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Objective: Radiomics and morphological features were associated with aneurysms
rupture. However, the multicentral study of their predictive power for specific-located
aneurysms rupture is rare. We aimed to determine robust radiomics features related
to middle cerebral artery (MCA) aneurysms rupture and evaluate the additional value
of combining morphological and radiomics features in the classification of ruptured
MCA aneurysms.

Methods: A total of 632 patients with 668 MCA aneurysms (423 ruptured
aneurysms) from five hospitals were included. Radiomics and morphological features
of aneurysms were extracted on computed tomography angiography images. The
model was developed using a training dataset (407 patients) and validated with the
internal (152 patients) and external validation (73 patients) datasets. The support
vector machine method was applied for model construction. Optimal radiomics,
morphological, and clinical features were used to develop the radiomics model
(R-model), morphological model (M-model), radiomics-morphological model (RM-
model), clinical-morphological model (CM-model), and clinical-radiomics-morphological
model (CRM-model), respectively. A comprehensive nomogram integrating clinical,
morphological, and radiomics predictors was generated.

Results: We found seven radiomics features and four morphological predictors of MCA
aneurysms rupture. The R-model obtained an area under the receiver operating curve
(AUC) of 0.822 (95% CI, 0.776, 0.867), 0.817 (95% CI, 0.744, 0.890), and 0.691 (95%
CI, 0.567, 0.816) in the training, temporal validation, and external validation datasets,
respectively. The RM-model showed an AUC of 0.848 (95% CI, 0.810, 0.885), 0.865
(95% CI, 0.807, 0.924), and 0.721 (95% CI, 0.601, 0.841) in the three datasets. The
CRM-model obtained an AUC of 0.856 (95% CI, 0.820, 0.892), 0.882 (95% CI, 0.828,
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0.936), and 0.738 (95% CI, 0.618, 0.857) in the three datasets. The CRM-model
and RM-model outperformed the CM-model and M-model in the internal datasets
(p < 0.05), respectively. But these differences were not statistically significant in the
external dataset. Decision curve analysis indicated that the CRM-model obtained the
highest net benefit for most of the threshold probabilities.

Conclusion: Robust radiomics features were determined related to MCA aneurysm
rupture. The RM-model exhibited good ability in classifying ruptured MCA aneurysms.
Integrating radiomics features into conventional models might provide additional value
in ruptured MCA aneurysms classification.

Keywords: computed tomography angiography, decision support techniques, intracranial aneurysm, machine
learning, middle cerebral artery, nomograms

INTRODUCTION

Middle cerebral artery (MCA) aneurysm is the most common
subtype of unruptured aneurysms (Huttunen et al., 2010; Can
et al., 2015). With the improvement of imaging techniques,
unruptured aneurysms have become more frequently detected
(Greving et al., 2014). But therapeutic decision-making for
them is controversial. On the one hand, many unruptured
aneurysms stay asymptomatic and never rupture (Korja et al.,
2014). The prophylactic treatment such as current endovascular
and microsurgical interventions carries the risk of procedure-
related complications (Naggara et al., 2010; Zhu et al., 2020).
On the other hand, once the aneurysm ruptures, the outcome is
catastrophic (Vlak et al., 2011). Therefore, it is vital to screen out
rupture-prone aneurysms.

Previous studies have identified that morphological features
were associated with aneurysms rupture (Lindgren et al.,
2016; Zhu et al., 2020). Researchers have constructed various
computational methods using morphological features to evaluate
the aneurysms-rupture risk (Zhang et al., 2019; Tanioka
et al., 2020; Zhu et al., 2020). However, those morphological
features are measured on two-dimensional images and might be
affected by different readers or projections. It could impair the
comparability of results.

