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Abstract

Objective

Chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD) are

leading causes of global morbidity and mortality. There is a well-known comorbidity between

COPD and CAD, which is only partly explained by smoking and other known common risk

factors. In order to better understand the relationship between COPD and CAD, we ana-

lyzed myocardial perfusion, pulmonary function and novel cardiovascular biomarkers in

patients with symptoms suggesting myocardial ischemia.

Methods

A total of 396 subjects from the Swedish Biomarkers and Genetics CardioPulmonary Physi-

ology Study (BiG CaPPS) were included, all of whom had been referred to myocardial perfu-

sion imaging due to suspected myocardial ischemia. Subjects performed myocardial

perfusion imaging (MPI), pulmonary function tests (PFT) and analysis of 92 proteomic bio-

markers, previously associated with cardiovascular disease. Linear regression was used to

study the relationship between MPI and PFT results and proteomic biomarkers.

Results

Subjects with CAD (n = 159) had lower diffusing capacity (DLCO) than patients without CAD

(6.64 versus 7.17 mmol/(min*kPa*l); p = 0.004) in models adjusted for common covariates

such as smoking, but also diabetes and brain natriuretic peptide (BNP). The association

remained significant after additional adjustment for forced expiratory volume in one second

(FEV1) (p = 0.009). Subjects with CAD, compared with subjects without CAD, had higher

total airway resistance (0.37 vs 0.36 kPa/(l/s); p = 0.036). Among 92 protein biomarkers,

nine were associated with a combined diagnosis of CAD and airflow obstruction: VSIG2,

KIM1, FGF-23, REN, XCL1, GIF, ADM, TRAIL-R2 and PRSS8.
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Significance

Diffusing capacity for carbon monoxide is decreased in patients with CAD, independently of

decreased FEV1, diabetes, and elevated BNP. Several cardiovascular biomarkers are asso-

ciated with co-existent CAD and airflow obstruction, but none with airflow obstruction only.

The current findings indicate that the interaction between CAD and lung function is complex,

including mechanisms beyond the known association between CAD and reduced

ventilation.

Introduction

Chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease,

most notably coronary artery disease (CAD), are leading causes of death world-wide [1]. Studies

have consistently shown a strong association between COPD and CAD [2–5]. Reduced lung

function, including low forced expiratory volume in one second (FEV1) and low forced vital

capacity (FVC), as well as a manifest diagnosis of COPD are all associated with CAD [6–8].

Whereas the strong relationships that exist between reduced lung function, COPD and CAD

have not yet been fully understood from a pathophysiological view, a number of underlying

mechanisms have been suggested. One such mechanism is low-grade systemic inflammation,

which is known to play a role in the pathogenesis of both diseases [9–11]. Such inflammation

may potentially damage elastin in the arteries as well as in the alveoli, which may in turn cause

arterial wall stiffness and loss of functional alveolar tissue [12–15], providing an explanation for

the increased arterial stiffness that could be observed in COPD [16,17]. Moreover, such inflam-

mation may cause endothelial dysfunction in both the coronary and the pulmonary vasculature

[18], providing another possible link between coronary and pulmonary disease. Smoking

increases inflammation and is regarded as the most important common risk factor for both

COPD and CAD [19,20], although about 25% of patients with COPD report no history of

smoking [21]. Other suggested common risk factors for COPD and CAD include airborne pol-

lution [22–24], cardiovascular autonomic dysfunction [25], and genetic factors [26].

Accounting for the strong relationship that exist between COPD and CAD, further studies

of specific lung function parameters and their relationships with CAD may further aid in

understanding the links between the diseases.

First, whereas previous studies examined predominantly the relationships between CAD

and conventional spirometry measurements such as FEV1 and VC, other lung function mea-

surements such as diffusing capacity for carbon monoxide (DLCO) and impulse oscillometry

(IOS), have been less extensively studied. These measurements do not represent the sole exis-

tence of bronchial disease, but may point to other pulmonary pathology that may represent an

additional link with CAD [27]. DLCO is estimated by the difference in partial pressure of car-

bon monoxide in inhaled and air exhaled after a 10 seconds breath-hold. A difference lower

than normal implies a reduced carbon monoxide uptake in the lung, which provides a valid

estimate of the oxygen diffusion. DLCO is used to assess the function of the alveolar-capillary

membrane, and both decreased alveolar surface area and increased thickness of the blood-air

barrier will impair the diffusion of gases and lower the DLCO. Lung fibrosis, heart failure, ane-

mia and increased pressure in the pulmonary circulation also affect DLCO [28–30]. IOS mea-

sures mechanical properties of the lung by the application of a sound wave. It has been shown

to detect subtle changes in a patients airway function earlier than with the conventional
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spirometry, and has been proven to detect small airway disease in symptomatic patients with

normal spirometry [31–33]. Thus, pathological values of DLCO and IOS in patients with CAD,

may indicate potential mechanisms such as concurrent damage to elastin in the artery and the

alveoli [12–15] as well as potential endothelial dysfunction in the coronary and pulmonary vas-

culature [18].

