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ABSTRACT As diet is considered the major regulator of the gut ecosystem, the overall objective of this work was to demonstrate
that a detailed knowledge of the phytochemical composition of food could add to our understanding of observed changes in
functionality and activity of the gut microbiota. We used metatranscriptomic data from a human dietary intervention study to
develop a network that consists of >400 compounds present in the administered plant-based diet linked to 609 microbial targets
in the gut. Approximately 20% of the targeted bacterial proteins showed significant changes in their gene expression levels, while
functional and topology analyses revealed that proteins in metabolic networks with high centrality are the most “vulnerable”
targets. This global view and the mechanistic understanding of the associations between microbial gene expression and dietary
molecules could be regarded as a promising methodological approach for targeting specific bacterial proteins that impact human
health.

IMPORTANCE It is a general belief that microbiome-derived drugs and therapies will come to the market in coming years, either
in the form of molecules that mimic a beneficial interaction between bacteria and host or molecules that disturb a harmful inter-
action or proteins that can modify the microbiome or bacterial species to change the balance of “good” and “bad” bacteria in the
gut microbiome. However, among the numerous factors, what has proven the most influential for modulating the microbial
composition of the gut is diet. In line with this, we demonstrate here that a systematic analysis of the interactions between the
small molecules present in our diet and the gut bacterial proteome holds great potential for designing dietary interventions to
improve human health.
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A substantial amount of research has established that the com-
position and metabolism of human microbiota play crucial

roles in human health. Microbial colonization of the gastrointes-
tinal tract varies widely, with the large intestine having not only
the highest density of microbes in terms of bacterial cells per gram
but also the most metabolically active microbial community (1).
Firmicutes and Bacteroidetes are the most abundant phyla, but
Actinobacteria, Proteobacteria, and Verrucomicrobia are also regu-
larly found in healthy adults (2). Diet clearly has a major impact
on variation in the gut microbiota composition, which is easily
detected in fecal samples even after only a few days after a change
in diet (3, 4). The fermentative but also (anaerobic) respiratory
bacterial metabolism of dietary components produces an extraor-
dinary chemical diversity in the large intestine with protective
(e.g., short-chain fatty acids [SCFAs]) or detrimental (e.g., hydro-
gen sulfite or bile acids) effects on disease development (5–7). The
most sensitive species in response to a change in diet belong to
Firmicutes and Actinobacteria; however, more associations be-
tween species abundance and diets have been confirmed, e.g., high
meat intake with an increase in Bacteroidetes, more fiber with a
high proportion of Prevotella spp., etc.

Dietary phytochemicals are usually small molecules with high
structural diversity, often part of the plant’s secondary metabo-

lism, that when they reach the intestinal tract can cause selective
stress or stimulus to the resident microbiota (8–10). For example,
a high intake of cocoa-derived flavonoids increases the abundance
of bifidobacteria and lactobacilli and reduces the level of plasma
triacylglycerol (11). However, phytochemicals are also trans-
formed by the gut microbial communities to other metabolites
with altered bioactivity. For example, conversion of polyphenolic
molecules from the microbiome has been shown to inhibit the
tumor necrosis factor, NF-�B, and other inflammatory mediators
(12–14). Furthermore, bacterial enzymatic activities, such as
�-glucuronidase that converts glucuronides to their respective
aglycons, are responsible for the retention time of phytochemicals
in the human body. It is generally considered that the Gram-
positive bacteria are relatively freely permeable to small molecules
(15), while those molecules below a certain molecular mass,
around 700 Da, can enter into Gram-negative bacteria through
porin proteins (16).

In a previous work, we applied text mining and naive Bayes
classification in 21 million abstracts from MEDLINE, and we
identified 23,137 phytochemicals that are present in plant-based
diets (17). Several of these phytochemicals have made it all the way
to pharmacy shelves or have served as lead structures for drug
development, demonstrating their important contribution to
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host homeostasis. We also systematically searched for and found
associations between 2,768 edible plants and 1,613 human disease
phenotypes and characterized the association as being positive or
negative. We developed a web-based database, which to the best of
our knowledge is the most complete source that links phyto-
chemicals, diet, and disease, and we were able to provide a
molecular-level mode of action on how specific diets could pre-
vent disease development (18) or affect drug pharmacodynamics
and pharmacokinetics (19). As a step further, we used this exten-
sive source of information to generate a comprehensive picture of
the interaction profile of 158 edible plants, which are positively
associated with reduction in colon cancer, with a predefined can-
didate colon cancer target space consisting of ~1,900 human pro-
teins (20). We uncovered the key components in colon cancer that
are targeted synergistically by phytochemicals, and we identified
statistically significant and highly correlated protein networks that
could be perturbed by dietary habits. However, in that study, we
completely ignored interactions of the phytochemicals with the
gut microbiome and alterations in gut composition and activity.

The gut microbial ecosystem lies at the interface of the host and
environment and is considered the third major component regu-
lating host health and the onset of disease; therefore, developing
ways to manipulate the gut microbiota represents a promising
therapeutic avenue. Trying to identify the “good” and “bad” bac-
teria in the intestinal microbiota in order to promote the growth
of healthy bacterial species and/or eliminate the others has been
recognized as one strategy (21); however, not everyone is con-
vinced that single species are to be blamed for disease develop-
ment. Instead, or maybe in addition, to species-centric studies,
targeting specific genes could be a more realistic approach, espe-
cially since our knowledge of harmful bacterium-specific meta-
bolic products has grown substantially (22). In the present work,
we developed the computational framework for studying possible
interactions between the highly diverse phytochemical space of
our diet and gut microbial proteins. By coupling metatranscrip-
tomics, chemoinformatics, and network biology, we created a
molecular-level map of diet-bacterium interactions showcasing
that individual dietary components may contribute to the ob-
served gene expression activities. To the best of our knowledge,
this is the first systematic approach for a mechanistic understand-
ing on how phytochemicals are linked to the intestinal microbiota,
and it may assist in designing diets with potential therapeutic ben-
efit.