Radiomics is an emerging technology that extracts high-
throughput data from medical images (Zhou et al., 2018; Hua
et al., 2020; Tomaszewski and Gillies, 2021). Recently, radiomics
is frequently used in cerebrovascular disease researches (Chen
et al., 2021; Zhu D. et al., 2021; Zhu D. Q. et al., 2021). Several
researchers have scoped to the whole-brain aneurysms and
proved that radiomics features were related to aneurysms rupture
status (Liu et al., 2019; Ou et al., 2021). Regretfully, they did not
analyze the features’ robustness, which can be easily affected by a
slight change in image-scanning protocols or regions of interest
(ROIs) segmentation (Mackin et al., 2015; Choe et al., 2019).
Moreover, the predictive ability of radiomics in those studies was
not validated by any external validation dataset, which leads to
the uncertainness of their results’ generalizability (Collins et al.,
2015; Lambin et al., 2017).

To the best of our knowledge, few studies have predicted the
rupture of the location-specific aneurysm with robust radiomics
features. In this study, we included a large sample of 668 MCA

aneurysms. We aimed to (1) determine whether there are robust
radiomics features that can classify ruptured MCA aneurysms;
and (2) evaluate the additional value of combining morphological
and radiomics features in classifying ruptured MCA aneurysm.

MATERIALS AND METHODS

Our study was approved by the Medical Ethics Committee
of our hospital.

Study Population and Clinical Data
We performed a retrospective and multicentral study using
the data from five hospitals (hospitals A, B, C, D, and
E). MCA aneurysms with available computed tomography
angiography (CTA) data were included. Exclusion criteria were
as follows: fusiform MCA aneurysms, aneurysms combined with
vascular diseases (such as Moyamoya disease and arteriovenous
malformations), aneurysms with a size <3 mm, aneurysms
with poor-quality images and patients underwent surgery
or interventional therapy before CTA examination (see
Supplementary Methods, Supplementary Digital Content 1,
which illustrates details about CTA image scanning).

Patients with MCA aneurysms seen in hospital A from January
2009 to December 2019 were allocated to the training and the
internal validation datasets. The training dataset encompassed
the patients from the earlier period (2009–2017). The patients
from the more recent period (2018–2019) were attributed to
the temporal validation dataset (internal validation dataset)
(Collins et al., 2015; Al-Shahi Salman et al., 2018). For external
validation, MCA aneurysms cases in four hospitals, including
hospital B (from January 2018 to December 2020), hospital C
(from January 2018 to December 2020), hospital D (from January
2017 to October 2019), and hospital E (from September 2019
to March 2020), were merged to one external validation dataset
(Lambin et al., 2017).

Clinical data such as age, sex, history of hypertension
(a diagnosis of hypertension previously made by another
physician or use of antihypertensive drugs), cigarette smoking
(previous smoker or current smoker), and aneurysm side were
collected. Rupture status of aneurysms was evaluated using
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the following criterion: (1) for patients with subarachnoid
hemorrhage (SAH), aneurysms adjacent to the cisternal clots
were judged ruptured, and those aneurysms not adjacent to the
cisternal clots were judged on digital subtraction angiography
(DSA). (2) Asymptomatic patients without SAH were identified
to be unruptured (Shi et al., 2021).

Morphological Predictors Discovery
Morphological features such as aneurysm location (divided into
M1, the proximal segment of the middle cerebral artery; Mbif,
main middle cerebral artery bifurcation; Mdist, distal middle
cerebral artery), aneurysm size, vessel size, aneurysm height,
perpendicular height, aspect ratio (AR), size ratio (SR), aneurysm
angle, flow angle, vessel angle, daughter dome, and irregular
shape were measured as described in previous studies (Can
et al., 2015; Chen et al., 2020; Zhu et al., 2020; Figure 1C; see
Supplementary Methods, Supplementary Digital Content 2,
which illustrates detailed definitions of morphological features).

We implemented univariate analysis to find morphological
factors that were associated with MCA aneurysm rupture.
After that, the multivariable logistic regression was performed
to identify independent morphological predictors of MCA
aneurysm rupture.

Optimal Radiomics Signature Detection
The workflow process of radiomics analysis is shown in
Figures 1A,B. ROIs of aneurysms were manually segmented by
a neuroradiologist on each slice of CTA images (Figure 1A).
Then, 50 aneurysms were randomly selected to be re-segmented
by another neuroradiologist. We calculated the inter-class
correlation coefficient (ICC) to evaluate the inter-observer
reproducibility.