In addition to specific lung function measurements, the analysis of protein biomarkers with

potential involvement in the pathogenesis of both COPD and CAD, may reveal novel common

pathophysiological pathways. Whereas a large number of such biomarkers have been sepa-

rately identified for COPD [34,35] and CAD [36], studies examining potential association

between such biomarkers and both COPD and CAD are sparse. Inflammatory cytokines such

as Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor necrosis factor (TNF-alpha), Monocyte che-
moattractant protein 3 (MCP-3) and C-C Motif chemokine ligand 11 (CCL11) have been shown

to be increased in both diseases [37–39], in turn supporting the hypothesis that inflammation

may be a treatable target in both diseases [40,41]. In addition to inflammatory pathways, the

identification of additional plasma-biomarkers that associate with both diseases, may give

clues to other common pathways. As a complement to genetic studies revealing common

genetic variants for CAD and COPD [26] the study of such common biomarkers may ulti-

mately reveal novel potential targets for the prevention and treatment of both COPD and

CAD.

Thus, in order to expand our knowledge of the relationships between CAD and COPD, we

aimed to assess:

1. The relationship between CAD and specific physiological measurements from extended

pulmonary function testing (primary objective) and

2. the relationship between cardiovascular proteomic biomarkers and airflow obstruction

with or without concurrent CAD (secondary objective) in patients evaluated for suspected

angina pectoris.

Methods

Study population

The BiG CaPPS cohort. Data were collected from the Biomarkers and Genetics Cardio-

Pulmonary Physiology Study (BiG CaPPS)-cohort, which has been previously described in

detail [42]. In short, the BiG CaPPS cohort consists of 500 outpatients with suspected stable

myocardial ischemia, all of whom had been clinically referred by a physician to myocardial per-

fusion imaging (MPI) during 2014–2017. Except for inability to provide written informed con-

sent, there were no further exclusion criteria in BiG CaPPS. The 500 subjects that constitute the

BiG Capps cohort were selected from a total of 847 eligible subjects that were invited to partici-

pate at the time of MPI (59% participation). No data was obtained from patients who declined

participation. At the time of enrollment, which occurred on the same day as the MPI, the sub-

jects filled in a questionnaire including medical history, medications, and a detailed assessment

of smoking history. Information regarding diagnoses hypertension and diabetes was obtained

from the questionnaire, i.e. a positive response to the question “Have you been diagnosed and/

or treated for any of the following: High blood pressure; Have you been diagnosed and/or

treated for any of the following: Diabetes”. Similarly, smoking history was self-reported by par-

ticipants answering the question " Have you ever smoked regularly for one month or more?" in

the questionnaire. Current smoking was defined as smoking daily for one month within the last

year. Former smoker was defined as regular smoking for at least one month but not within the
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last year. Resting blood pressure and heart rate were recorded once prior to MPI, using cali-

brated standard blood pressure equipment with automatic reading, as part of a local, unpub-

lished clinical protocol for the MPI at the clinic. In addition, blood sampling was done during

the preparations for the MPI and the blood was handled by the local Clinical Research Unit at

Skåne University Hospital. Relative concentrations of brain natriuretic peptide (BNP), used in

analyses as a proxy of heart failure, were obtained from the blood samples. Study participants

were not required to fast prior to blood sampling. In addition to the MPI, study participants

performed pulmonary function tests (dynamic spirometry and IOS) as part of the study within

one month from the date of the MPI. The examinations were conducted at the Department of

Clinical Physiology and Nuclear Medicine at Skåne University Hospital in Malmö, Sweden,

between June 2014 and October 2017. MPI, pulmonary function test, blood pressure measure-

ments and blood sampling were performed by clinical personnel working at the department.

The equipment used was calibrated for clinical use. All participants provided informed written

consent. The study was done in accordance with the Declaration of Helsinki and was approved

by the Regional Ethics Board in Lund (DNR 2013/242).

The subset of the BiG CaPPS cohort included in the current study. Out of 500 partici-

pants that were enrolled into the BiG CaPPS cohort, 479 provided blood samples. A total of

465 of these blood samples could be successfully analyzed by Olink (for criteria, see below).

For the current study, complete data on age, sex, smoking status, pulmonary function testing

and MPI were criteria for inclusion in the analyses, leaving 396 subjects that were included in

the final study population (Fig 1).

Myocardial perfusion imaging

Myocardial perfusion imaging (MPI) was performed and interpreted according to current

guidelines [43,44] as a part of routine clinical investigation at the Department of Clinical Phys-

iology and Nuclear Medicine at Skåne University Hospital in Malmö, Sweden. The MPI proto-

col, which has been previously described in detail [42], included provocation with either

exercise on a bicycle or pharmacological provocation with adenosine or regadenosone, after

which 99mTc-tetrofosmin was injected, and Single Photon Emission Computed Tomography

(SPECT) Images were obtained using a dual-head gamma camera (Siemens AG Medical Solu-

tions, Erlangen, Germany). From March 2015 the SPECT acquisition was complemented by a

low dose CT scan for attenuation correction.