RESULTS
Interactome analysis of bacterial genes and dietary compo-
nents. We adopted the metatranscriptomic data from a recently
(2014) published study (4) that aimed to investigate whether the
human gut microbiota can rapidly respond to dietary interven-
tions in a diet-specific manner. Briefly, the original study had two
diet arms, a plant-based diet and an animal-based diet; fecal sam-
ples were collected from nine individuals for baseline levels and
after 2 days on each experimental diet, and transcriptome se-
quencing (RNA-Seq) analysis of the bacterial community in the
gut was performed. In order to utilize the huge diversity of
the phytochemical space and link the molecular composition of
the diet with chemoinformatics and network-based analysis, we
focused on only the plant-based diet in this study to achieve a
molecular-level investigation of the microbial response to diet.
The plant-based diet consisted of a mixture of edible plants, most

of which belong to fruits and vegetables. To obtain an overall
picture of the health-related effects of the administered plant-
based diet, we used the plant/food names as a query in the Nu-
triChem database (18), and we retrieved data on associated disease
phenotypes. In total, 14 foods in this diet arm (see Table S1A in the
supplemental material) were found in NutriChem and were used
to generate a food-disease network (Fig. 1A). Specifically, for these
14 foods, there is experimental evidence for association with 38
different diseases that fall into 20 disease categories, which were
further classified into 8 general disease classes, including meta-
bolic disease, cancer, cardiovascular disease, etc. (Table S1C).
Among the 14 foods, garlic was associated with the highest num-
ber of diseases (20). Notably, a considerable number of these dis-
eases, including colon cancer, obesity, and inflammatory bowel
disease, have previously been linked to the composition and di-
versity of the gut microbiota (23, 24).

Subsequently, the chemical composition of these 14 foods was
retrieved from the NutriChem database (see Table S1B in the sup-
plemental material) and 437 unique food compounds (also called
phytochemicals throughout this study) were obtained for further
analysis. Of the 437 phytochemicals, 415 (95%) have molecular
masses below 700 Da and thus are expected to enter even Gram-
negative bacteria. There are approximately 40 compounds per
food on average; among these foods, peas have the richest phyto-
chemical profile (85 phytochemicals), while carrots contain the
lowest number of compounds (4 phytochemicals). Tomatoes and
rice have “the most novel chemical space,” which denotes the
highest number of compounds present exclusively in one partic-
ular food. To investigate the potential bioactivity of these 437
phytochemicals, we compared them with 1,536 FDA-approved
drugs in terms of chemical and physical properties. We observed
that most of these food compounds cluster closely or overlap with
many FDA-approved drugs indicated for metabolic diseases (see
Fig. S1 in the supplemental material). There was also clear over-
lapping with a subset of the FDA-approved drugs that target hu-
man proteins with bacterial orthologs in the gut; thus, they (i.e.,
the FDA-approved drugs and subsequently their chemically sim-
ilar food components) could potentially alter the activity of the
microbial metabolic network (Fig. S2). Some representative food
compounds, such as methoxsalen (present in papaya), quercetin
(garlic, mangos, tomato, cauliflower), aminolevulinic acid (peas,
tomato), trifluoperazine (garlic), which can be found in Drug-
Bank either as experimental or FDA-approved drugs, are high-
lighted in Fig. S2.

To hone in on the food-microbiome interactions at the molec-
ular level, we employed compound bioactivity data to uncover the
potential targets of the compounds within the 14 foods. For that
purpose, we used the ChEMBL database (25), which contains ex-
perimentally verified interactions between small molecules and
proteins. According to the ChEMBL database, 165 of these 437
phytochemicals interacted with 214 proteins. The phytochemicals
targeting the highest number of proteins were quercetin
(CHEMBL50), apigenin (CHEMBL28), ellagic acid (CHEMBL6246),
and luteolin (CHEMBL151) (listed in decreasing order) (Fig. 1B).
Of the 214 protein targets that interact with those food com-
pounds, 31 proteins were found to have bacterial orthologs in the
gut (see Materials and Methods for details). To evaluate the cred-
ibility of interactions between microbial proteins and compounds
generated by ortholog inference, we compared the distribution of
similarities of the human-microbe orthologs defined in this study,
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with that of human-microbe protein pairs targeted by the same
compounds (experimentally tested, 1,088 in total) retrieved from
the ChEMBL database. No significant difference (P � 0.05 by the
Wilcoxon rank sum test) was observed for bit score, identity, or E
value between these two groups of protein pairs. In addition to
this global comparison, we investigated the similarities of host-
microbe pairs used here at the binding site level. It was observed
that their respective binding pockets also possessed medium or
high similarities, which were not lower than the similarities of
human-microbe protein pairs that have been experimentally
tested (based on the ChEMBL database) to share the same ligands
(data not shown). This provided additional evidence for the fea-
sibility of inferring bacterial targets based on homology to host
targets. Quercetin, luteolin, and ellagic acid were found to possess
the most bacterial protein targets, as well as kaempferol
(CHEMBL150), resveratrol (CHEMBL165), apigenin, and trice-
tin (CHEMBL247484) (in decreasing order) (Fig. 1B). Quercetin
and kaempferol are widespread in the plant-based diet of our
study (cauliflower, mangos, onion, and peas), while other phyto-
chemicals are present in only one or two foods. When incorporat-
ing the first-degree protein-protein interaction (PPI) partners of
the 31 direct bacterial targets, we significantly expanded the phy-
tochemical target space, generating a gut microbiota-specific
compound-target interaction network (Fig. 1B). Among the 31 di-

rect targets, pyruvate kinase (UniProt accession no. P14618) and
glyceraldehyde-3-phosphate dehydrogenase (UniProt accession
no. P04406) have the most PPI partners. In summary, 99 com-
pounds present in the 14 foods of the plant-based diet were linked
to 609 gut-microbial targets, which included 31 direct targets plus
578 protein-protein interaction partners.