As the images were acquired from different CT scanners
with different parameters, we performed data preprocessing
before radiomics feature extraction (Lambin et al., 2017; Morin
et al., 2018; Chen et al., 2021). Image resampling and gray-
level discretization were used to reduce the variability of
radiomics features (Shafiq-Ul-Hassan et al., 2018). A total
of 1316 radiomics features were extracted from each ROI
(see Supplementary Digital Content 3, which illustrates the
possible pathophysiologic meaning of the features). All radiomics
features were standardized by z-score to eliminate unit limits
of each feature (Yang et al., 2019; see Supplementary Methods,
Supplementary Digital Content 4, for further details about
radiomics analysis).

Figure 1B indicates the feature selection procedure. Firstly,
features with poor reproducibility (an ICC of <0.7) were
excluded. After that, we used two different kinds of schemes
to select informative radiomics features: (1) the minimum
redundancy maximum relevance (mRMR) method was
performed to rank the top 50 rupture-associated features
while minimizing intra-feature correlation (Ding and Peng,
2005; Castiglioni et al., 2019), and then we used the least
absolute shrinkage and selection operator (LASSO) method to
select optimal features from those 50 features (Sauerbrei et al.,
2007) (“mRMR-LASSO method”); (2) only LASSO method
was used to selected optimal features (“LASSO method”) (see

Supplementary Methods, Supplementary Digital Content
5, for further detailed information of mRMR and LASSO).
We applied the logistics regression model to build radiomics
signatures. Discrimination ability of the “mRMR-LASSO model”
and “LASSO model” were compared. The features with better
performance were used for subsequent analysis. Moreover,
we calculated the Rad score through a linear combination of
selected features by multiplying with their LASSO coefficients
(Huang et al., 2016).

Machine Learning Models Development
and Validation
Support vector machine (SVM) is a supervised machine learning
method that classifies data points by maximizing the distance
between classes in a high-dimensional space (Orru et al., 2012).
We applied SVM with a 10-fold cross-validation to construct
models. As shown in Figure 1D, optimal radiomics features
were introduced into the radiomics model (R-model). The
morphological predictors of aneurysm rupture were introduced
into the morphological model (M-model). Optimal radiomics
features and morphological features were put together to generate
the radiomics-morphological model (RM-model). Models were
trained using the training dataset and validated in the temporal
and external validation datasets. Variance inflation factor
(VIF) was used to detect multicollinearity of the enrolled
features, and a VIF of ≥5 was considered as multicollinearity
(Akinwande et al., 2015).

The model performance was evaluated using the receiver
operating characteristic (ROC) curve. The DeLong test was used
for comparisons of an area under the receiver operating curves
(AUCs) of different models (DeLong et al., 1988). The decision
curve analysis (DCA) was applied to assess the clinical utility
of the models. Besides, net reclassification improvement (NRI)
(Pencina et al., 2011) was calculated to evaluate the improvement
in the discrimination ability of different models.

Nomogram Construction and Evaluation
To provide an easy and visualized rupture risk-scoring system,
we constructed a comprehensive nomogram. The top five
rupture-associated factors among the Rad score, clinical and
morphological features were selected using the mRMR method.
These five factors were used to generate the nomogram.
The discrimination of the nomogram was assessed with ROC
curves. The agreement between predicted rupture and observed
rupture was evaluated using the calibration curve and the
Hosmer–Lemeshow test (Kramer and Zimmerman, 2007). The
discrimination and calibration of the nomogram were appraised
in the training and validation datasets.

Statistical Analysis
Categorical variables are presented as counts (with percentages),
while continuous variables are presented as medians
[interquartile range, (IQR)]. We used Student t-tests or
Mann–Whitney U tests to evaluate the differences in continuous
variables. Differences in categorical variables were assessed using
the χ2 test or Fisher exact test (two-tailed). A p-value of <0.05
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FIGURE 1 | A flowchart of radiomics analysis and radiomics-clinical model construction. (A) The process of regions of interest (ROIs) segmentation; (B) the process
of optimal radiomics features detection; (C) the process of morphological predictors discovery; and (D) the process of machine learning models development and
validation. GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, grey level run-length matrix; GLSZM, gray level size zone matrix;
NGTDM, neighboring gray tone difference matrix; SVM, support vector machine.

indicates a statistical difference. Statistical analysis and model
construction were conducted using SPSS (version 24.0) and R
(version 3.6.1).

