tion plays an important role in various biological processes [6], e.g., the regulation of gene
expression [7,8], genomic imprinting [9,10], cell differentiation [11,12], development [13,14],
and inflammation [15]. Aberrant methylation has been reported to be associated with vari-
ous diseases and cancer [16]. Understanding the functional role of DNA methylation is
therefore of great importance. As next-generation sequencing technologies have advanced,
the bisulfite conversion of genomic DNA followed by sequencing (BS-seq) has become the
predominant technique for quantifying genome-wide DNA methylation at single-base res-
olution. The treatment of DNA with sodium bisulfite converts unmethylated cytosines (Cs)
into uracils (Us) while keeping methylated cytosines unchanged, and the uracils are read
as thymines (Ts) by high-throughput sequencing. The millions of reads produced by the
sequencer are then mapped back to a reference genome with bisulfite read aligners, such as
Bismark [17], BSMAP [18], and BatMeth [19]. Various studies have previously addressed
the detailed issues in mapping algorithms and compared their performance [20,21]; these
topics are not addressed further here. After mapping, the methylation of each CpG site can
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be quantified by summarizing the frequency of Cs in the total number of reads (Cs + Ts)
mapped to that locus.

In general, the fundamental use of BS-seq is in the identification of differentially
methylated regions (DMRs), that is, genomic regions that show significant differences
in methylation levels between distinct biological or medical conditions, e.g., normal vs.
disease. The differential methylation analysis of BS-seq data generally consists of two steps:
the identification of differentially methylated cytosines (DMCs) using a statistical test and
the grouping of cytosines into regions with a specific segmentation method. Note that the
above two steps can be carried out regardless of the order; the statistical testing can be
conducted after merging nearby GpG sites into regions. Accurately identifying DMRs from
BS-seq data is a nontrivial task, and it presents several challenges due to (i) limitations of the
number of replicates and sequencing depth, (ii) both technical and biological variations, and
(iii) the large volume of whole-genome BS-seq data, which is computationally expensive. To
address the above issues, several computational approaches have been developed for DMR
detection, including Fisher’s exact test [22], BSmooth [23], methylKit [24], methylSig [25],
DSS [26], metilene [27], RADMeth [28], and Biseq [29]. However, it is difficult to choose
an appropriate analysis method due to the lack of benchmarking. The computational
approaches for DMR detection in BS-seq have been much less comprehensively evaluated
than those in other sequencing applications, such as peak calling in ChIP-seq [30–32] and
differentially expressed gene detection in RNA-seq [33–37]. The effect of key features in
next-generation sequencing experiments, such as library size and the number of replicates,
on BS-seq data analysis remains to be tested.

The tools for benchmarking include Fisher’s exact test [22], BSmooth [23], methylKit [24],
methylSig [25], DSS [26], metilene [27], RADMeth [28], and Biseq [29]. Note that RRBS-
Analyser [38], Methy-Pipe [39], and Bisulfighter [40] have been excluded in our analysis,
since the download link of these tools provided in their manuscript did not work. All
methods take methylation quantification data as an input that contains the number of
methylated and unmethylated reads mapped to each CpG dinucleotide in each replicate.
Fisher’s exact test, BSmooth, DSS, RADMeth, and Biseq work directly on methylation
count, while methylKit, methylSig, and metilene need to transform the methylation count
to a percentage. A brief summary of the tools used for benchmarking is presented in Table 1.
Fisher’s exact test [22] is the first approach used for differential methylation analysis. Unlike
the other methods, Fisher’s exact test is implemented in conjunction with other software
packages, e.g., methylKit and BSmooth, instead of being developed as an independent
one. The resulting p-value is directly used as the DMC cutoff criterion. BSmooth [23]
employs a local likelihood smoothing strategy to estimate methylation profiles based on
the assumption that the methylation levels of neighboring CpGs change smoothly. The
method uses the smoothed methylation profiles to compute the t-like statistic of each CpG
site and combines consecutive CpGs by a cutoff to form DMRs. MethylKit [24] models the
methylation level of a CpG or a region using logistic regression and tests the difference in
log odds between the treatment and control groups to determine DMCs/DMRs. A sliding
window-based segmentation method is implemented in methylKit to merge neighboring
CpGs with a predefined window size. In addition to differential analysis, the package also
provides several useful functions, such as the hierarchical clustering of samples, principal
component analysis, and annotation of DMRs. MethylSig [25] determines differential
methylation using likelihood ratio estimation based on a beta-binomial model and provides
the option of using information from nearby CpGs to improve the model parameter
estimation. The method also uses the sliding window approach to segment the genome into
subregions for DMR analysis. DSS [26] describes the BS-seq count by a Bayesian hierarchical
model based on the beta-binomial distribution, and the Wald test is adopted to test the
hypothesis of each CpG dinucleotide. DMRs are then defined based on several parameters,
such as minimum length, minimum number of CpGs, and minimum number of significant
CpGs. Metilene [27] is a nonparametric method that does not make any assumptions
about the data distribution. The method iteratively segments the genome based on a
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circular binary segmentation algorithm, calculates the p-values of each segmented window
using a two-dimensional Kolmogorov–Smirnov test, and uses the resulting p-values as
the iteration end condition. RADMeth [28] models the methylation level of each site
using beta-binomial regression and uses the maximum likelihood method to estimate the
distribution parameters. The significance of differential methylation is assessed by the
log-likelihood ratio test, and the p-values are then transformed using the weighted Z test.
The correlation coefficients of the p-values are calculated to combine significant DMCs
within the predefined window. Biseq [29] works by identifying CpG clusters as sets of
consecutive CpGs satisfy several predefined conditions. The methylation levels of the CpGs
within a CpG cluster are then smoothed based on the weighted local likelihood approach,
and the Wald test based on the beta regression model is used to determine the significance
of the differential methylation at each CpG site. More detailed descriptions of the tools
and their statistical models may be obtained by referring to the original publications. The
analysis procedure of each method and the parameter usage followed the recommendations
provided in the tool manual or default settings.