Gene expression analysis of phytochemical targets: func-
tional implications and topological characteristics. To deter-
mine to what extent the gut microbial protein targets of the food
compounds were significantly influenced by dietary intake, we
performed a differential expression (DE) analysis using the RNA-
Seq data before and after administration of the plant-based diet.
Compared to the study of David et al. (4), the DE analysis on the
RNA-Seq data, both in the preprocessing steps of the raw data and
the statistical analysis, were modified to achieve higher accuracy
(see Materials and Methods for more details). We found that 115
microbial targets (7 direct targets and 108 PPI targets), approxi-
mately 20% of the whole target space (31 direct targets and 578
PPI targets, respectively), altered gene expression significantly
(false discovery rate [FDR] P value � 0.20 by Wilcoxon signed-
rank test). This percentage of expression-changing targets in-
duced by dietary phytochemicals is higher than the 8% induced by
drugs (26). This may be due to the fact that phytochemicals could
target multiple proteins, i.e., more promiscuous, as well as the
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FIG 1 Molecular-level view of the plant-based diet. (A) Food-disease association network for the 14 foods in the plant-based diet of this study. The general
disease classes were colored differently as illustrated by the legend. The size of the food nodes reflects the number of disease connections for each food. (B) Gut
microbiota-specific protein target space of the food phytochemicals. (Left) Human direct targets (red rectangles) of the food phytochemicals (green hexagons)
were retrieved from the ChEMBL database. (Right) The microbiota-specific direct targets (red rectangles) and their protein-protein interaction (PPI) partners
(blue rectangles) were derived after incorporating orthologous relationships with human and STRING protein-protein interaction data.
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possibility of multiple phytochemicals targeting the same protein.
These 115 DE targets were not found to be significantly differen-
tially expressed when comparing the animal-based diet (4) against
its baseline (FDR P value � 0.20 by Wilcox rank sum test). Nota-
bly, the targets of food compounds had a significantly higher pro-
portion of DE genes than the nontargeted gut-bacterial proteins
(20.7% versus 14.8%; P � 0.0016 by Fisher’s exact test). All the
phytochemicals targeting these 115 proteins are below 700 Da,
and therefore were expected to enter the bacterial cell. On the basis
of the response of the gut microbiome and in order to move be-
yond the restricted food set used in this study, we also attempted
to identify other foods that would potentially induce the equiva-
lent or similar effect. This endeavor was bridged by the common-
alities in the phytochemical composition between the original 14
foods used in this study and the 1,772 plant-based foods available
in the NutriChem database. Using as input the set of the 59 phy-
tochemicals present in these 14 foods with DE targets, we searched
the NutriChem database for alternative foods that show the high-
est overlap in the phytochemical space. More than 550 foods were
retrieved, while some representative examples in this top 20 food
list (see Table S4 in the supplemental material) include Ginkgo
biloba (ginkgo; 41 shared compounds), sea buckthorn (Hippo-
phae; 33 shared compounds), and Lonicera japonica (honeysuckle;
28 shared compounds).

Looking into the biological processes mostly affected by the
phytochemical-protein interactions, we found that the 115 DE
targets were significantly enriched in 11 pathways (FDR P value �
0.05 by Fisher’s exact test) (Fig. 2A), which provided functional
insights into the gut microbial targets. All of these enriched path-
ways are related to metabolism, such as glucose metabolism, tri-
carboxylic acid (TCA) cycle (also known as the citric acid cycle),
and metabolism of amino acids and derivatives. In contrast, the
non-DE targets displayed a very different profile of significantly
enriched pathways, exemplified by DNA repair and translation-
related processes (Fig. 2A). To inspect this discrepancy in a more
statistical manner, we compared the pathway differences between
DE and non-DE targets using a pathway overrepresentation anal-
ysis. We focused on the top 12 significantly enriched pathways for
both groups as shown in Fig. 2A. Seven out of the 12 pathways for
the DE targets (as indicated by asterisks in Fig. 2A) showed signif-
icant overrepresentation compared directly with the non-DE
group (P � 0.05 by Fisher’s exact test); moreover, all seven path-
ways were metabolic processes. Conversely, all the overrepre-
sented pathways in the non-DE group relative to the DE group
were not closely related to metabolism. This suggests that the phy-
tochemicals present in plant-based diet mainly exert their effect
on gut microbiome by altering microbial metabolic activities.
Taking the 15 most up- or downregulated genes (fold change) as
representatives, we further zoomed in the reactions those DE tar-
gets are involved in. The solute carrier family 22 member 1 (or-
ganic cation transporter 1, UniProt accession no. Q15245) and
GTP:AMP phosphotransferase AK3 (UniProt accession no.
Q9UIJ7) were the two most upregulated genes, whereas replica-
tion factor C subunit 3 (UniProt accession no. P40938) and glu-
cose transporter 3 (UniProt accession no. P11169) were the most
downregulated genes in the list. The results (Fig. 2B; see Ta-
ble S3 in the supplemental material) also show that the majority of
the phytochemical targets with the highest fold change in gene
expression activity participate in metabolic enzymatic reactions,
such as the acetyl coenzyme A (acetyl-CoA) acetyltransferase

(UniProt accession no. Q9BWD1) and aldehyde dehydrogenase
(UniProt accession no. P47895). In the list with the most up- or
downregulated genes, there are also several genes with “auxiliary”
functions such as ATP binding (UniProt accession no. P61221),
potentially playing a regulatory role in response to dietary intake.
Phosphopyruvate hydratase (UniProt accession no. P06733) and
alcohol dehydrogenase (UniProt accession no. P11766) are the
enzymes interacting with the highest number of compounds
within up- or downregulated gene lists, respectively. However,
what also caught our attention in this list is that neither the num-
ber of compounds nor number of foods targeting gut-bacterial
proteins can be used as an indicator for the observed fold changes
in gene expression activity level.

