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Abstract

Motivation: Many methods have been developed to cluster genes on the basis of their changes in mRNA expression
over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for
these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use
pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseu-
dotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead
to erroneous and/or over-confident gene clusters.

Results: The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and
gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime infer-
ence with non-parametric Bayesian clustering methods, efficient Markov Chain Monte Carlo sampling and novel
subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets
to demonstrate the effectiveness of GPseudoClust in a range of settings.

Availability and implementation: An implementation is available on GitHub: https://github.com/magStra/
nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust.

Contact: ms58@sanger.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During response to stimulation or development, gene expression
undergoes significant changes for many genes. For bulk measure-
ments of gene expression these changes can be investigated by col-
lecting time course data. A common analysis step for such datasets is
to cluster genes on the basis of the similarities in their time course
profiles. For example, Eisen et al. (1998) found that similar expres-
sion dynamics of genes are related to biological function, whereas
Cooke et al. (2011) showed that clustering genes together with simi-
lar changes in expression over time can identify those likely to be co-
regulated by the same transcription factors. McDowell et al. (2018)
emphasize that using clustering to identify shared response types
helps reduce the complexity of the response, and allows the explor-
ation of regulatory mechanisms underlying the shared response
types. Most existing methods for performing such clustering analy-
ses were developed for bulk-measurements of gene expression, and
not for single-cell data.

There is clearly a need for effective clustering algorithms for genes
for single-cell data, given that single-cell technologies have enabled us
to obtain response and developmental trajectories with a much better
resolution; see, e.g. Griffiths et al. (2018), Kunz et al. (2018) and
Nestorowa et al. (2016). Single-cell RNA-seq data have been used to
investigate processes of development, differentiation or immune re-
sponse, with the development of pseudotemporal ordering
approaches enabling researchers to order cells in terms of their pro-
gression through these processes; see Ahmed et al. (2019), Campbell
and Yau (2016), Haghverdi et al. (2016), Ji and Ji (2016), Qiu et al.
(2017), Reid and Wernisch (2016), Strauß et al. (2019) and Welch
et al. (2016) among many others. For each gene, the ordered gene ex-
pression measurements are assumed to be noisy observations of an
underlying latent trajectory characterizing the response to a stimulant
or the dynamics of its expression during development. In addition to
the challenge of pseudotime inference, single-cell data are also charac-
terized by higher levels of noise, including dropout effects (see, among
others, Stegle et al., 2015; Vallejos et al., 2015). Moreover, the

VC The Author(s) 2019. Published by Oxford University Press. 1484

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(5), 2020, 1484–1491

doi: 10.1093/bioinformatics/btz778

Advance Access Publication Date: 14 October 2019

Original Paper

http://orcid.org/0000-0002-5931-7489
http://orcid.org/0000-0002-7762-6760
https://github.com/magStra/nonparametricSummaryPSM
https://github.com/magStra/nonparametricSummaryPSM
https://github.com/magStra/GPseudoClust
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz778#supplementary-data
https://academic.oup.com/


number of cells in single-cell datasets typically exceeds by orders of
magnitude that of time points for bulk measurements.

A number of algorithms have been developed specifically for
clustering cells using scRNA-seq data; for instance Kiselev et al.
(2017), Lin et al. (2017) and Wang et al. (2017), the latter method
using multiple kernel learning. However, there has been far less pro-
gress on the development of methods for clustering genes using
scRNA-seq data.

One way of clustering pseudotemporal single-cell gene expres-
sion pseudotime profiles is to adopt a two-step approach (Macaulay
et al., 2016): first use a pseudotime ordering method such as
SLICER (Welch et al., 2016) or DeLorean (Reid and Wernisch,
2016); then cluster genes using a method for time-stamped bulk
data, e.g. GPclust (Hensman et al., 2013, 2015). A two-step ap-
proach is also implemented in Monocle 2 (Qiu et al., 2017), which
uses partitioning around medoids (PAMs, Kaufman and Rousseeuw,
2008) on a distance measure between smoothed pseudotime expres-
sion profiles. However, such two-step approaches do not take into
account the potential impact of the uncertainty in the inferred pseu-
dotimes upon the identification of clusters.

The method proposed here, GPseudoClust, addresses this chal-
lenge by probabilistically modelling the orders of cells and cluster
allocations of genes jointly, thereby accounting for dependencies be-
tween the orders of the cells and cluster allocations of the genes.
GPseudoClust combines our previously developed method for mod-
elling the uncertainty of pseudotime (Strauß et al., 2019), with
Bayesian clustering using Dirichlet process (DP) mixtures of hier-
archical Gaussian processes (GPs) (Hensman et al., 2013, 2015).