RESULTS

Clinical and Morphological
Characteristics
A total of 632 patients with 668 MCA aneurysms (423 ruptured
aneurysms) from five hospitals were included in our study.
Multiple aneurysms were presented in 132 (20.9%) patients.
Thirty-two of the 132 (24.2%) patients have bilateral MCA
aneurysms. There were 407, 152, and 73 patients with 438,
155, and 75 aneurysms in the training, temporal validation,
and external validation datasets. Table 1 shows the clinical
and morphological characteristics of the training dataset (see
Supplementary Digital Content 6, which shows characteristics
of validation datasets). In univariate analysis, patients with
ruptured aneurysms were younger and were less common to have
a history of hypertension (p < 0.05).

For morphological features, the mean ICC value of the
nine morphological features was 0.924. The kappa value of
the irregular shape and daughter dome is 0.603 and 0.838,
respectively (p-value for all <0.001). Vessel size, aneurysm
size, neck size, AR, SR, aneurysm height, perpendicular height,
aneurysm angle, irregular shape, and daughter dome were
associated with aneurysm rupture (p < 0.05). The result of

multivariate analysis (Table 2) indicates that SR [odds ratio (OR),
1.607 (95% CI, 1.309, 1.973); p < 0.001], neck size [OR, 0.690
(95% CI, 0.596, 0.799), p < 0.001], multiplicity [OR, 0.389 (95%
CI, 0.244, 0.621), p< 0.001], and daughter dome [OR, 2.987 (95%
CI, 1.650, 5.406), p < 0.001] were independent predictors of
MCA aneurysms rupture.

Optimal Radiomics Features Detection
The mean ICC value of the overall 1316 radiomics features was
0.751. Eight hundred and eighty-one radiomics features showed
a high interobserver agreement (an ICC value of ≥0.7). As shown
in Table 3, the “mRMR-LASSO model” presented an AUC of
0.767 and 0.828 in the training and temporal validation dataset,
respectively. The “mRMR-LASSO model” presented a higher
discrimination ability than the “LASSO model.” Therefore, those
features selected using the “mRMR-LASSO method” were used
for R-model construction. The Rad score was calculated (see
Supplementary Results, Supplementary Digital Content 7,
which indicates the Rad score calculation formula).

Machine Learning Models Construction
and Evaluation
The performance of the models was shown in Table 4 and
Figure 2. The R-model obtained an AUC of 0.822 (95% CI,
0.776, 0.867) in the training dataset. In the temporal and
external validation dataset, the R-model presented an AUC of
0.817 (95% CI, 0.744, 0.890) and 0.691 (95% CI, 0.567, 0.816),
respectively. Four morphological predictors, including SR, neck
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TABLE 1 | Baseline characteristics of patients in the training dataset.

Variables Unruptured (N = 141) Ruptured (N = 297) p-Value

Agea 59.0 (53.0, 69.0) 55.0 (48.0, 64.3) 0.004

Femalea 77.0 (54.6%) 173.0 (58.2%) 0.472

Hypertensionb 75.0 (68.8%) 149.0 (55.4%) 0.016

Smokingc 30.0 (28.0%) 77.0 (28.6%) 0.909

Location 0.016

M1 51.0 (36.2%) 72.0 (24.2%)

Mbif 85.0 (60.3%) 219.0 (73.7%)

Mdist 5.0 (3.5%) 6.0 (2.0%)

Side 0.862

Right 81.0 (57.4%) 168.0 (56.6%)

Left 60.0 (42.6%) 129.0 (43.4%)