Next, we investigated the differences between DE and non-DE
phytochemical targets, both from a chemical and biological per-
spective, in an attempt to understand why some of the food targets
will show a significant difference in gene expression levels while
others will not. First, the chemical features of the compounds were
used to examine whether the DE and non-DE proteins could be
distinguished. From the principal component analysis (PCA)
based on the chemical descriptors of the 99 compounds, no clear
separation can be observed between compounds targeting DE
proteins and non-DE proteins (data not shown). In addition, the
strength of the compound-protein interactions (based on bioac-
tivity data retrieved from the ChEMBL database) was compared
between DE and non-DE target groups using a set of compounds
that target proteins from both groups. As discussed above, the
compounds targeting both DE and non-DE proteins did not show
significantly different binding affinities toward the two target
groups (P � 0.05 by Student’s t test). These results suggest that the
intrinsic biological properties of the target proteins, rather than
the chemical characteristics of the compounds or the strength of
interactions between compounds and proteins, are probably as-
sociated with the variation in the community gene expression un-
der mediation by phytochemicals. This is also consistent with our
previous observation that the targeted genes with the highest fold
change activity are not necessarily the ones targeted by the highest
number of compounds (Fig. 2B).

Therefore, the topological properties of the target proteins in
the orthologous PPI network were further investigated (Fig. 2C).
For the whole orthologous PPI network, the power-law distribu-
tion of degree connectivity was observed, consistent with the com-
mon feature of many biological networks (27) (see Fig. S3A in the
supplemental material). Compared to nontarget proteins, the
phytochemical targets were mainly positioned in the central area,
possessing higher connectivity (Fig. 2C and Fig. S3B). Within
these targets, the majority of the network centrality measures, in-
cluding degree and closeness centrality, were found to be signifi-
cantly different between DE and non-DE targets (P � 0.01 by
Wilcoxon rank sum test). More specifically, the DE targets of the
food compounds tend to be located in a more “central” position
within the PPI network than the non-DE ones (Fig. 2C and D), as
reflected by the higher centrality measurements (as well as the
lower average shortest path length) of the DE group. The higher
closeness centrality of the DE targets indicates that the informa-
tion spread is generally faster from a given DE protein to all other
connected nodes in the network. The DE targets also exhibited
higher betweenness centrality, which measures the amount of
control a node has on the information spread between other
nodes. This implies that compared to non-DE targets, DE targets
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FIG 2 Functional and topological analyses of the differentially expressed (DE) and non-DE phytochemical targets. (A) Significantly enriched pathways for DE
targets and non-DE targets (only the top 11 pathways are shown for non-DE targets). The asterisks indicate the pathways that were significantly overrepresented
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are more likely to be the “bridges” between clusters in the net-
work. We also found that more than 80% of the interactions
within the PPI network are between proteins found in the same
genome. With the reduced PPI network (filtering out interspecies
connections), the results and conclusions derived from the net-
work topological analysis discussed above still stand.

Taxonomic contribution to gene expression variations of the
phytochemical targets. Since the phytochemicals present in the
plant-based diet could potentially contribute to a gene expression
response of the gut microbiota, the follow-up question was which
microbe or groups of microbes were mostly influenced or contrib-
uting most to the variations in gene expression at the community
level for each of the gene categories targeted by the food com-
pounds. We calculated the overall expression change of each phy-
lum for the 115 DE targets, and subsequently the contribution of
each phylum in the whole microbial community (Fig. 3). The
phylum Bacteroidetes was found to possess the “broadest respond-
ing spectrum,” i.e., it contributed highly to the differential expres-
sion of more targeted genes than other phyla. Within the group of
target genes to which Bacteroidetes contributed predominantly
(denoted by the bright blue rectangle in Fig. 3), it was noticed that
most genes were downregulated at the community level. Gene
Ontology (GO) annotation indicated that genes from this group
mainly participate in the carboxylic acid metabolic process (GO:
0019752), cellular amino acid metabolic process (GO:0006520),
as well as RNA and protein metabolic processes. Firmicutes, al-
though without the widest spectrum, was the phylum responsible
for differential expression of most upregulated target genes, which
are mainly involved in biological processes such as glucose (GO:
0006006), hexose (GO:0019318), carboxylic acid (GO:0019752),
and fatty acid (GO:0006631) metabolic processes. In addition to
the predominant and specific contribution of Firmicutes toward
upregulated genes, it also negatively contributed (i.e., opposite
direction of expression change compared to that of the whole
community) to a cluster of downregulated genes, which are shown
as the distinct blue blocks in Fig. 3. However, this effect was over-
ridden by the opposite effect from Bacteroidetes, leading ulti-
mately to a community-level downregulation. The group of target
genes to which Actinobacteria predominantly contributed displays
a distinct profile with several regulatory processes, which are not
present in the groups of other phyla. All the target genes in the
groups for both Actinobacteria and Proteobacteria had decreased
expression at the community level.

We further investigated how various microorganisms re-
sponded and contributed to variations in gene expression at the
species level. As can be seen from Fig. S4 in the supplemental
material, the responses were phylogenetically diverse, even within
the same phylum. While a group of species in one particular phy-
lum may be the major contributors to community-level expres-
sion change of targeted genes, the other members in that phylum
may contribute very little. Taking Firmicutes as an example, 50%
of the species in this phylum did not show noticeable contribution
to the variation in expression of the 115 DE targets. On the other
hand, the majority of those upregulated DE targets primarily stem
from a few particular species, including Eubacterium rectale,
Faecalibacterium prausnitzii, Roseburia hominis, Roseburia intesti-
nalis, Coprococcus, and Ruminococcus bromii. The first three spe-
cies are the main butyrate-producing bacteria in the human gut
(28, 29). With a role in anti-inflammatory process, their reduced
populations have been reported previously as being correlated

with the development of diseases such as Crohn’s disease (30) and
ulcerative colitis (31). Similar patterns were also observed in the
other three main phyla. Two single species, Bifidobacterium
longum from Actinobacteria and Escherichia coli from Proteobacte-
ria, dominated the corresponding phylum contribution toward
community-level expression variations. Furthermore, these two
species together were mainly responsible for the community-level
downregulation of most target genes.