Pulmonary function testing

Pulmonary function testing (PFT), including dynamic spirometry after bronchodilation, mea-

surement of carbon monoxide diffusing capacity (DLCO), as well as IOS measurements

(described in detail below), were performed on a separate day within one month after the MPI

examination. Subjects were asked to refrain from smoking for four hours before the examina-

tion. Objective data on whether participants actually did refrain from smoking were not avail-

able. The examination was performed according to clinical guidelines [45] at the Department

of Clinical Physiology at Skåne University Hospital SUS Malmö using standard equipment

(Masterscreen PFT and IOS, Jaeger, Würzburg, Germany.) Spirometry and measurements of

DLCO (including calibrations) were performed according to the standards issued by the Ameri-

can Thoracic Society and the European Respiratory Society [45,46] and IOS measurements

according to the recommendations by Oostveen et al [47]. All examinations were performed

by locally certified technicians/biomedical scientist with special expertise in PFT. Of note, the

same technicians/biomedical scientist also performed all the clinical PFT examinations (more

than 1000 yearly clinical examinations) at the time of the study.
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IOS measures mechanical properties of the lung by the application of a sound wave,

superimposed on the subject’s tidal breathing, that travels down the respiratory tract. The

ratio between measured pressure and flow due to the sound wave, separated from the tidal

breathing, describes the respiratory impedance. Impedance can be interpreted as the sum

of resistance and reactance opposing the applied pressure impulses from the sound wave

and is measured with several frequencies between 5 and 35 Hz. Low frequency oscillations

travel deep into the lung and are believed to give information from the whole respiratory

system while higher frequencies are assumed to characterize the larger airways. The in-

phase component of the impedance signal is interpreted as the respiratory resistance (R)

which gives information about the forward pressure of the conducting airways, while the

out of phase component is termed the respiratory reactance (X), which is a sum of mass-

inertive and capacitive forces. Resistance at low frequency (R5) is often assumed to repre-

sent the entire bronchial tree, whereas resistance at higher frequency (R20) is assumed to

reflect resistance n proximal airways. Therefore, R5-R20 is often taken to represent periph-

eral airways [31]. As indicated in the introduction, IOS has been shown to detect subtle

changes in a patients airway function earlier than with the conventional spirometry, and

has been proven to detect small airway disease in symptomatic patients with normal spi-

rometry [31–33].

Fig 1. Legend: Study flowchart. The selection of patients for the current study. BiG CaPPS = Biomarkers and Genetics

CardioPulmonary Physiology Study.

https://doi.org/10.1371/journal.pone.0264376.g001
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Cardiovascular biomarkers

Blood sample analysis was performed by Olink Proteomics, using Proximity Extension Assay

technology. Plasma biomarkers were measured from supine blood samples (total volume: 30

ml) that were centrifuged, then stored as 16 × 250 μL aliquots of EDTA plasma in plastic ther-

motubes, and frozen at -80˚C. The samples were then thawed before biomarker analysis. Sam-

ples were analyzed by Olink Proteomics using the Cardiovascular II panel, consisting of 92

cardiovascular protein biomarkers. Proteins for this panel were selected by Olink in consulta-

tion with key opinion leaders in cardiovascular proteomics (https://www.olink.com/products/

target/cvd-ii-panel/). Quality control was assured by Olink Proteomics, who uses a technique

of Normalised Protein Expression (NPX). In short, four internal controls are added to each

sample to monitor the quality of assay performance, as well as the quality of individual sam-

ples. The quality control is performed in two steps: In the first step, each sample plate is evalu-

ated on the standard deviation of the internal controls. This should be below 0.2 NPX. Only

data from sample plate that pass this quality control will be reported. In the second step the

quality of each sample is assessed by evaluating the deviation from the median value of the

controls for each individual sample. Samples that deviate less than 0.3 NPX from the median

pass the quality control. In total, 479 patients from the BiG CaPPs cohort were analyzed, of

which 465 samples (97%) passed quality control. Only samples that passed quality control

were included in the current study. The Intra- and Inter-Assay CV were 6 and 11%

respectively.

Airflow obstruction and CAD definitions

Airflow obstruction was defined according to spirometry: Ratio of forced expiratory volume in

one second (FEV1) to vital capacity (VC) < 0.70, after administration of a bronchodilator.

Moreover, all tests, including visual flow-volume curves were interpreted by one of two physi-

cians trained in lung function testing (VH, PW).

Established CAD (hereafter termed “CAD”) was defined as previous myocardial infarction,

angina pectoris, confirmed significant coronary atherosclerosis on previous imaging, or con-

firmed myocardial ischemia on MPI performed as part of the current study. Information on

participants previous diagnoses and imaging were collected from the referrals for MPI and/or

from the questionnaires that each study participant filled out at the time of inclusion. In case

of uncertainty, medical records were studied in order to retrieve the data. Patients claiming to

have angina on the questionnaire but without a confirmed diagnosis of angina and with no

evidence of ischemia on MPI (n = 13), were classified as non-CAD.