Multiplicity 63.0 (44.7%) 66.6 (22.2%) <0.001

Vessel size (mm) 2.5 (2.1, 2.8) 2.4 (2.0, 2.6) 0.002

Aneurysm size (mm) 5.6 (4.0, 7.8) 6.7 (5.0, 9.1) 0.001

Neck size (mm) 4.2 (3.3, 5.5) 3.9 (3.1, 4.8) 0.018

Aspect ratio 0.8 (0.5, 1.1) 1.0 (0.8, 1.4) <0.001

Size ratio 1.6 (1.0, 2.3) 2.3 (1.6, 3.4) <0.001

Aneurysm height (mm) 4.1 (2.6, 5.4) 5.1 (3.9, 6.9) <0.001

Perpendicular height (mm) 3.3 (2.3, 4.6) 4.1 (3.0, 5.5) <0.001

Aneurysm angle (◦) 65.4 (53.5, 81.4) 61.4 (48.1, 76.5) 0.014

Vessel angle (◦) 57.1 (37.4, 77.7) 64.3 (41.4, 78.4) 0.134

Flow angle (◦) 135.8 (111.4, 158.5) 137.8 (116.2, 159.2) 0.319

Daughter dome 18.0 (12.8%) 102.0 (34.3%) <0.001

Irregular shape 48.0 (34.0%) 179.0 (60.3%) <0.001

a3/438 (0.68%) missing values.
b60/438 (13.70%) missing values.
c62/438 (14.16%) missing values.
M1, the proximal segment of the middle cerebral artery; Mbif, main middle cerebral artery bifurcation; Mdist, distal middle cerebral artery.

TABLE 2 | Univariate and multivariable analysis of morphological and clinical features associated with aneurysm rupture.

Variables Univariate analysis Multivariate analysis

Odds ratio 95% CI p-Value Odds ratio 95% CI p-Value

Neck size (mm) 0.864 0.770, 0.970 0.018 0.690 0.596, 0.799 < 0.001

Daughter dome 3.574 2.063, 6.192 < 0.001 2.987 1.650, 5.406 < 0.001

Size ratio 1.478 1.240, 1.761 < 0.001 1.607 1.309, 1.973 < 0.001

Multiplicity 0.354 0.230, 0.544 < 0.001 0.389 0.244, 0.621 < 0.001

Aneurysm height (mm) 1.169 1.074, 1.272 < 0.001 – – 0.407

Location 1.825 1.178, 2.827 0.016 – – 0.385

Aneurysm size (mm) 1.080 1.009, 1.156 0.001 – – 0.735

Aspect ratio 2.813 1.754, 4.511 < 0.001 – – 0.814

Vessel size (mm) 0.526 0.357, 0.776 0.002 – – 0.747

Perpendicular height (mm) 1.110 1.015, 1.212 < 0.001 – – 0.731

Aneurysm angle (◦) 0.987 0.976, 0.998 0.014 – – 0.215

Irregular shape 2.939 1.934, 4.468 < 0.001 – – 0.100

Hypertension 0.625 0.387, 1.011 0.016 – – 0.055

Age 0.974 0.954, 0.994 0.004 – – 0.012

CI, confidence interval.

size, multiplicity, and daughter dome, were used to construct the
M-model. The M-model obtained an AUC of 0.798 (95% CI,
0.749, 0.846), 0.751 (95% CI, 0.674, 0.828), and 0.624 (95% CI,
0.490, 0.759) in the training, temporal, and external validation

datasets, respectively. The p-values from the DeLong test of the
statistical comparison of the ROC curves are given in Table 5.

The optimal radiomics features and morphological predictors
were enrolled in the RM-model. The RM-model exhibited good
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TABLE 3 | Performance of the “LASSO model” and “mRMR-LASSO model.”

Datasets Method Feature count AUC (95% CI) ACC SEN SPE p-Value

Training dataset LASSO 7 0.693 (0.638, 0.747) 0.717 0.811 0.518 0.003

mRMR-LASSO 7 0.767 (0.718, 0.816) 0.774 0.869 0.574

Temporal validation dataset LASSO 7 0.767 (0.689, 0.845) 0.735 0.735 0.736 0.092

mRMR-LASSO 7 0.828 (0.759, 0.897) 0.806 0.928 0.667

p-Values were derived from the DeLong test comparing AUCs between radiomics signatures built by two feature selection methods.
AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; SEN, sensitivity; SPE, specificity.