Table 1. A brief summary of tools for benchmarking.

Tool Version Model Assumption Differential
Methylation Test Segmentation Language Smoothing

Fisher’s 1.8.2 - Fisher’s exact test tilling window R No

BSmooth 1.8.2 binomial distribution modified t-test merging consecutive
CpGs R Yes

methylKit 0.99.2 logistic regression logistic regression test tilling window or
predefined regions R No

methylSig 0.4.4 beta-binomial model likelihood ratio test tilling window R No

DSS 2.12.0 Bayesian hierarchical
model Wald test merging CpGs based

on p-value R No

metilene 0.2–6 Nonparametric
method

2D
Kolmogorov–Smirnov

circular binary
segmentation C No

RADMeth - beta-binomial
regression log-likelihood ratio test

correlation between
p-value pairs within a

bin
C++ No

Biseq 1.12.0 Beta regression
model Wald test merging consecutive

CpGs R Yes

In this article, we have focused on a comprehensive evaluation of eight commonly used
differential methylation analysis methods and have described the potential advantages and
drawbacks of each method. We first assessed the performance in terms of the true positive
rate and examined how variations in sequencing depth and the number of replicates
influence the interpretation of BS-seq experiments. We also evaluated the false positives
of each method when applied to simulated datasets containing no DMRs. Moreover, two
additional benchmark datasets from the mouse and human methylome were used to test
the DMR detection power and boundary estimation ability on real biological data. An
integrated analysis of BS-seq, RNA-seq, and DNase-seq was also conducted between IMR90
human lung fibroblasts (IMR90) and H1 human embryonic stem cells (H1-hESCs). The
results demonstrated large differences among methods in the detection of DMCs/DMRs
in both simulated and real datasets. No single method consistently ranked first in all
benchmarking. Moreover, smoothing did not greatly improve the performance, and a small
number of replicates introduced more difficulties in computational analysis of BS-seq data
than did a low sequencing depth. Data analysis and interpretation should be performed
with great care, especially when the number of replicates or the sequencing depth is limited.
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2. Results and Discussion
2.1. Assessment of Performance in Detecting Differentially Methylated Cytosines