Statistics

Lung function measurements in relation to CAD status. Separate linear regression

models were created for each of the individual physiological lung measurements of interest

(dependent variable). The lung function measurements were VC, FEV1, DLCO and IOS
(Resistance [R] 5Hz, R20Hz, R5-20Hz, Area of reactance [AX]). The absolute values of IOS

measurements (except 5Hz-20Hz difference) were log-transformed to achieve normal dis-

tribution. CAD was the independent variable in all models, in addition to covariates age,

sex, height, smoking, diabetes and hypertension (Minimally adjusted model). BNP was

added to the minimally adjusted model to create Adjusted model 1. There are known rela-

tionships between CAD and FEV1 [8], CAD and COPD [6], as well as COPD and DLCO

[48]. In order to assess the association between CAD and DLCO independently of these rela-

tionships, an additional model for DLCO (Adjusted model 2) was created where adjustment

for FEV1 was added to Adjusted model 1. BNP measurements were received as relative
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concentration from Olink and were not normally distributed. These data were therefore

grouped into quartiles before analyses were performed. BNP was included in the model not

as a confounder but because the authors wanted to estimate the effect of CAD on lung func-

tion parameters that is independent of heart failure, which is clinically well known to be

associated with reduced lung function [49,50]. A directed acyclic graph is provided in the

Supplementary data (Supplementary Figure 1 in S1 Data). Finally, as a supplementary anal-

ysis, CAD was substituted for the functional variable “coronary ischemia on MPI” in the

adjusted model. The model assumptions were reviewed visually by histogram to ensure nor-

mal distribution. A power calculation using PS Power (Developed by William D. Dupont

and Walton D. Plummer, Vanderbuilt University; https://biostat.app.vumc.org/wiki/Main/

PowerSampleSize) was done based on detecting a difference (i.e. beta) in DLCO of 0.5 mmol,

with an standard error of the regression errors of 1,3 and a standard deviation of the inde-

pendent variable of 0,49. In order to achieve a power of 0,8, we would need 223 subjects,

which was well exceeded in the current study.

Proteomic biomarkers in relation to CAD status and airflow obstruction. Proteomic

biomarkers were compared in patients with diagnoses against patients without diagnoses,

according to groups airflow obstruction vs without airflow obstruction, CAD vs without
CAD, combined diagnosis (airflow obstruction and CAD) vs without combined diagnosis, and
ischemia on MPI vs without ischemia on MPI. Linear models were selected after consultation

by statistical expertise within Olink and the model assumptions were checked by visual

inspection. The linear regression analyses were adjusted for age, sex and smoking status,

with biomarker value as the dependent value. P-values were adjusted for multiple testing

using the Benjamini-Hochberg method. Plasma biomarkers are not presented as absolute

concentrations, but as relative concentrations in the Normalised Protein Expression (NPX)

unit, generated on a log2 scale.

Baseline characteristics (Table 1) are presented as mean (SD) unless otherwise specified.

Statistics were done by SPSS Statistics 25.0 from IBM Corp. (SPSS Inc., Chicago, IL, USA).

Table 1. Patient characteristics.

All patients (n = 396) No diagnosis (n = 149) AO only (n = 88) CAD only (n = 103) Combined AO and CAD (n = 56)

Age, years 66.4 (10.2) 63.4 (11.6) 68.4 (8.9) 66.3 (9.3) 71.5 (7.2)

Sex, % women 46.7 55.7 59.1 27.2 39.3

Smoking status, %

Never smoker 33.1 46.3 28.4 26.2 17.9

Ex-smoker 53.0 45.0 50.0 62.1 62.5

Current smoker 13.9 8.7 21.6 11.7 19.6

Diabetes, % 22.0 15.4 12.5 33.0 33.9

Hypertension, % 57.6 50.3 61.4 67.0 53.6

Heart rate, min-1 69.5 (11.7) 69.0 (11.5) 72.7 (13.2) 68.3 (11.0) 68.0 (10.3)

Systolic blood pressure, mmHg 138.9 (17.4) 138.0 (18.1) 140.8 (18.3) 138.9 (16.7) 138.5 (16.0)

Diastolic blood pressure, mmHg 79.7 (8.9) 80.0 (9.6) 81.2 (7.9) 79.3 (8.9) 77.5 (8.4)

Known CAD at time of inclusion, % 34.1 - - 79.6 94.6

Known COPD at time of inclusion, % 8.1 1.3 15.9 3.9 21.4

Displayed as mean (SD) unless otherwise specified.

CAD = coronary artery disease; COPD = Chronic obstructive pulmonary disease; AO = airflow obstruction.

Current smoking = Smoking daily for one month during the last year.

Ex-smoker = Earlier daily smoking for at least one month and no smoking during the last year.

Never smoker = Never smoking daily for one month.

https://doi.org/10.1371/journal.pone.0264376.t001
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Results

Three-hundred-and-ninety-six patients that were included in the final study population were

middle aged on average and slightly more men than women were included. Approximately,

one third of the subjects had previously known CAD, whereas eight percent had known

COPD prior to inclusion in the study. Of note, following inclusion in the study only 14% had

reversible ischemia on MPI, whereas 36% had airflow obstruction according to spirometry cri-

teria. Characteristics of the 396 patients that were included in the final study population are

listed in Table 1.

Pulmonary function test parameters in relation to CAD

Patients with CAD had lower VC and DLCO compared with patients without CAD (Fig 2 and

Table 2). The association between DLCO and CAD was significant also after adjustment for

FEV1 (p = 0.009). CAD was also significantly associated with an increased airflow resistance at

5 Hz. There was no association between CAD and resistance at 20Hz or frequency-dependent

resistance (5Hz-20Hz). CAD was associated with an increase in reactance area (AX).