TABLE 4 | Performance of the radiomics, morphological, radiomics-morphological, clinical-morphological, and clinical-radiomics-morphological models.

Datasets Models AUC (95% CI) ACC SEN SPE PPV NPV

Training dataset R-model 0.822 (0.776, 0.867) 0.826 0.912 0.645 0.844 0.778

M-model 0.798 (0.749, 0.846) 0.733 0.680 0.844 0.902 0.556

RM-model 0.848 (0.810, 0.885) 0.795 0.788 0.809 0.897 0.644

CM-model 0.811 (0.770, 0.853) 0.758 0.761 0.752 0.866 0.599

CRM-model 0.856 (0.820, 0.892) 0.756 0.707 0.858 0.913 0.582

Temporal validation dataset R-model 0.817 (0.744, 0.890) 0.800 0.928 0.653 0.755 0.887

M-model 0.751 (0.674, 0.828) 0.690 0.590 0.806 0.778 0.630

RM-model 0.865 (0.807, 0.924) 0.813 0.855 0.764 0.807 0.821

CM-model 0.795 (0.723, 0.867) 0.755 0.819 0.681 0.747 0.766

CRM-model 0.882 (0.828, 0.936) 0.832 0.928 0.722 0.794 0.897

External validation dataset R-model 0.691 (0.567, 0.816) 0.693 0.721 0.656 0.738 0.636

M-model 0.624 (0.490, 0.759) 0.680 0.953 0.313 0.651 0.833

RM-model 0.721 (0.601, 0.841) 0.733 0.744 0.719 0.780 0.676

CM-model 0.738 (0.621, 0.855) 0.747 0.860 0.594 0.740 0.760

CRM-model 0.738 (0.618, 0.857) 0.760 0.767 0.750 0.805 0.706

R-model, radiomics model; M-model, morphological model; RM-model, radiomics-morphological model; CM-model, clinical-morphological model; CRM-model, clinical-
radiomics-morphological model; AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, negative
predictive value. SEN, sensitivity; SPE, specificity.

TABLE 5 | The p-values of the DeLong test of the statistical comparison of the ROC curves in all datasets.

Training dataset Temporal validation dataset External validation dataset

R-model vs. M-model 0.458 0.211 0.457

M-model vs. RM-model 0.041 0.005 0.224

R-model vs. RM-model 0.176 0.115 0.559

R-model vs. CM-model 0.743 0.685 0.603

M-model vs. CM-model 0.515 0.212 0.106

R-model vs. CRM-model 0.078 0.041 0.407

M-model vs. CRM-model 0.018 0.002 0.152

RM-model vs. CRM-model 0.176 0.096 0.378

CM-model vs. CRM-model 0.038 0.018 0.993

R-model, radiomics model; M-model, morphological model; RM-model, radiomics-morphological model; CM-model, clinical-morphological model; CRM-model, clinical-
radiomics-morphological model.

ability in classifying ruptured MCA aneurysms, with an AUC
of 0.848 (95% CI, 0.810, 0.885), accuracy of 0.795, sensitivity of
0.788, and specificity of 0.809 in the training dataset. We further
validated the RM-model in two validation datasets. The AUC
of RM-model for ruptured MCA aneurysms classification was
0.865 (95% CI, 0.807, 0.924) and 0.721 (95% CI, 0.601, 0.841)
in the temporal and external validation datasets, respectively
(Figure 2 and Table 4). Multicollinearity was not observed

between those selected radiomics features and morphological
predictors (VIF for all <2).