The analyses discussed above provided information about the
role of each phylum within the whole gut microbial community.
In order to understand better the variation of genuine transcrip-
tional activity for each phytochemical target within each phylum,
we further normalized the gene expression levels by the phylum-
level abundance and compared this normalized transcriptional
activity after being on the diet with that of the baseline period. This
further elucidated whether the higher gene expression level was
derived from a high transcription level or simply dominant phy-
lum abundance. As shown in Fig. 4, the phyla Proteobacteria, Ac-
tinobacteria, and Verrucomicrobia had decreased transcription ac-
tivities for almost all DE targets, while Firmicutes and
Euryarchaeota were the two dominant phyla having higher tran-
scription levels. For most of the upregulated DE targets, Firmicutes
displayed the highest increase of transcription activity, which was
in concordance with its predominant contribution to the commu-
nity differential expression of upregulated genes mentioned
above. Interestingly, the phylum Euryarchaeota, which consists
mainly of methanogens, had increased transcription activities for
most target genes that it expressed. This unique pattern was “hid-
den” in the contribution analysis due to its low abundance in the
microbial community.

Designing dietary interventions: the case study of SCFA me-
tabolism. Short-chain fatty acid (SCFA) metabolism has been ex-
tensively cited as being associated with human health and disease
pathology, playing a pivotal role in regulating the biological pro-
cesses in the human gut and colon (32, 33). The levels of SCFAs in
the gut, especially butyrate and propionate, have been connected
with the development of different diseases ranging from meta-
bolic and inflammatory diseases to cancers (34, 35). Positive cor-
relations were also reported between the levels of certain SCFAs
and particular microbes within the phylum of Firmicutes (Rose-
buria sp., E. rectale, and F. prausnitzii) (4). Since altering the levels
of SCFAs could have potentially remarkable health benefits, we
used our computational framework here for predicting diets that
could potentially alter the activity of the SCFA-related pathways.

The butyrate metabolism (Kyoto Encyclopedia of Genes and
Genomes [KEGG] ko00650) consists of 63 reactions (in terms of
KEGG reaction identifiers [IDs]) involving 41 metabolites, while
the propionate metabolism (KEGG ko00640) is composed of 64
reactions involving 44 metabolites (Fig. 5A). In order to identify
foods that could alter the activity of butyrate or propionate me-
tabolism, two approaches were adopted here: in NutriChem and
ChEMBL databases, (i) we searched for food phytochemicals that
have been experimentally tested to interact with proteins involved
in those two SCFA metabolic pathways; (ii) we searched for foods
containing phytochemicals that are essentially metabolites in-
volved in butyrate and propionate metabolism; thus, they are ex-
pected to interact with the metabolic proteins. Although there
were no phytochemicals identified in the ChEMBL database that
target SCFA metabolism-related proteins, the latter approach
yielded a set of 98 foods containing 31 phytochemicals (corre-
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sponding to 18 and 19 metabolites from butyrate and propionate
metabolism, respectively) (Fig. 5A). Of these 98 foods, 22 contain
at least two phytochemicals involved in butyrate/propionate me-
tabolism with strawberry, mung bean, and soybean possessing the
most (Fig. 5B). Interestingly, 8 of the foods used in the original
study of David et al. (4)—where the authors detected significantly
higher levels of SCFAs in the plant-based diet than in the animal-
based diet—were part of the list containing the 98 foods (and 5 of
them were part of the subgroup of the 22 foods), supporting our
notion that the detailed food composition could help us partly
explain the observed changes in the gut microbial function and
activity.

To offer additional evidence that dietary interventions con-
taining these 22 foods could potentially trigger changes in the
SCFA gut metabolism, we developed a food-disease network
based on experimental studies collected in the NutriChem data-
base. We could retrieve 150 disease phenotypes (in terms of Dis-
ease Ontology [36] IDs) for these 22 foods (see Fig. S5 in the
supplemental material) with breast cancer, hepatocellular carci-
noma, and diabetes appearing as the top three diseases connected
to the highest number of foods (11, 11, and 10, respectively),
whereas sweet peppers, tomatoes, and buckwheat have the highest
number of disease links. While hepatocellular carcinoma and di-
abetes have also been linked to gut microbial imbalances (37, 38),
we focus here on a subset of the food-disease network, which is
related to colon cancer, a disease highly associated with the levels
of SCFAs (39). We found that 9 out of the 22 foods have been
associated with colon cancer (Fig. 5B); interestingly, these 9 foods
were significantly overrepresented in colon cancer than any other
food-disease associations in the NutriChem database (P � 0.001
by Fisher’s exact test). Most of the food-disease associations pres-
ent in the literature (and subsequently in the NutriChem data-
base) rely on feeding experiments of human or animal models and
monitoring the progress/development of a disease. The method-
ology presented here, which relies on the known phytochemical
composition of diet and the potential interactions with the gut-
specific bacterial genes, could serve as a route for understanding
mechanistically the observed phenotypic responses.

Furthermore, we identified the most vulnerable protein targets
of the butyrate and propionate metabolic pathways using their
topological features (based on the comparisons between DE and
non-DE proteins described above). The proteins in those two
metabolic pathways were first ranked according to six significant
topological features independently (degree, closeness centrality,
betweenness centrality, radiality, stress, and average shortest path
length). Then, these six ranked lists were aggregated into a com-
bined ranked list in the order of decreasing centrality (or vulner-
ability) (see Table S5 in the supplemental material), providing
information on which protein targets are more likely to change
gene expression activity (Fig. 5A). In butyrate metabolism,
3-hydroxyacyl-CoA dehydrogenase (K00022), acetyl-CoA acetyl-

transferase (K00626), and enoyl-CoA hydratase (K07511) were
found to be the proteins that if targeted by dietary phytochemicals,
significant changes in the gene expression activity should be ex-
pected. As to propionate metabolism, our topology analysis indi-
cates succinyl-CoA synthetase (GenBank accession no. K01899),
L-lactate dehydrogenase (DDBJ accession no. K00016), and
methylmalonyl-CoA mutase (GenBank accession no. K01847) as
the most vulnerable protein targets.