Both a heart failure diagnosis retrieved from the questionnaire (p = 0.004), and relative

BNP (p = 0.001) were associated with decreased DLCO by 1.181 and 0.655 mmol/(min�kPa�l),

respectively.

There were no significant differences in lung function parameters when comparing the

groups coronary ischemia versus no ischemia on MPI (Supplementary Table 1 in S1 Data).

Protein biomarkers

Of the 92 analyzed cardiovascular proteomic biomarkers, a total of 30 proteins were signifi-

cantly altered in patients with CAD compared with subjects without CAD (Table 3 and Sup-

plementary Table 2a in S1 Data).

There were no significant differences in concentrations of the protein biomarkers between

patients with and without airflow obstruction, accounting for multiple testing. (Supplementary

Table 2b in S1 Data).

Fig 2. Lung function measurements in non-CAD vs CAD. VC = vital capacity; FEV1 = forced expiratory volume in

one second; DLCO = diffusing capacity for carbon monoxide.

https://doi.org/10.1371/journal.pone.0264376.g002
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A total of nine proteins were significantly increased in subjects with a combined diagnosis

of airflow obstruction and CAD compared with those without a combined diagnosis: VSIG2,

Kidney Injury Molecule (KIM1), Fibroblast growth factor 23 (FGF-23), Renin (REN), Lympho-
tactin (XCL1), Gastric intrinsic factor (GIF), ADM, TNF-related apoptosis-inducing ligand
receptor 2 (TRAIL-R2) and Prostasin (PRSS8) (Fig 3 and Table 4, Supplementary Table 2c in S1

Table 2. Mean spirometry and IOS measurements in non-CAD and CAD patients.

No CAD n CAD n P-value� P-value�� P-value���

VC 3.79 (1.08) 237 3.71 (0.92) 159 0.004 0.016 N/A

FEV1 2.74 (0.87) 237 2.69 (0.80) 159 0.075 0.188 N/A

DLCO 7.17 (2.08) 237 6.64 (1.95) 158 0.001 0.004 0.009

R 5Hz 0.36 (0.13) 237 0.37 (0.14) 157 0.026 0.036 N/A

R 20Hz 0.30 (0.08) 237 0.29 (0.08) 157 0.172 0.229 N/A

R 5Hz-20Hz 0.06 (0.07) 227 0.07 (0.07) 153 0.073 0.090 N/A

AX 0.48 (0.84) 236 0.59 (0.98) 157 0.005 0.011 N/A

Displayed as mean (SD). P-values from linear regression analyses.

� Minimally adjusted model (age, sex, height, smoking, diabetes, hypertension).

�� Adjusted model 1 (Minimally adjusted model + BNP).

��� Adjusted model 2 (Minimally adjusted model + BNP + FEV1).

CAD = Coronary artery disease, please see text for definition; R = Resistance; AX = Area of reactance.

VC (litres), FEV1 (litres), DLCO (mmol/(min�kPa�l)), R 5Hz (kPa/(l/s)), R 20Hz (kPa/(l/s)), R 5Hz-20Hz (kPa/(l/s)), AX (kPa/l).

https://doi.org/10.1371/journal.pone.0264376.t002

Table 3. Proteins significantly altered in subjects with CAD compared with subjects without CAD.

Protein B P-value adjusted� Protein B P-value adjusted�

VSIG2 0.436 3.38E-07 KIM1 0.426 4.92E-03

PRSS8 0.274 5.10E-06 IL-4RA 0.192 5.56E-03

REN 0.642 9.32E-06 MMP7 0.211 5.68E-03

Gal-9 0.195 1.84E-05 ADM 0.221 6.74E-03

IL-1ra 0.323 1.84E-05 XCL1 0.193 7.63E-03

TRAIL-R2 0.332 3.07E-05 BNP 0.776 7.63E-03

GIF 0.462 3.94E-05 IL18 0.250 1.00E-02

TNFRSF10A 0.239 1.33E-04 ACE2 0.322 1.21E-02

SPON2 0.101 1.33E-04 CCL3 0.250 1.78E-02

FABP2 0.455 1.84E-04 LPL -0.213 1.91E-02

MMP12 0.439 2.51E-04 CTSL1 0.168 2.11E-02

TNFRSF11A 0.285 1.08E-03 IDUA 0.131 2.11E-02

LEP 0.137 1.30E-03 PSGL-1 0.048 2.24E-02

AMBP 0.096 4.48E-03 FGF-23 0.276 3.75E-02

GT 0.288 4.48E-03 TF 0.101 4.79E-02

�Adjusted for age, sex, current smoking (dichotomous), and for multiple testing using Benjamini-Hochberg.