Compared with the single R-model and M-model, the RM-
model achieved a higher AUC. In the training dataset, the RM-
model outperformed the M-model [AUC (95% CI), 0.848 (0.810,
0.885) vs. 0.798 (0.749, 0.846), p = 0.041]. In the validation
datasets, the RM-model tended to have a better presented higher
AUC than the single M-model. The difference was statistically
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FIGURE 2 | The receiver operating characteristic (ROC) curves, accuracy, sensitivity, and specificity of the radiomics model (R-model), morphological model
(M-model), radiomics-morphological model (RM-model), clinical-morphological model (CM-model); and clinical-radiomics-morphological model (CRM-model). The
ROC curves of the three models in training (A), temporal validation (B), and external validation datasets (C). The accuracy, sensitivity, and specificity of the three
models in the training (D), temporal validation (E), and external validation datasets (F). ACC, accuracy; SEN, sensitivity; SPE, specificity.

significant in the temporal validation dataset (p < 0.005) while it
was not statistically significant in the external validation dataset
(p = 0.224).

We further added clinical features (hypertension, smoking,
age, and sex) into the M-model and RM-model to construct
the clinical-morphological model (CM-model) and clinical-
radiomics-morphological model (CRM-model). As it was shown
in Table 4 and Figure 2, the CRM-model obtained an AUC
(95% CI) of 0.856 (0.820, 0.892), 0.882 (0.828, 0.936), and 0.738
(0.618, 0.857) in the three datasets, respectively. The CRM-
model outperformed the CM-model in the training and temporal
validation datasets (p < 0.05). However, the difference was
not observed in the external validation dataset. We further
calculated NRI to evaluate the improvement of discrimination by
adding radiomics features to CM-model. We found that adding
radiomics features to CM-mode improved the net reclassification
indices in the three datasets (additive NRI, 52.40%, 89.66%, and
24.62%, respectively). This indicated that compared to the CM-
model, the CRM-model correctly reclassified 52.40%, 89.66%,
and 24.62% cases in the three datasets, respectively.

With respect to clinical utility, the DCA (Figure 3B)
indicated that the RM-model had a higher overall net benefit
in distinguishing ruptured aneurysms than the single R-model
and M-model for most of the threshold probabilities. The CRM-
model obtained the highest net benefit for most of the threshold
probabilities. Combining radiomics features to conventional
models resulted in an extra net-benefit compared with the
M-model and CM-model.

Nomogram Construction and Evaluation
The shape, vessel size, AR, multiplicity, and Rad score were
incorporated into the comprehensive nomogram (Figure 3A).
The nomogram presented satisfying discrimination ability with
an AUC of 0.771 (95% CI, 0.723, 0.818), 0.823, (95% CI, 0.757,
0.889), and 0.709 (95% CI, 0.592, 0.827) in the training, temporal
validation, and external validation datasets, respectively. The
calibration curve (Figures 3C–E) and the Hosmer–Lemeshow
test (p = 0.731, 0.325, and 0.067, in the three datasets,
respectively) indicate good calibration.

DISCUSSION

This study developed and validated ruptured MCA
aneurysms classification models based on radiomics
and morphological features in a large and multicentral
dataset (a total of 668 MCA aneurysms were enrolled).
It was proved that robust radiomics features extracted
from CTA images could classify ruptured MCA
aneurysms. The RM-model could identify more than
74% ruptured MCA aneurysms with a specificity of 72–
81%. Additionally, we provided an easy and visualized
rupture risk-scoring system for MCA aneurysm patients
through the nomogram.

In this study, a total of 1316 radiomics features were
extracted for each aneurysm. Among those numerous
radiomics features, the features indicating image heterogeneity
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FIGURE 3 | The comprehensive nomogram for classifying ruptured MCA aneurysm and decision curve analysis in the overall patients. (A) The comprehensive
nomogram for predicting aneurysm rupture. (B) Decision curve analysis in overall patients. The y-axis indicates the net benefit; the x-axis indicates threshold
probability. The gray line represents the assumption that all aneurysms rupture. The black line represents the assumption that no aneurysm ruptures. The red line,
green line, gold line, orange line, and blue line represent the net benefit of the radiomics model (R-model), morphological model (M-model), radiomics-morphological
model (RM-model), clinical-morphological model (CM-model), and clinical-radiomics-morphological model (CRM-model), respectively. Calibration of the nomogram
in the training (C), temporal validation (D), and external validation datasets (E).