2 Materials and methods

2.1 Cell orderings and pseudotime
We assume our data comprises pre-processed log-transformed gene
expression data in the form yj of gene j ¼ 1; . . . ;ng, where yj is a vec-
tor of length T, the number of cells. We start with a vector of pseudo-
time points s ¼ ðs1; . . . ; sTÞ and seek to infer an ordering of cells as a
permutation o ¼ ðo1; . . . ; oTÞ; oi 2 f1; . . . ;Tg; oi 6¼ oj for i 6¼ j,
where oi is the index of the cell assigned to pseudotime si in the order-
ing. We refer the reader to our previous paper (Strauß et al., 2019)
and references therein for a detailed discussion of how inference of o
may be performed when clustering structure among the genes is
ignored. An inferred ordering, o ¼ ðo1; . . . ;oTÞ, can be mapped to
pseudotimes sðoÞ ¼ ðs1ðoÞ; . . . ; sTðoÞÞ using approximate geodesic
distances (Tenenbaum et al., 2000) between the ordered cells.

2.2 Hierarchical GPs for pseudotemporal data
GPseudoClust models cluster-specific latent pseudotime profiles as
well as gene-specific latent profiles which deviate from the cluster-wide
profile to some extent (see Fig. 1) using hierarchical GPs. We briefly
describe GPs below, and refer to Hensman et al. (2013, 2015) for full
details of hierarchical GPs. A GP (Rasmussen and Williams, 2006) is a
distribution over functions that is specified using a mean function l

and a covariance function R. For an input vector sðoÞ ¼ ðs1; . . . ; sTÞ
of pseudotime points depending on orders o, lðsðoÞÞ is a vector of T
function evaluations of the mean function l and RðsðoÞÞ is a T�T
matrix of covariance function evaluations of R. The distribution of
functions f � GPðlðoÞ;RðoÞÞ is described by stating that, for any vec-
tor of pseudotime points sðoÞ ¼ ðs1ðoÞ; . . . ; sTðoÞÞ, the corresponding
function evaluations f ðsiðoÞÞ are distributed according to a multivariate
Gaussian: ðf ðs1ðoÞÞ; . . . ; f ðsTðoÞÞÞ � N TðlðsðoÞÞ;RðsðoÞÞÞ. Here we
use a squared exponential covariance function to define R:

RðsðoÞ; r2
w; lÞ

h i
i;j
¼ r2

w exp �ðsj � siÞ2

2l2

� �
(1)

where r2
w is a scale parameter and l a length scale, and [.]i,j refers to

the element in row i and column j of a matrix.
GPs have previously been used for pseudotime ordering—see Ahmed

et al. (2019), Campbell and Yau (2016), Reid and Wernisch (2016),
Strauß et al. (2019) and Welch et al. (2017)—as well as for clustering
time-stamped bulk gene expression data, see Cooke et al. (2011),
Hensman et al. (2013), Kirk et al. (2012) and McDowell et al. (2018).

2.3 Clustering model
We use DPs (Ferguson, 1973) as a Bayesian non-parametric way of
performing model-based clustering. A DP is a distribution over
discrete distributions; that is, each draw from a DP is itself a distri-
bution. More precisely, G � DPða;G0Þ signifies that for any parti-
tion B1; . . . ;Br of a parameter space H, we have ðGðB1Þ; . . . ;
GðBrÞÞ � DirichletðaG0ðB1Þ; . . . ; aG0ðBrÞÞ; where the Dirichlet dis-
tribution with r categories and concentration parameters ðc1; . . . ; crÞ

is defined as follows: pðx1; . . . ;xrÞ ¼
C
Pr

k¼1
ck

� �
Qr

k¼1
CðckÞ

Qr
k¼1 x

ck�1
k .

Conditional on the order o of the cells, the allocation of genes to
clusters is modelled as a DP mixture model of hierarchical GPs as
follows. We model the latent cluster means lj; j ¼ 1; . . . ;ng (see
Fig. 1 (left), ng is the number of genes) as being drawn from a DP
with base distribution G0, where:

G0jo; a; �;L � GPð0;RðsðoÞ; 3a2 þ �;LÞÞ
a � Gammað2;4Þ GjG0 � DPða;G0Þ ljjG � G

(2)

Here, 0 represents the zero function, and R is defined as in Equation
(1). sðoÞ is the vector of pseudotimes corresponding to cell order o

(see Section 2.1). L is the length scale of the GP, r2
W ¼ 3a2 þ � the

scale parameter corresponding to r2
w in Equation (1). This specific

parametrization of the scale parameter of the latent mean profile
links it to the scale and noise parameters of the deviations from the
cluster-specific mean profile of the gene-specific pseudotime profiles
(see Fig. 1 for an illustration).