VSIG2 = V-set and immunoglobulin domain-containing protein 2; PRSS8 = Prostasin; REN = Renin; Gal-9 = Galectin-9; IL-1ra = Interleukin-1 receptor antagonist

protein; TRAIL-R2 = TNF-related apoptosis-inducing ligand receptor 2; GIF = Gastric intrinsic factor; TNFRSF10A = Tumor necrosis factor receptor superfamily

member 10A; SPON2 = Spondin-2; FABP2 = Fatty acid-binding protein, intestinal; MMP12 = Matrix metalloproteinase-12; TNFRSF11A = Tumor necrosis factor

receptor superfamily member 11A; LEP = Leptin; AMBP = Protein AMBP; GT = Gastrotropin; KIM1 = Kidney Injury Molecule; IL-4RA = Interleukin-4 receptor

subunit alpha; MMP7 = Matrix metalloproteinase-7; ADM = adrenomedullin; XCL1 = Lymphotactin; BNP = Brain natriuretic peptide; IL18 = Interleukin-18;

ACE2 = Angiotensin-converting enzyme 2; CCL3 = C-C motif chemokine 3; LPL = Lipoprotein lipase; CTSL1 = Cathepsin L1; IDUA = Alpha-L-iduronidase; PSGL-

1 = P-selectin glycoprotein ligand 1; FGF-23 = Fibroblast growth factor 23; TF = Tissue factor.

https://doi.org/10.1371/journal.pone.0264376.t003
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Data). All of these proteins were associated with isolated CAD, as well. Patients with a com-

bined diagnosis had equally severe airflow obstruction as patients with isolated airflow

obstruction, according to FEV1 (2.2 vs 2.3 L; p = 0.304).

Among subjects with CAD, two proteins were significantly increased in subjects with ische-

mia on MPI compared to those without ischemia on MPI: VSIG2 and GIF (Supplementary

Table 2d in S1 Data).

Discussion

In this explorative study, we aimed to identify common physiological and proteomic biomark-

ers of chronic airflow obstruction and stable coronary artery disease. We showed that subjects

with CAD have a significantly lower diffusing capacity (DLCO) and a higher total airway resis-

tance compared with subjects without CAD. Nine novel cardiovascular biomarkers were asso-

ciated with a combined diagnosis of CAD and airflow obstruction, but no protein was

associated with isolated airflow obstruction. Our findings are in line with the results of previ-

ous studies [27] that have shown a relationship between CVD (denoted as atherosclerosis in

internal carotid artery) and decreased DLCO, but to our knowledge this study is the first to

show an association between CAD and reduced DLCO.

Fig 3. B-value vs P-value in 9 proteins significantly altered in subjects with combined diagnosis compared with no

combined diagnosis. Legend: See Table 3 legend for protein definitions.

https://doi.org/10.1371/journal.pone.0264376.g003

Table 4. Proteins significantly altered in subjects with a combined diagnosis compared with no combined diagnosis.

Protein B P-value adjusted� Protein B P-value adjusted�

VSIG2 0.603 4.36E-05 GIF 0.510 2.39E-02

KIM1 0.673 2.39E-02 ADM 0.342 2.68E-02

FGF-23 0.564 2.39E-02 TRAIL-R2 0.383 2.68E-02

REN 0.621 2.39E-02 PRSS8 0.237 2.88E-02

XCL1 0.333 2.39E-02

�Adjusted for age, sex, current smoking (dichotomous), and for multiple testing using Benjamini-Hochberg Combined diagnosis = Diagnosis of CAD and airflow

obstruction, please see text for definitions See Table 3 legend for protein definitions.

https://doi.org/10.1371/journal.pone.0264376.t004
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It is well known that certain conditions that are not primarily related to the lung status can

affect DLCO. Heart failure has been previously associated with decreased DLCO [28], which was

also the case in our current study. Furthermore, type II diabetes has been associated with a

decrease in DLCO in earlier studies [51]. Patients with CAD more often have heart failure (as a

consequence) and diabetes (as a risk factor), which may explain the relation between CAD and

DLCO in our current study. However, the association between a decreased CAD and DLCO

remained significant after adjustments for BNP, a sensitive marker for heart failure, diabetes as

well as other common risk factors for both CAD and airflow obstruction.

As briefly mentioned, a previous population-based study found an association between

carotid plaques and low DLCO, also after adjusting for C-reactive protein and traditional athero-

sclerosis risk factors [27]. In the same study there was no significant association between plaque

and FEV1 or COPD status. Our current study results are in line with these previous findings, i.e.

the association between reduced DLCO and CAD remained significant also after adjusting for

FEV1. Thus, the lower DLCO in subjects with CAD may not solely be explained by reduced spi-

rometry values, meaning that the association between atherosclerosis and reduced lung function

is unlikely to be explained only by bronchial obstruction and low-grade systemic inflammation.

As already mentioned potential concurrent damage to elastin in the artery and the alveoli [12–

15] as well as potential endothelial dysfunction in the coronary and pulmonary vasculature [18]

may be one link explaining our results. An additional explanation for the relationship between

DLCO and CAD may be based on West, who has shown that increased pulmonary capillary pres-

sure leads to rapid remodelling of the alveolar-capillary membrane [52]. During remodelling,

the thickness of the membrane is increased in order to withstand a higher pressure, which leads

to reduced diffusion across the membrane. Patients with stable CAD have a higher pressure in

the pulmonary circulation during exertion [53]. Thus, numerous, brief episodes of increased

capillary pressure in subjects with CAD may lead to a permanently increased thickness of the

membrane and may explain part of the relationship between CAD and decreased DLCO.