(e.g., Dependence Non-Uniformity Normalized, Cluster
Shade, and Variance) were screened out as the optimal
signature for ruptured aneurysms classification. This is in
agreement with the study of Ou et al. (2021). The possible
explanation for this is that CTA image heterogeneity is
caused by the contrast maldistribution in the vessel lumen.
The uneven distribution of contrast indicates turbulent flow
(George et al., 2016; Aghayev et al., 2018; Ou et al., 2021),
which was one of the risk factors for aneurysms rupture
(Lv et al., 2020). Therefore, we speculate that CTA-
derived radiomics features might imply the hemodynamics
condition of aneurysms.

Unlike former research (Liu et al., 2019; Ou et al.,
2021), shape radiomics features were not selected for
model construction. We exclude some shape features
before the feature selection due to their poor interobserver
agreement (e.g., the shape radiomics features Sphericity
and Flatness obtained an ICC value of 0.536 and 0.590,
respectively). Only highly stable features were used in the
model construction procedure. The temporal and external
validation datasets further verified the robustness and
generalizability of the results.

It is generally acknowledged that vessel wall degradation and
abnormal morphological condition are related to aneurysms’

rupture. We found that daughter dome, multiplicity, neck size,
and SR were independent predictors for MCA aneurysm rupture,
which have been reported by other researchers (Can et al., 2015;
Zhang et al., 2019; Ou et al., 2020; Tanioka et al., 2020; Zhu et al.,
2020).

Both radiomics and morphological features originate from
CTA images, but their biological meanings and analysis
procedures are different. Radiomics features describe the
shape and texture characteristics of aneurysms from the
micro point of view (Lambin et al., 2017; Xu et al., 2019),
while the morphological features measure the macroscopic
observation of the aneurysms. Radiomics features are three-
dimensional derived, high-through biomarkers but lacking
clinical interpretability. Meanwhile, those morphological
features are two-dimensional measured features with
relatively less information, but they are still fundamental
tools for aneurysm evaluation. Though the statistically
significant improvement in AUC of adding radiomics
was not observed in the external dataset, considering its
objectivity and its extra net-benefit in DCA, radiomics could
be a possible choice in clinical practice, enabling better
patient management.

Aneurysms rupture leads to catastrophic consequences.
Preventive treatment for high rupture risk patients
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is necessary. However, preventive treatments for low rupture
risk patients may cause more harm than good due to operation-
related complications (Naggara et al., 2010). Therefore, except
for stratifying rupture-prone aneurysms, accurate identification
of aneurysms at a relatively low rupture risk is also essential.
Compared to the CM-model (which is routinely used in
clinical practice), the CRM-model obtained a higher specificity,
positive predictive value (PPV), and the CRM-model correctly
reclassified 52.40%, 89.66%, and 24.62% patients in the three
datasets, respectively. This indicated that adding radiomics
features to conventional models might not only classify ruptured
aneurysms but also help in recognizing unruptured aneurysms,
which may reduce unnecessary treatment for unruptured
aneurysms patients.

There are some limitations in this study. First, this is a
retrospective, cross-sectional study without the longitudinal
follow-up of aneurysms, which might inherently cause
biases. Second, the aneurysms’ morphological changes after
rupture were not considered because it is hard to collect
the morphological change before and after the aneurysm
rupture due to ethical issues. Third, most patients with SAH
history were excluded because of their surgery experience.
This could cause potential selection bias. Forth, images
from external validation datasets contain different scanning
protocols, which might affect the validation results. We
performed image resampling and gray-level discretization to
reduce the variability of images. Moreover, samples from
the other four hospitals were merged into one external
validation dataset. The good results further indicated the
robustness of the models.

CONCLUSION

In conclusion, we analyzed the MCA aneurysms rupture
by clinical, radiomics, and morphological features using
multicentral data. We answered two critical questions: (1)
Robust radiomics features could classify ruptured MCA
aneurysms. (2) The integration of radiomics into conventional
clinical and morphological models might provide additional
benefit in ruptured MCA aneurysms classification. An
easy and visualized rupture risk-scoring nomogram was
generated. This may aid in the rupture-risk assessment
of MCA aneurysms.
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