DMCs were directly extracted on cytosine-based simulated data by each method
with its default parameters without applying any segmentation or clustering strategies
for merging CpGs into regions, and the true positive rate of each method at a Benjamini–
Hochberg adjusted p-value of 5% was determined, with variation in the average sequencing
depth (Figure 1a) and the number of replicates (Figure 1b). True positives (TP) were
defined as correct identification of DMCs, false negatives (FN) were defined as the incorrect
prediction of true DMCs to non-DMCs, true negatives (TN) were defined as the correct
identification of non-DMCs, and false positives (FP) were defined as the incorrect prediction
of true non-DMCs to DMCs. The true positive rates and false positive rates were calculated
as TP/(TP + FN) and FP/(FP + TN), respectively. The results indicated that there are
significant differences among methods, and these differences become large when the
sequencing depth is low or when the number of replicates is small. Overall, methylSig,
BSmooth, Biseq, and metilene showed lower performance than the other four, including
methylKit, Fisher’s exact test, DSS, and RADMeth. Metilene could not detect DMCs,
regardless of sequencing depth or the number of replicates, perhaps because metilene was
initially designed for regional differential analysis. Obviously, metilene is not effective
for single-CpG analysis. However, the performance of metilene was comparable to that
of other methods when a regional analysis is adopted (see next section). MethylSig was
the most sensitive to sequencing depth and the number of replicates, while BSmooth and
Biseq were relatively stable. It is not surprising that the BSmooth and Biseq exhibited
performance independent of sequencing depth and the number of replicates, since they
both perform differential analysis on smoothed methylation levels. Interestingly, smoothing
did not help to improve the DMC detection accuracy even for low-depth data. On the
other hand, methylKit, Fisher’s exact test, DSS, and RADMeth were able to accurately
identify DMCs and exhibited a similar performance when the sequencing depth was ≥15x
or when the number of replicates/condition was ≥3. RADMeth performed slightly better
than methylKit and DSS when the sequencing depth was low, while DSS and methylKit
had a higher rate of true positives on data with a small number of replicates. Similar
patterns were observed in ROC analysis on simulated datasets (Figures S1 and S2). We
then evaluated each method on three bins of methylation differences (0.2–0.4, 0.4–0.6, and
0.6–0.8). The results (Tables S1 and S2) also indicated that RADMeth achieved relatively
higher sensitivity, followed by methylKit. The smoothing-based approach Biseq showed
the highest sensitivity on the data with small coverage, while Fisher’s exact test, DSS, and
methylSig showed low sensitivity when the difference was small (0.2–04). Designing BS-seq
experiments with an appropriate sequencing depth and number of replicates to maximize
the benefit from the trade-off between detection power and financial cost is a common
challenge. From Figure 1a,b, we can easily see that the detection power reached almost 90%
on data with 5× coverage and three replicates in each condition. However, the performance
could not break 60% in the absence of replicates, even with 10× coverage. This result reveals
that a small number of replicates creates greater difficulty in the computational analysis of
BS-seq data than does low sequencing depth, as with other sequencing applications [33,41].
Thus, including a number of biological replicates should be prioritized over obtaining more
reads in BS-seq experimental design.
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Figure 1. Comparison of methods for individual DMC detection. The true positive rate was reported at a 5% Benjamini–
Hochberg adjusted p-value on different simulated data for variation in (a) the average sequencing depth: 5×, 10×, 15×,
20×, and 25× (three replicates/conditions in all cases) and (b) the number of replicates per condition: 1, 2, 3, 4, and 5 (10×
coverage in all cases). The number of DMCs detected by each method in the data with 5 different sequencing depths and
5 different numbers of replicates are summarized in (c,d), respectively. Note that some datapoints are absent in (b) since
these tools have minimum replicate requirements, i.e., Bsmooth requires at least 3 and methylSig at least 2 replicates in each
condition. The total number of CpGs in each simulated dataset was 100K, and the number of DMCs was set to 20%. The
methylation difference in DMCs between two conditions was randomly selected from a range of weak to strong signals (0.2
to 1). DMCs were directly extracted by each method with its default parameters without applying any segmentation or
clustering strategies for merging CpGs into regions. The Benjamini–Hochberg [42] procedure was used to adjust p-values
for all methods to correct for multiple testing bias.

To avoid granting an advantage to the methods that tend to call for a large number of
DMCs, we also examined the number of DMCs identified by each method (Figure 1c,d).
There were also considerable differences among methods in the number of detected DMCs,
which ranged from 0 to 23,011. The variations in the number of DMCs detected in data
with different sequencing depths were smaller than in the data with different numbers of
replicates. In most cases, the number of reported DMCs at a Benjamini–Hochberg adjusted
p-value of 5% was less than 20,000, which is the number of gold standards, except for the
number identified by Biseq in data with four replicates. The number of DMCs detected by
most methods increased as the sequencing coverage or the number of replicates increased
(Figure S3), except for two smoothing-based approaches, BSmooth and Biseq. The true
positive rate was found to be linearly correlated with the number of detected DMCs, i.e.,
the higher the number of DMCs detected, the higher was the true positive rate. A noticeable
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exception was Biseq, which tended to select an inflated number of DMCs, resulting in a
high false positive rate (Figure 1b,d).