It should be noted that while we draw a mean lj for each gene
j ¼ 1; . . . ; ng, the DP determines a number K� ng and values
g1; . . . ; gK such that for all j ¼ 1; . . . ; ng there is a k 2 f1; . . . ;Kg
such that lj ¼ gk. That is, the latent means lj only take K distinct
values and there are K groups of genes with identical latent means,
which form a total of K clusters. The number of clusters is not fixed,
but automatically determined as part of the inference for the model.

Individual gene expression pseudotime profiles are modelled by
GPs with mean lj; j ¼ 1; . . . ; ng (ng is the number of genes).
GPseudoClust uses as input pre-processed log-transformed gene ex-
pression data ygðoÞ for gene g ¼ 1; . . . ;ng. Conditional on the pseu-
dotime ordering o of the cells, the trajectory yjðoÞ of gene j is
distributed as yjðoÞjlj; a; a1; o � F, where

F ¼ GPðlj;RðsðoÞ; a2 � a1;1Þ þ a2ð1� a1ÞITÞ (3)

a1 � Betað4; 1Þ (4)

R is as in Equation (1), IT refers to the T-dimensional identity function.
Note that a1 represents how much variation from the cluster-wide
mean is due to stochastic variation from the underlying stochastic pro-
cess, while 1� a1 represents the proportion of the variation resulting
from noise. By Equation (3), the ordered gene expression levels yjðoÞ of
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Fig. 1. One cluster in the hierarchical GP model. Left: cluster-wide latent mean;

right: cluster-wide latent mean and latent mean for each gene in the cluster
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gene j are noisy representations of individual gene-specific latent means
drawn from a GP with cluster-specific mean function.

2.4 Markov Chain Monte Carlo sampling and block

matrix representation
We use Markov Chain Monte Carlo sampling (MCMC; Gilks et al.,
1996) for inference of pseudotime orderings and cluster assignments.
This allows sampling from the joint posterior probability distribution
of clusters, orders and hyperparameters a, L, a1 and �. For the orders,
which are sampled from the discrete space of all possible permutations
of cells, we previously developed an efficient sampling strategy (Strauß
et al., 2019). To reduce the number of parameters, we integrate out the
cluster-specific mean profiles, and developed an efficient method for
inverting the resulting block matrices, thereby reducing the computa-
tional complexity of the operations needed to obtain inverses and
determinants of cluster-specific covariance matrices from Oðn3

c T3Þ to
OðT3Þ, where nc is the number of genes in cluster c and T the number
of cells. Although the resulting likelihood computations are similar to
those derived in Hensman et al. (2013), the approach presented here
additionally provides a general method for computing inverses and
determinants of matrices of certain types of block structures. For
details, see Supplementary Sections S1.2 and S1.3.

2.5 Subsampling strategies
Sampling orders of cells and clusters of genes simultaneously is a
challenging high-dimensional problem, in particular as the posterior
distribution of the orders is typically highly complex (see Strauß
et al., 2019). We improve convergence by using parallel MCMC
chains on subsets of cells. The chains are subsequently combined to
a summary result approximating the posterior distribution of the
cluster allocations.

2.5.1 Posterior similarity matrices

A central step is the computation of posterior similarity matrices
(PSMs) for each of the chains on subsets of cells. The PSM is the
symmetric positive semidefinite (see Lemma 4 in Supplementary
Section S2.2) matrix whose entry in the ith row and jth column is
the frequency with which gene i and gene j are clustered together
among the samples drawn from the posterior distribution of cluster
allocations. This estimates the posterior probability of the two genes
being in the same cluster (Fritsch and Ickstadt, 2009).