In addition to lower DLCO, subjects with CAD had higher total airway resistance (i.e. 5 Hz)

in our current study, whereas there was no association between CAD and central airway resis-

tance (i.e. 20 Hz). Similar to the association with DLCO and CAD, the relationship between total

airway resistance and CAD was significant after adjustment for common risk factors for airflow

obstruction and CAD, as well as after adjustment for FEV1. In all, our results of reduced DLCO

and increased total airway resistance in patients with CAD, irrespective of decreased FEV1, may

indicate a common mechanism that impairs the function of the airways and coronary arteries

on top of the established association between reduced FEV1, VC and CAD.

The secondary aim of the current study was to identify novel cardiovascular plasma-bio-

markers that associate with both CAD and airflow obstruction.

A total of 30 novel cardiovascular biomarkers were associated with CAD, which naturally is

an expected result for this panel. On the contrary, no proteins were significantly associated

solely with airflow obstruction. Moreover, even though nine biomarkers were increased in

patients with a combined diagnosis of airflow obstruction and CAD compared to patients

without a combined diagnosis, the levels of those nine proteins were also increased in patients

with CAD. Thus, the association between the nine biomarkers and a combined diagnosis of

airflow obstruction and CAD, may be driven primarily by the association between the nine

biomarkers and CAD.

Of the nine proteins that were associated with a combined diagnosis of CAD and airflow

obstruction, eight had a stronger association (higher beta and lower p-value) with CAD only

than with a combined diagnosis whereas one protein, FGF-23, was more strongly associated

with a combined diagnosis than with CAD only. FGF-23 is a protein involved in phosphate

and vitamin D metabolism. It acts on the kidneys to decrease reabsorption and increase
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excretion of phosphate, thus decreasing its serum concentration. Increased level of serum

phosphate is closely correlated with extent of inflammation and vascular calcification [54].

FGF-23 has been identified as an independent marker of COPD and decreased FEV1 and

DLCO [55]. Decreased FGF-23 and hyperphosphatemia in mice have been shown to be associ-

ated with emphysema and vascular calcification, among other signs of ageing. [56]. We have

no data on phosphate concentration in our study meaning that we were unable to assess the

relation between FGF-23, phosphate levels, CAD and airway obstruction. However, the

hypothesis that phosphate metabolism may be involved in both CAD and COPD may be tested

in future research.

A related possible link between FGF-23, CAD and COPD is the vitamin-D metabolism.

FGF-23 acts by supressing 1-alpha-hydroxylase, an enzyme responsible for hydroxylation of

calcifediol to the active form of vitamin D, calcitriol [57]. The protein thus acts to decrease the

activity of vitamin D, a steroid known to inhibit inflammation by regulating the production of

inflammatory cytokines [58]. Whether or not Vitamin-D is implicated in both CAD and

COPD, is an additional hypothesis that may be further tested based on our current results.

Other biomarkers that were associated with a combined diagnosis included Renin (REN),
adrenomedullin (ADM), Prostasin (PRSS8), TNF-related apoptosis-inducing ligand receptor 2
(TRAIL-R2), Lymphotactin (XCL1), Kidney Injury Molecule (KIM1), V-Set And Immunoglobu-
lin Domain Containing 2 (VSIG2), and Gastric intrinsic factor (GIF). Renin is a well-known

component in the cardiovascular homeostasis and involved within the Renin-angiotensin-

aldosterone system (RAAS). It acts in the first step of the RAAS-cascade by cleaving angioten-

sinogen into angiotensin I. Angiotensin I is then converted into Angiotensin II which exert

several actions, including stimulation of aldosterone synthesis. Activation of the RAAS has

been related to increased atherosclerosis [59], but also to inflammatory diseases of the lung

[60]. The end-product of the RAAS pathway, Angiotensin II, binds to Angiotensin II Type 1

receptor (AT1R) or Angiotensin II Type 2 receptor (AT2R). Activated AT1R mediates pro-

inflammatory and pro-hyperresponsive actions, which AT2R does not. COPD patients have

been shown to have a five-fold increase in AT1R to AT2R ratio in their lungs. The increased

ratio also correlated with reduced lung function [61].

Adrenomedullin is expressed in multiple cell types and exerts various actions, including

vaso- and bronchodilation. It has a vascular and cardiac protective role and prevents against

the formation of atherosclerosis [62]. Levels of ADM have been shown to be higher in patients

with atherosclerosis [62,63] and COPD [64]. Plasma levels of ADM also positively correlate

with levels of inflammatory markers such as CRP and IL-6, which could explain the relation-

ship between ADM and both atherosclerosis and airflow obstruction/COPD [62]. It may also

be that COPD is the cause of increased ADM, since one study indicated that ADM is up-regu-

lated by hypoxia [65].

Prostasin is involved in activation of sodium channels in renal and bronchial epithelium. A

study on rats showed an increased blood pressure after gene transfer of human prostasin [66].

Aldosterone levels were also increased in the same study, suggesting that prostasin increases

blood pressure by regulation of the RAAS. Its actions in the airway epithelium has mainly

been related to cystic fibrosis. The authors found no earlier described correlation between

PRSS8 and airflow obstruction in the literature.