To further test the false positive rate of each method, we extracted subsamples from
the simulated data to perform differential methylation analysis between samples from the
same condition, and the resulting p-values were reported. Here, no CpGs were expected
to be differentially methylated, and the p-values were therefore expected to be uniformly
distributed. Note that BSmooth and metilene were not considered in this analysis because
their true positive rates were found to be too low in the previous analysis. The number
of false positives detected by each method was 37, 0, 0, 4, 36, and 15,498 for methylKit,
methylSig, Fisher’s exact test, DSS, RADMeth, and Biseq, respectively. As shown in
Figure 2 and Figure S4, methylSig and Fisher’s exact test correctly rejected all non-DMCs
at the common significance range of <0.05, while Biseq indicated a large number of false
positive predictions. Additionally, methylKit, DSS, and RADMeth showed a small number
of false positives.
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Figure 2. Distributions of p-values. Differential methylation analysis was conducted between samples
from the same condition, and the p-values were reported. From the simulated data with 8 samples,
4 replicates belonging to same condition were extracted and randomly split into two different groups
for differential analysis. Thus, no CpGs were expected to be differentially methylated in this case.
BSmooth and metilene were not considered in this analysis, because their true positive rates were
found to be too low in the previous analysis.
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2.2. Assessment of Performance in Detecting Differentially Methylated Regions

Since the previous experiment was based on examining individual cytosines, we
further examined the performances of various methods in terms of detecting DMRs on
region-based simulated datasets. DMRs were extracted by each method with its own
grouping strategy at a Benjamini–Hochberg adjusted p-value of 5%. Then, the overlapping
fraction between the predicted DMRs and the true positive (Table S3) was calculated.
The number of DMRs that overlapped by more than 80% was counted as covered, and
the number of accurately covered DMRs of each method is shown in Figure 3a,b. The
complete overlapping fractions are presented in Figures S5 and S6. From the figures, we
can easily see that there were also large differences among methods in detecting DMRs.
Here, methylKit and Fisher’s exact test detected all true DMRs in the different datasets.
These two methods had the same results because we applied the sliding window (default
window size = 1000 bp) approach implemented in methylKit to Fisher’s exact test to merge
the CpGs into regions, since Fisher’s exact test itself does not include a regional analysis
function. RADmeth and methylSig had comparable performance when the sequencing
depth was ≥15× or when the number of replicates/condition was ≥3. However, the
performance decreased dramatically when the coverage or the number of replicates was
small. In addition, metilene achieved markedly better performance in regional analysis
compared to that in DMC analysis. Metilene was found to be the approach that most
accurately identified exact DMR boundaries, as shown in Figure 3c, which summarizes
the length distributions of the detected DMRs. RADMeth could also accurately identify
DMR boundaries when the sequencing depth and the number of replicates is high. On
the other hand, the DMRs found in methylKit were on average shorter than the gold
standard, indicating that methylKit could correctly cover true DMRs, but that metilene
could more accurately detect DMR boundaries. MethylKit segments the genome using
sliding windows, while metilene merges CpGs based on their actual genomic position.
Interestingly, the detection power of BSmooth was also substantially better in DMR analysis,
except in specific cases, such as in 15× and 25× coverage, where an unknown execution
error occurred during analysis. DSS and Biseq were clearly more suitable for DMC analysis.

2.3. Differential Analysis of Mouse Methylome

To test the methods on real biological data, we used Xie’s [43] whole-genome bisulfite
sequencing data from the mouse methylome to perform differential analysis. Their study
reported 55 parent-of-origin-dependent DMRs (32 known imprinted DMRs +23 novel
DMRs). We used the 32 biologically verified DMRs (Table S4) as the gold standard for
method evaluation, as in [44,45]. The overlapping fraction between the gold standard and
DMRs detected by each method was reported (Figure 4). Similar results were obtained on
the mouse data and the simulated data. MethylKit and Fisher’s exact test had identical
results and covered all 32 gold standard DMRs with greater than 60% overlap (six with
complete overlap and 22 with greater than 80% overlap). RADMeth also covered all the
true positives, but with a relatively lower overlapping fraction than methylKit and Fisher’s
exact test. DSS and metilene exhibited an overall similar performance, in which metilene
had more overlaps (>60%) than DSS, while DSS covered more DMRs than metilene. As in
the regional simulation experiment, Biseq failed to detect most DMRs.
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Figure 3. Comparison of methods for DMR detection. DMRs were identified at a 5% Benjamini–Hochberg adjusted p-value
by each method, and the number of covered (overlapped with true positive by more than 80%) DMRs in different simulated
data were reported for variations in (a) the average sequencing depth (3 replicates/condition in all cases) and (b) the number
of samples (10× coverage in all cases). The distribution of DMR lengths detected by each method is summarized in (c).
Note that we were unable to obtain the results of BSmooth with 15× and 25× coverage, since unknown execution errors
occurred during the analysis.
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because the data contained no replicates.