2.5.2 Obtaining summary clusterings from PSMs

Although the uncertainty of the cluster allocations obtained for
single-cell datasets does not always justify a single summary cluster-
ing, it can nevertheless sometimes be useful to compute summary
clusterings for validation and comparison purposes. In addition, the
methods presented below to find weights for combining the PSMs
obtained from the individual subsampled MCMC chains into one
joint PSM also require summary clusterings of individual PSMs. To
obtain a summary clustering from a PSM, we apply hierarchical
clustering to the columns of the PSM using 1� PSM as the distance
matrix (Medvedovic et al., 2004). The optimal number of clusters is
determined by a method maximizing the posterior expected adjusted
Rand index (PEAR) between the inferred summary clustering and
the unknown true clustering structure (Fritsch and Ickstadt, 2009).
The adjusted Rand index (ARI, Hubert and Arabie, 1985; Rand
1971), see also Section 2.7 and Supplementary Section S4) is a meas-
ure of agreement between two clusterings. The PEAR is therefore a
measure of how well the inferred summary clustering is expected to
agree with the unknown true clustering.

2.5.3 Combining PSMs

The following methods for combining the PSMs from the individual
MCMC chains on subsampled data to obtain a joint overall PSM
are proposed here:

Method ‘mean psm’. The first method proposed to obtain a joint
PSM is to compute the element-wise unweighted arithmetic mean of

the PSMs of the individual chains. This method is referred to as
‘mean PSM’ here.

Methods ‘PY and PEAR’, ‘DPM and PEAR’. As noise levels tend
to differ between subsamples of cells, an unweighted average of the
PSMs may not always be the best representation of the overall pos-
terior distribution. We propose new methods to obtain a final PSM
as a weighted average of the PSMs of the individual subsampled
chains. We propose a novel method using DP mixture models or
Pitman-Yor process (PY, Ishwaran and James, 2001; Pitman and
Yor, 1997), a generalization of the DP) mixture models with feature
selection to compute the weights. We refer to the two methods as
‘PY and PEAR’ and ‘dirichlet process mixture model (DPM) and
PEAR’. For details see Supplementary Section S2.1.

Method ‘lmkk’. The differences in noise for different subsampled
chains may be gene-specific; to address this, this method applies
localized multiple kernel k-means (lmkk, Gönen and Margolin,
2014) to obtain a summary clustering from the set of PSMs for the
different chains. lmkk was first used to obtain summary clusterings
from consensus clustering matrices in Cabassi and Kirk (2019).
Unlike the other methods proposed in this section, the ‘lmkk’
method does not aim to provide a full estimate of the overall PSM,
but it is an optimization method to find a summary clustering from
multiple PSMs. The method proposed in this paper also finds
weights for an overall summary matrix representation of posterior
cluster allocation probabilities. For details on our approach see
Supplementary Section S2.2.

2.6 Assessment of convergence
Our approximate sampling approach using parallel MCMC chains
on subsamples of cells requires us to assess convergence across sub-
sampled chains with different cells. We consider a number of differ-
ent criteria to assess convergence, which we describe in detail in
Supplementary Section S3.

2.7 Alternative clustering methods and assessment
We compare GPseudoClust to several widely used standard cluster-
ing methods, which we applied to the simulated and Shalek datasets:
mixture of normals (mclust, Fraley and Raftery, 2002; Scrucca
et al., 2017), k-medoids clustering (PAM, Kaufman and Rousseeuw,
2008; Maechler et al., 2019), hierarchical clustering and SIMLR. In
addition, we applied the following two-step methods (first pseudo-
time ordering of cells, then clustering of genes in a second step):
SLICER (Welch et al., 2016) and DeLorean (Reid and Wernisch,
2016) combined with GPclust (Hensman et al., 2013, 2015), and
Monocle 2. For the simulated datasets the following measures of
comparison between the true and the inferred cluster allocations are
used: the ARI (Hubert and Arabie, 1985; Rand, 1971), the Fowlkes-
Mallows index (FMI) and normalized mutual information (NMI;
Kvalseth, 1987). For all of these measures a score of one signifies
perfect agreement between true and inferred cluster allocations. For
a definition of the measures and information concerning parameter
settings for the methods listed above see Supplementary Section S4.

3 Results

We provide details of the simulated and real datasets to which we
applied GPseudoClust (see Section 3.1), followed by a summary of
our results (see Sections 3.2 and 3.3), with further details in the
Supplementary Material (as indicated).