DISCUSSION

The value of the gastrointestinal community members and their
interaction with the host through a variety of signaling molecules
and mechanisms has become widely recognized (40). Clear evi-
dence of this realization is the research spending on the analysis of
the symbiotic relationships between humans and their indigenous
microbiome, which is estimated to be more than $500 million in
the last 5 years (41). Metagenomic studies, such as the MetaHit
project (42) and Human Microbiome Project (43), provided the
multimillion-gene potential of the intestinal microbiome,
whereas metatranscriptomic studies (4, 44) provided the subsets
of these genes that are expressed as a response to a given stimulus.
In particular, diet is considered one of the major modulators of the
intestinal microbiota and a dominant source of variation in its
composition (45). However, even though occasionally measure-
ments of specific biomarkers in the feces were performed, the full
interaction spectrum between the food, its molecular compo-
nents, and the microbiota was neglected.

It is worthy to note that xenobiotics, including drugs and an-
tibiotics, which can be considered small-molecule analogs of di-
etary phytochemicals, have been demonstrated to alter the gene
expression of active gut microbiota significantly (46). Here we
provide a molecular-level analysis of the extent and nature of the
gut microbiome responsiveness to diet and a computational plat-
form for understanding mechanistically how food components
could drive the activity and function of the gut ecosystem to dif-
ferent states. The development of a chemical-protein network be-
tween the food components of a plant-based dietary intervention
and the human gut-bacterial proteome space revealed that ~20%
of the microbiome targets altered significantly their gene expres-
sion activity at a community level. Our analysis also indicates that
the metabolic pathways in the gut microbiota are more likely to
change activity and are easier to be interrupted compared to other
biological processes, when targeted by dietary phytochemicals.
Furthermore, while the chemical features of the phytochemicals
could not shed light on which of the bacterial targets will alter their
gene expression activity, the network analysis revealed the higher
centrality within the bacterial PPI network as the most prominent
characteristic of the DE bacterial targets of phytochemicals. Pre-
vious studies have indicated that highly connected nodes, or
“hubs,” in the scale-free cellular biological network tend to be the
essential genes (47, 48), which will have less expression changes in

FIG 3 Phylum contribution toward the community-level gene expression variations of the differentially expressed (DE) targets. The heatmap illustrates the
individual contribution of each phylum present in gut microbiota for each DE phytochemical target. The 115 DE targets were further separated into two classes,
upregulated genes and downregulated genes. The red blocks represent a positive contribution of the phylum toward community-level expression variation (the
direction of change for that phylum in one particular target gene was in agreement with that of the whole microbiota community, regardless of up- or
downregulation). The blue blocks indicate that the expression change of these genes for that phylum were in the direction opposite that of the community (i.e.,
negative contribution). For each of the four main phyla, a cluster of genes was identified (enclosed by a rectangle, with the phylum name was displayed on the
right), indicating the dominating effect of that phylum on gene expression variations. Gene Ontology annotations (biological processes) for the four gene clusters
were also provided.
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mild or moderate conditions (49). However, this might not be
observed when an external stimulus is present (as shown in this
study) or in a completely different physiological condition such as
disease state (50). As shown here, upon dietary stimulus, these
highly connected targets are more “vulnerable” (i.e., more suscep-
tible to gene expression variation) and would generate a stronger
global effect upon perturbation. From a therapeutic perspective,
these more vulnerable (metabolic) proteins with high centrality
could serve as promising targets in phytochemical-based dietary
interventions. Furthermore, our phylum-level investigation re-
vealed that different phyla of bacteria in the human gut would
respond differently in terms of target gene expression activity
upon phytochemical perturbation. More specifically, the altered

expression levels of targeted genes related to metabolic processes
were predominantly attributed to different dedicated phyla. The
whole microbiota community thus works coordinately to achieve
the overall actions in response to dietary interventions. Thus,
identifying specific-disease-associated signatures in the gut mi-
crobiota and products that alter microbial populations or block
specific bacterial metabolites are expected to lead to the first gen-
eration of microbiome therapies.

Even though the role of diet in health and disease states has
been recognized for years, the majority of studies in the literature
either treated food as a black box or the focus was on carbohy-
drates, lipids, and fiber, ignoring the small-molecule space. Ignor-
ing the systemic role of phytochemicals was attributed to their

FIG 4 Variation of normalized transcriptional activity of DE targets in microbial phyla. The 115 DE targets were divided into two classes, upregulated genes and
downregulated genes. The red blocks represent increased transcriptional level of the gene by the particular microbial phylum, while blue blocks indicate
decreased transcription level. For clarity, logE transformation was performed on the values measuring the variation of transcriptional activities (when the value
was negative, the absolute value was used for log transformation first and then turned into a negative value again). The four clusters of genes enclosed by rectangles
were the ones from Fig. 3.
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presence in small amounts in our diet; however, we should not
forget that drugs are also given in small amounts, and they have a
profound effect on our health. We believe that the development of
NutriChem, the database linking 1,772 plant-based foods with
7,898 phytochemicals and 751 diseases, opened a window of op-
portunities for understanding how the molecular components of
diet interact with the human body, including, as shown here, the
bacterial residents of our gut.