2.4. Differential Analysis of the Human Methylome

To evaluate the performance of each method on human BS-seq data, we conducted
a differential methylation analysis between IMR90 human lung fibroblasts (IMR90) and
H1 human embryonic stem cells (H1-hESCs). DMRs were again extracted by each method
with its own grouping method at a Benjamini–Hochberg adjusted p-value of 5%. As the
true DMRs were unknown, we employed RNA-seq and DNase-seq data on the IMR90
and H1-hESC cell lines to infer the gold standard. Gene expression has been found to be
regulated by DNA methylation [46,47], and the promoter regions of different cell types
have shown considerably distinct methylation patterns [48,49]. Thus, the promoter regions
of differentially expressed genes (DEGs) tend to be differentially methylated, which can
serve as the gold standard for benchmarking. We performed differential expression analysis
between IMR90 and H1-hESC cells using ENCODE [50] RNA-seq data (see Materials and
Methods). The results identified 505 significant DEGs (Table S5), and GO analysis revealed
significant enrichment in genes involved in extracellular matrix organization, cell adhesion,
response to drugs, and collagen catabolic process (p = 1 × 10−9, Table S6). We note that
the promoter regions of 61 DEGs in chromosome 1 were chosen for the downstream gold
standard construction for ease of illustration, and the heatmap of these genes is shown
in Figure 5a. DNA methylation and chromatin accessibility are well known to be highly
correlated with each other, rather than being independent [51,52]. In general, a gene is
expressed if its promoter region remains in an open chromatin and unmethylated state,
while a gene is silenced if it has a closed and methylated promoter [7,53]. Thus, promoters
with differential chromatin configurations are more likely to be differentially methylated.
Accordingly, we first extracted the DNase I hypersensitive sites (DHSs) of IMR90 and
H1-hESC cells identified in ENCODE and carried out a differential analysis between those
peaks. Finally, we selected the promoters of DEGs that contained differential DHSs as the
gold standard. The overlapping fraction between the gold standard and the DMRs detected
by each method on chromosome 1 was reported in Figure 5b using BEDTools [45]. The
results on other chromosomes were reported in Figure S7. The UCSC genome browser [54]
displays of the detected DMRs and various genomic regulatory regions, including 5 kb
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upstream of the transcription start site of the example gene RNA5S17, CpG islands, and
differential DHSs, are shown in Figure 5c. The DMRs detected by methylKit, methylSig,
Fisher’s exact test, and metilene were located across various genomic regions, including
promoter, gene body, UTRs, and intergenic regions, while the DMRs detected by Biseq
and BSmooth were located in promoter and intergenic regions. Consistent with previous
results, methylKit, Fisher’s exact test, and metilene covered most DMRs, except two that
were CpG-sparse regions. RADMeth also identified a reasonable number of DMRs, but the
overall overlapping fractions were slightly lower than those of the above three methods.
Unfortunately, two smoothing-based approaches, BSmooth and Biseq, detected only a
small number of DMRs, and DSS surprisingly failed to detect DMRs.
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3. Conclusions

We have presented a detailed comparative analysis of a number of computational
approaches for identifying differentially methylated cytosines/regions from bisulfite se-
quencing data. Our analysis focused on the performance of each method in terms of the
true positive rate, effect of sequencing depth and the number of replicates on differential
analysis, false positives on a null model, DMR boundaries, and performances in omic
analysis. Overall, there were notable variations among methods, and no single method
consistently performed best in all benchmarking. For DMC analysis, RADMeth, methylKit,
DSS, and Fisher’s exact test had comparable performance when the coverage or the number
of replicates was high enough. However, RADMeth and methylKit clearly had better sensi-
tivity on data with a low sequencing depth, while DSS and methylKit had better sensitivity
on data without replicates. For DMR analysis, methylKit and Fisher’s exact test covered
more DMRs than other methods, and metilene performed especially well in identifying
correct DMR boundaries. Interestingly, smoothing-based approaches did not greatly im-
prove the performance of differential analysis. Additionally, a small number of replicates
presented more difficulties in computational analysis of BS-seq data than low sequencing
depth did. This finding suggests that including a number of biological replicates should
be prioritized over obtaining more reads in BS-seq experimental design. Data analysis
and interpretation should be performed with great care, especially when the number of
replicates or sequencing depth is limited. Moreover, it is difficult to cross-use methods in
different tools, because they have large differences in data structures and programming
languages. More efforts are needed for developers to simplify the data analysis procedure
and enable integrated analysis of methods in different tools or software packages.