3.1 Datasets
3.1.1 Simulated datasets

Simulation Studies 1 and 2. For each of these two simulation stud-
ies, we simulated 100 datasets with each dataset having five clus-
ters. The specific construction of the datasets is tailored such that
datasets in simulation Study 1 have very clearly separated clusters,
whereas datasets in simulation Study 2 have clusters that are not
easily separable (see Supplementary Fig. S1 for examples of the
simulated datasets). scRNA-seq data often consist of large numbers
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of repeated measurements at a few capture times. To mimic this
situation, we assume 3 capture times for the simulated cells: the
first 20 cells have capture time 1, cells 21–40 have capture time 2
and 41–60 capture time 3. We remove information about the true
order by applying a random permutation to the order of the cells
within each capture time, to mimic the lack of temporal informa-
tion in applications. For both simulation studies, all datasets were
generated using GPs, but not the same GP model as GPseudoClust.
For a detailed description of the simulation set-up see
Supplementary Section S5.

Simulation studies with dropout noise. scRNA-seq data are
affected by technical noise leading to zero-expression values when
the gene is actually expressed in the cell. To study the robustness of
the method to technical zero-inflation without the presence of any
other confounders, we use one of the datasets which we used to val-
idate the subsampling procedures (see paragraph Simulation
Studies 1 and 2 above and Supplementary Fig. S1), and set non-zero
values to zero at random. Note that while we could have used a
dropout rate which depends on the actual gene expression level,
with higher expression levels associated with lower probability of
dropout (Pierson and Yau, 2015), our way of testing the robustness
is more stringent since it permits larger perturbations. This add-
itional simulation study comprises three sets of 100 datasets, to test
for robustness of the GPseudoClust method and all of the proposed
subsampling methods (see Section 2.5) to different levels of drop-
out, including a simulation study for which different groups of
genes are affected by dropout to different degrees. The three
dropout-related simulations were repeated 100 times each. For
details, see Supplementary Section S7.1.

Additional simulations: misspecified covariance functions and
large datasets. To test robustness of clustering results to covariance
function misspecification, we also simulated 24 datasets each using
hierarchical Matérn-3/2 and linear covariance functions, each data-
set with different random parameters and cluster allocations. To as-
sess the performance of the subsampling methods, we simulated
datasets with hierarchical Matérn-3/2 covariance matrices, and
9000 simulated cells, and compared clustering results obtained by
using different numbers of subsampled cells (see Supplementary
Section S8 for details).

3.1.2 Experimental datasets

Overview. Here we provide a brief overview of our analyses, be-
fore providing a fuller description of the datasets in the para-
graphs below: (i) We apply GPseudoClust to branching data
(Moignard data below), which confirms existing results and also
finds new results on differences of cluster structures of genes for
different branches; (ii) The effectiveness of the subsampling ap-
proach with parallel chains each run on a subset of cells is inves-
tigated by applying GPseudoClust both with and without
subsampling to a dataset with 600 genes and 35 cells (Sasagawa
data below); (iii) GPseudoClust is also applied to non-branching
data (Shalek data); (iv) the subsampling method and the combin-
ation of weighted PSMs are used to integrate data from different
cell lines (Stumpf data); and (v) the GPseudoClust method is
compared with our previous method for ordering cells under un-
certainty, using a small scRNA-seq dataset of lipopolysacchar-
ide (LPS)-stimulated mouse dendritic cells (Shalek13 data)
previously analysed in Strauß et al. (2019). Details on numbers
of MCMC chains and subsampled cells for the different datasets
are provided in Supplementary Section S6 and Supplementary
Table S5.

Moignard data. Moignard et al. (2015) applied single-cell RT-
qPCR to 3934 mouse early haematopoietic cells. In an in-vivo ex-
periment cells were captured at four time points between embryonic
day 7.0 and 8.5. In Moignard et al. (2015), Haghverdi et al. (2015,
2016) diffusion maps (Coifman et al., 2005) are used to identify two
branches, a blood and an endothelial branch. We use the pre-
processed (Haghverdi et al., 2016; Moignard et al., 2015) data avail-
able as Supplementary Material to Haghverdi et al. (2016). Before
the application of GPseudoClust, branches are inferred using diffu-
sion maps, as in Haghverdi et al. (2016), which leads to the

identification of an endothelial and an erythroid branch. We use dif-
fusion maps for the identification of the branches, but find cluster
allocations and their uncertainties using GPseudoClust without
prior pseudotime ordering.

Sasagawa data: Mouse embryonic stem cells, cell cycle-related
genes. GPseudoClust is also applied to a Quartz-Seq (FPKM normal-
ized) dataset of 35 mouse embryonic stem cells (Sasagawa et al.,
2013), on cell cycle-related genes. Cell cycle genes were selected by
finding genes associated with GO: 0007049, as in Buettner et al.
(2015).