However, our analysis is not without limitations: while Nu-
triChem is the most complete database of diet-disease associations
at this point in time, the majority of our understanding on these
associations so far have originated from animal studies or even cell
lines, calling for more attention and research into this area to
make more accurate extrapolation to humans. It should also be
noted that, despite the advances of computational methods, the
lack of experimental bioactivity data of small molecules on bacte-
rial proteins in public databases is a bottleneck for producing ac-
curate ligand-target interaction networks. Further expansion of
our knowledge of the molecular composition of each food will
provide a more accurate picture of the food-microbiome interac-
tion network and one more tool for better dietary/therapeutic
strategies. Last but not least, the gene expression changes of the
proteins targeted by dietary phytochemicals will not necessarily be
translated into changes of the protein levels. Therefore, additional
metaproteomic analysis could yield important insights into caus-
ative relationships between particular perturbations and the re-
spective enzymes/proteins. Furthermore, and since the binding of
a phytochemical to a bacterial target could disrupt the function
without affecting the protein’s level, metabolomic data would al-
low the establishment of more-accurate linkages between dietary
molecules and the gut ecosystem phenotype.

Even though the framework presented here for modulating the
functionality and activity of the gut microbiota relies on targeting
specific bacterial genes by food phytochemicals, it can be further
extended for targeting harmful bacteria, e.g., Bilophila wadswor-
thia (51) and Fusobacterium nucleatum (52), which can lead to
acute inflammation and potentiate intestinal tumorigenesis, re-
spectively, based on the disturbance of species-specific essential
protein networks.

MATERIALS AND METHODS
RNA-Seq data description. The transcriptome sequencing (RNA-Seq)
data originated from a recently published study (4) and were deposited in
the Gene Expression Omnibus (GEO) with accession number GSE46761.
In that study, the community-wide gene expression status in human gut
microbiota before (4 and 1 days) and after (3 and 4 days) dietary inter-
ventions was measured. To investigate the diet-microbiome interactions
at a molecular level, only the plant-based diet was used here and only the
plant foods for which molecular compositions are available. Nine study
volunteers (subject 1 and 3 to 10) were involved in both baseline and
intervention periods of the plant-based diet and were used here. Detailed
data description and more information on experimental design are avail-
able in the original publication (4).

Food-phytochemical and food-disease associations. For the foods in
the plant-based diet, their phytochemical composition and disease asso-
ciations were retrieved from the NutriChem database (http://www.cbs.d-
tu.dk/services/NutriChem-1.0/). After redundancy removal, a collection
of unique compounds formed the phytochemical space of the plant-based
diet. With regard to the food-disease network, only the food-disease as-
sociations supported by more than two references were included (infor-
mation from NutriChem database). The third-level Disease Ontology
term was used to define the disease category. In addition to the foods

present in the plant-based diet, all other links between foods, phytochemi-
cals, and diseases were obtained through NutriChem.

Similar chemical space between phytochemicals and drugs. The
SMILES (simplified molecular input line entry system) strings of 437 food
compounds were retrieved from PubChem (53), while the 1,536 FDA-
approved small-molecule drugs and their associated SMILES were ob-
tained from DrugBank (54) version 4.1. Based on these structural infor-
mation, the RDKit plugin (http://www.rdkit.org) in KNIME (55) was
employed for the calculation of compound molecular and physical chem-
ical descriptors, including 1,024-bit Morgan circular fingerprint, topolog-
ical polar surface area (TPSA), octanol-water partition coefficient (SlogP),
molecular weight (MW), and numbers of Lipinski hydrogen bond accep-
tors (HBA) and donors (HBD). Afterward, a matrix of compound de-
scriptors was constructed. Compounds from different groups (e.g., phy-
tochemicals or drugs) were distributed along the rows, whereas the 1,024-
bit molecular fingerprint and five other properties constituted the 1,029
columns. All the principal component analyses (PCAs) were performed
inside R.

A subset of all the FDA-approved drugs that according to DrugBank
are targeting metabolic pathways was selected; the subset was defined as
“drugs with metabolic targets” in this study. Within this category, drugs
whose targets have bacterial orthologs based on orthologous analysis (see
below), were referred to as “drugs with metabolic targets having bacterial
orthologs.”

Phytochemical-protein target bioactivity data. Initially, the food
compounds were mapped to exactly matched compounds in the ChEMBL
database (25) or structurally similar ChEMBL compounds, using InChI
key and Morgan circular fingerprints, respectively. Two compounds were
deemed similar when they had a Tanimoto coefficient (calculated from
Morgan fingerprints) higher than 0.85 and their difference in molecular
weight was lower than 50 g/mol. The protein targets of the food com-
pounds were subsequently retrieved; only interactions within the follow-
ing bioactivity thresholds were kept for further analysis: for Ki, dissocia-
tion constant (Kd), 50% inhibitory concentration (IC50), and 50%
effective concentration (EC50), the p_chem value (calculated as the nega-
tive of the logarithm to base 10 of the measured activity) was larger than 6;
for inhibition, the measurement value was greater than 30%; for potency,
the measurement value was lower than 50 �M (20). To deal with the
multiple measurements of the same compound on the same protein, we
calculated a frequency of “positive” measurements among all candidate
measurements. This was based on the aforementioned thresholds and
served as evidence of compound-protein interaction. Only chemical-
protein interactions with a frequency higher than 50% were considered
confident and were used to derive protein targets of phytochemicals for
downstream analysis (20).

Since the ChEMBL database contains mainly experimental data for
interactions of small molecules with human proteins, the developed
chemical-microbial protein network was based on the orthologous rela-
tionships between the gut microbial reference genomes and the human
genome. For analyzing the similarity of binding sites between human-
microbe protein pairs of phytochemical targets used here, we first ran-
domly selected one microbial protein from all orthologous proteins for
each human-microbe protein pair. Then, based on the full sequences of
each protein pair, COACH (56) was used to identify the stretch of amino
acid sequence that forms the respective binding pocket. These sequences
at the predicted binding site were further compared between human and
microbial proteins. The same analysis was also performed on randomly
selected human-microbe protein pairs retrieved from ChEMBL that have
been experimentally tested to share the same ligands.