In summary, as sequencing technology advances, BS-seq data analysis will continue to
be a major issue for computer scientists and biologists. To the best of our knowledge, this
study is the first comprehensive comparison of commonly used differential methylation
analysis methods on both synthetic and real data. There are also some open questions we
did not consider in this research, such as performance on 5 hmC and single cell BS-seq
experiments and the effect of different parameters. We expect our study to be a valuable
resource for choosing an appropriate BS-seq data analysis method and a helpful direction
for future tool development.

4. Materials and Methods
4.1. Simulation

To assess the ability of the various methods to detect DMCs, we randomly extracted
1 million CpG sites from the Lister’s IMR90 bisulfite sequencing data [22] and simulated
20% of them as true positives and all others as true negatives. The methylation difference
of each true positive was randomly assigned within the range of 0.2 to 1, corresponding
to weak and strong differences, respectively. Using above strategies, we generated five
datasets with different average sequencing depths (5×, 10×, 15×, 20×, and 25×) and
five datasets with a different number of biological replicates per condition (1, 2, 3, 4, and
5). To assess the performance of the methods in region-based DMR detection, we further
simulated five datasets with different sequencing depths (5×, 10×, 15×, 20×, and 25×)
and five datasets with a different number of replicates (1, 2, 3, 4, and 5). Taking 35 DMRs
found in Lister’s study [22] as the gold standard true positives, we randomly assigned the
methylation differences of the CpGs within the true positive regions from 0.2 to 1, while
other CpGs within the remaining genome were simulated with no difference between
groups.

4.2. RNA-Seq

The TPM (transcripts per million) normalized count of RNA-seq data for IMR90
(accession: ENCFF833OTW) and H1-hESCs (accession: ENCFF093NEQ) were obtained
from ENCODE [50]. An Illumina Genome Analyzer II was used to sequence mRNAs
isolated from IMR90 and H1-hESCs, and the produced reads were mapped to the human
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reference genome using Pash. Differential analysis of RNA-seq data was performed using
the edgeR [55] software package, and DEGs were detected with an adjusted p-value < 0.05
and >2-fold change. The genomic coordinates of the DEGs were extracted based on human
genome assembly (GRCh38) using Ensembl Biomart [56], and the promoter regions were
defined as the 5 kbp up/downstream of transcription start sites.

4.3. DNase-Seq

The DNase-seq data of IMR90 (accession: ENCFF136QTV) and H1-hESCs (accession:
ENCFF184VRJ) were also downloaded from ENCODE, and the reads were also sequenced
on an Illumina Genome Analyzer II. Downstream data analysis followed the ENCODE
guidelines, and the narrow peaks called from the ENCODE were directly used for the
differential analysis. The differential DHSs between IMR90 and H1 were identified using
BEDTools [45].

4.4. BS-Seq

The BS-seq data of IMR90 and H1 were obtained from the human DNA methylome
database of Salk Institute [57]. Four samples (two replicates each) were sequenced on an
Illumina Genome Analyzer II with an average depth of 14.5× per strand, yielding 1.16
and 1.18 billion reads for IMR90 and H1, respectively. The reads were originally mapped
to the hg18 reference genome, covering 2464,851 CpGs in chromosome 1. The genome
coordinates were then converted from hg18 to hg38 using the UCSC liftOver command line
version. The mouse BS-seq data [43] were downloaded from the Gene Expression Omnibus
(accession: GSE33722). Two reciprocal crosses were sequenced on an Illumina Genome
Analyzer II with an average depth of 23.75×, generating 1.54 billion and 1.33 billion
reads for F1i and F1r, respectively. The reads were mapped to the mm9 reference genome,
covering 11,345,372 CpG dinucleotides.
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S4: Evaluation of false positives under null model, Figure S5: Overlapping fraction on simulated
datasets with different sequencing depth, Figure S6: Overlapping fraction on simulated datasets with
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