TRAIL-R2, also known as Death receptor 5, is a plasma membrane receptor that is mainly

known for regulating apoptosis [67,68]. It is a member of the TNF protein superfamily and is

expressed by endothelial cells and vascular smooth muscle cells [69], where it has been shown

to induce vascular inflammation. TRAIL-R2’s ligand TRAIL has been linked to vascular

smooth muscle cells proliferation, promoting the formation and stabilization of atherosclerotic

plaques [70]. High levels of soluble TRAIL-R2 can predict future cardiovascular events in the
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population [69]. Studies have linked TRAIL-R2 and its ligand to alveolar cell apoptosis in

emphysema. Alveolar cells of an emphysematous lung have increased sensitivity to TRAIL

mediates apoptosis [71] and have higher level of TRAIL receptors [72].

Lymphotactin (XCL1) is a cytokine involved in inflammatory response, thus fitting well

into the hypothesis that inflammation is common denominator for CAD and COPD

[41,73,74]. It has chemotactic properties towards CD8+ T cells and NK cells, while inhibiting

proliferation of CD4+ T cells. One earlier study found increased XCL1 and decreased CD4

+/CD8+ T cell ratio in lung tissue of COPD mice compared to control mice [75]. They also

found that treating mice with exogenous XCL1 further decreased CD4+/CD8+ ratio.

Decreased CD4+/CD8+ ratio is characteristic for COPD, which may be due to overexpression

of XCL1 [75]. No relationship between XCL1 and CAD was found in the literature.

KIM1 protects the kidney from acute injury by down-regulating inflammation and mediat-

ing phagocytosis of apoptotic cellular debris [76]. KIM1 is up-regulated in various primary

and secondary kidney diseases, and can be used as a marker for renal proximal tubule damage

[77]. Increased levels of urinary KIM1 has been independently associated with higher risk of

heart failure, cardiovascular events and death in patients with chronic kidney disease [78]. No

studies relating KIM1 to COPD were found in the literature.

The authors found no studies relating VSIG2 and GIF to CAD, airflow obstruction and/or

COPD in the published literature.

As a concluding remark from the overall negative proteomic analysis provided in this

study, the authors think that the individual proteins may one by one associate with very small

differences in the lung function parameters. Accordingly, a larger study sample may be

required in order to be able to show potential differences in lung function parameters between

subjects with different concentrations of the individual biomarkers. Moreover, the difference

in relative concentrations that were used in the current study may be too small to be of impor-

tance for the phenotype, especially since the patients investigated were relatively homogenous

group of high-risk patients. Naturally, none of the proteins investigated here could be used

clinically, at the moment. Future research should be conducted in larger and less homogenous

study samples, and if possible with absolute measurements, meaning that there may be a

greater differences between individuals with different phenotypes.

Limitations

The current study has a number of important limitations.

The study consists of cross-sectional analyses and as such, no assessments can be drawn

about the temporal relationships among the variables. Similarly, no causal conclusions can be

drawn.

The study was based in a cohort of patients presenting with symptoms suggestive of myo-

cardial ischemia, and as such, the results cannot be generalized to the general population.

A total of 41% of those invited to the study declined to participate. This increases the risk of

selection bias mainly of the type “healthy cohort effect”, which is well known in medical stud-

ies. We were not able to receive data for the subjects who declined to participate, due to ethical

regulations.

We did not measure C-reactive protein in our subjects.

As previously mentioned, heart failure is associated with a decreased DLCO. We used rela-

tive BNP levels within the cohort to adjust for heart failure instead of the ejection fraction mea-

sured on MPI, because of its low accuracy. Using ejection fraction from MPI would also entail

a risk of overlooking patients with diastolic heart failure. Ideally, all study participants would

undergo echocardiography to assess heart failure and pulmonary hypertension.
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Hemoglobin levels alter DLCO, with anemia causing it to decrease and polycythemia leading

to an increased value, even though the impact of hemoglobin level on DLCO has been found to

be modest [79]. We did not have data on our patients Hb. However, it can be argued that

hemoglobin levels should be approximately the same in patients with CAD as in patients with-

out CAD.

Analyses on proteomic biomarkers were not performed on absolute values of the proteins,

but on their relative value within the study population. Even though our study was of explor-

ative nature, the use of relative instead of absolute levels adds some uncertainty and makes it

harder to repeat the results in an unrelated cohort. Moreover, high number of analyses per-

formed warrants adjustment for multiple testing. Such adjustments may also lead to over-

adjustments, increasing the risk of a type II error.

Finally, unmeasured potential confounders, such as short-term air pollution exposure and

subclinical disease with impact on both the coronary and respiratory systems, may have

affected the results.

Conclusions

Diffusing capacity for carbon monoxide is decreased in patients with CAD, indicating that

patients with CAD have reduced gas exchange independently of diabetes, heart failure and

decreased FEV1. Several cardiovascular biomarkers are associated with co-existent CAD and

airflow obstruction, but none with airflow obstruction only. The current findings support the

hypothesis that the relationship between reduced lung function, airflow obstruction and CAD

is complex and involves other pathophysiological mechanisms than reduced ventilation only.
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