Depletion of noncoding sequences from raw RNA-Seq data. To
achieve accurate coding sequences (CDS) and functional annotations, as
well as accurate expression level (number of reads per kilobase pair per
million mappable reads [RPKM]) for reads in coding region, we removed
all potential rRNA sequences using the following procedures. First, all
annotated noncoding sequences from all bacterial references in NCBI
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were downloaded (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) and com-
bined with Silva 16S rRNA sequences into a noncoding RNA database.
Second, all the reads were mapped to this noncoding RNA database using
BLASTX with parameters “1e�5 -F F.” At last, we excluded the potential
noncoding RNA reads if they were mapped to this noncoding RNA data-
base with coverage �50%.

Definition of taxonomy information for reads. To define the taxon-
omy of the RNA sequences, we retrieved 2,766 bacterial reference genome
sequences from the NCBI database (January 2014 version). The informa-
tion of the open reading frames (ORFs), their corresponding CDS and
protein sequences, as well as the taxonomy information of the strains were
also retrieved from NCBI. We further mapped all the reads (excluding
potential noncoding RNA) using the BWA (57) version 0.7.4-r385 to
these reference genomes. For each species with a relative abundance of
more than 0.5% in at least one sample, the strain with the highest number
of total mappable reads from all samples was selected as the representative
strain for this species. Using these procedures, we identified 54 bacterial
reference genomes (see Table S2 in the supplemental material). Based on
the alignment with highly identical reads (both identity and coverage of
the read are more than 95%), SAMtools (58) was employed to manipulate
the BWA alignments. For each coding gene, per gene coverage was calcu-
lated using BEDTools (59). The relative abundances of genes in each sam-
ple were estimated using RPKM (number of reads per kilobase pair per
million mappable reads) using in-house scripts.

Definition of the ortholog proteins between human and bacteria.
We first downloaded all human genes from Ensembl (60) (Ensembl Ge-
nome assembly GRCH37 release 75). We selected the longest transcript
for each gene locus as the representative transcript using in-house python
scripts. The ortholog relationships between each bacteria gene set from 54
reference genomes and human genes was defined using Inparanoid (61)
with default parameters. The ortholog pairs between the human genome
and 54 bacterial genomes were 411 on average. We also carried out the
ortholog definition using reciprocal best-hit blast and found that �95%
of the ortholog relationships defined are consistent between two methods.

Functional analysis of metatranscriptomic data. Thirty-eight sam-
ples from nine subjects were kept for downstream analysis. For each sub-
ject, the two different days (if present) within the same period (baseline or
dietary intervention) were merged into one sample. The reads in prepro-
cessed merged samples were then mapped to those 54 reference genomes
with BLASTN (e � 1e�05, coverage �70). The genes from the reference
genomes were further annotated with human orthologous genes as de-
scribed above. The expression of each phytochemical target was quanti-
fied by aggregation of all orthologous microbial genes and then normal-
ized using RPKM. Afterward, Wilcoxon’s signed-rank test was employed
to determine whether a gene displayed significantly differential expression
(DE) after dietary intervention compared with the baseline status. The
false discovery rate (62) (FDR) method was used for correction of multi-
ple hypothesis testing. Pathway mapping and enrichment analysis for DE
and non-DE targets were conducted with Reactome (63) version 49. A
direct comparison of pathways in which DE and non-DE targets are
involved was conducted with an overrepresentation analysis per-
formed in R.

Ortholog-based PPI network and analysis. Since the proteins within
biological systems rarely act in isolation, we also included the protein-
protein interaction (PPI) data that originated from STRING (64) v9.05.
Only PPIs with a score higher than 400 (representing a medium-
confidence interaction as defined by the STRING authors) and for pairs
for which both human proteins have bacterial orthologs (as defined
above) were retrieved for construction of the microbiota-specific PPI net-
work. The PPI network, as well as all other networks displayed in this
study, was visualized in Cytoscape (65) v3.2. The NetworkAnalyzer (66)
plugin inside Cytoscape was employed for topological analysis, which
calculated eight topological features: degree connectivity, clustering coef-
ficient, topological coefficient, closeness centrality, radiality, stress, be-
tweenness centrality, and average shortest path length.

Differential taxonomic contribution to the whole-community re-
sponse. The expression change of each gene present in each phylum was
calculated by subtracting the mean expression level before the diet from
the mean expression level after the diet. Then, for each gene, the phylum
contribution was calculated by dividing the corresponding expression
change by the overall community-level gene expression change. A positive
value thus indicates a positive contribution toward, or consistency with
the direction of, the community-level change, regardless of up- or down-
regulation. In contrast, a negative value means the opposite direction of
change between that particular phylum and the microbiota community
on the particular gene. For each of the four main phyla, a group of genes
which represented an (nearly) exclusive positive contribution of the cor-
responding taxon toward community-level expression change of these
genes was identified. The four groups of genes were functionally anno-
tated with Gene Ontology terms (biological processes, third level) using
the Database for Annotation, Visualization and Integrated Discovery
(DAVID) (67).

To measure the species-level contribution, a more stringent threshold
for BLASTN mapping was used for the gene expression calculation (e �
1e�05, identical ratio �95%, where the “identical ratio” was defined as
the product of identity and alignment length, which was then divided by
read length). The remaining steps were analogous to the phylum-level
analysis.

For each microbial phylum, the genuine transcriptional activity of
each DE target gene was calculated by dividing its mean expression level
(among subjects before or after the diet) by the corresponding phylum
taxonomic abundance. This represented the transcriptional activity nor-
malized by the phylum-level abundance. Then, subtraction of this nor-
malized activity before and after the diet gave the variation of transcrip-
tional activity of each gene within each microbial phylum. A positive value
represents increased transcription level, while a negative value indicates
decreased transcription level. The phylum-level abundance data (average
among subjects before or after the diet) were retrieved from MG-RAST
(68).

SCFA-oriented dietary interventions. The proteins participating in
butyrate (KEGG ko00650) and propionate metabolism (KEGG ko00640)
were first ranked by individual topological measurements and then aggre-
gated with the R package RankAggreg using default settings (69) to pro-
vide an overall indication of vulnerability. Last, the pathway maps with
metabolites/phytochemicals and proteins highlighted were generated
with R Bioconductor package Pathview (70).
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