Shalek data: LPS-stimulated mouse dendritic cells, scRNA-seq.
Shalek et al. (2014) examined the response of primary mouse
bone-marrow-derived dendritic cells in three different condi-
tions using scRNA-seq. We applied GPseudoClust to a version
of the Shalek dataset previously considered in an earlier paper
(Reid and Wernisch, 2016) comprising 74 genes (which have the
highest temporal variance relative to their noise levels) and to
the 183 cells from the LPS-stimulated condition and capture
times 2, 4 and 6 h, dropping the cells captured at 0 and 1 h, to
focus on differences between gene expression levels in reaction
to the stimulus rather than before the reaction has set in. The
data were log-transformed, and an adjustment for cell size
applied, according to Anders and Huber (2010) and Reid and
Wernisch (2016).

Stumpf data. Stumpf et al. (2017) generated an RT-qPCR dataset
for 94 genes from two cell lines following the progression of mouse em-
bryonic stem cells along the neuronal lineage, containing 96 cells per
capture time (0, 24, 48, 72, 96, 120 and 172 h). The proposed subsam-
pling methods allow taking subsamples of cells from each cell line sep-
arately and combining the chains as described in Section 2.5. For the
pre-processing, the steps described in Stumpf et al. (2017) were applied
to each cell line separately. The raw data are available on Mendeley
Data (http://dx.doi.org/10.17632/g2md5gbhz7.1).

Shalek13 data. Shalek et al. (2013) obtained scRNA-seq data
from mouse bone-marrow-derived dendritic cells after exposure to
LPS. 18 cells were captured 4 h after initial exposure. We use this
dataset of smaller size to compare orders obtained by GPseudoClust
without subsampling to the GPseudoRank method (Strauß et al.,
2019). For details, see Supplementary Section S9.
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Fig. 2. Results from simulation studies 1 (top) and 2 (bottom). Performance is

assessed using 3 scores (ARI, FMI and NMI), with higher values indicating

better performance. Methods compared: GPsþmean ¼ GPseudoClust and ‘mean

psm’, GPsþDP ¼ GPseudoClustþ‘DPMþPEAR’, GPsþPY ¼ GPseudoClust and

‘PYþPEAR’, GPsþlmkk ¼ GPseudoClust method followed by summary

clustering using lmkk, Mon 2 ¼ Monocle 2 (two steps: ordering and then cluster-

ing), DeþGCl ¼ DeLorean & GPclust (two steps), SLþGCl ¼ SLICER & GPclust

(two steps), hier ¼ hierarchical clustering, PAM, SIMLR, mcl ¼ mclust. For the

GPsþlmkk method there were rare cases in which the lmkk algorithm failed due to

numerical issues. In these cases we set all 3 scores to 0
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3.2 Simulation study results
3.2.1 The performance of GPseudoClust is robust to different levels

of cluster separability in our simulation studies

Figure 2 illustrates the importance of using methods modelling the
pseudotemporal nature of the data. It includes results for point esti-
mates obtained by combining the GPseudoClust method with the
proposed methods to obtain a joint PSM from several subsampled
chains (see Section 2.5). Except for lmkk, where the method itself
provides a summary clustering, a final summary clustering was
obtained from the summary PSM by means of hierarchical clustering
and the PEAR criterion.

Although for datasets with clearly separated clusters most clus-
tering methods will perform satisfactorily (Fig. 2, top), this is not
the case for datasets where the cluster structure only becomes appar-
ent through modelling the data as a pseudotime series (see Fig. 2,
bottom). In the latter case GPseudoClust, which jointly models pseu-
dotime and cluster structures, performs best, while mclust and
SIMLR perform best among those methods not incorporating the
pseudotime structure.

3.2.2 Robustness to dropout

Further simulation studies on a total of 300 datasets (dropout
Studies 1–3, see Section 3.1.1) with different levels of dropout noise
demonstrate the robustness of GPseudoClust. For details, see
Supplementary Section S7.2. Supplementary Figure S3 shows high
ARIs with the true clustering for summary clusterings obtained by
means of GPseudoClust and the proposed subsampling methods.
While all the subsampling methods have a similar level of robustness
to dropout noise when all genes are affected for all cells with equal
probabilities (see Supplementary Fig. S3), the ‘lmkk’ method is
shown to be the best performing one for the case where there are
groups of cells known to be less affected by dropout for a subset of
the genes (dropout Study 3; see Supplementary Fig. S4).
Supplementary Section S7.2 also presents comparisons of the sum-
mary PSMs obtained using the different subsampling methods (see
Supplementary Figs S5–S13).

3.2.3 Robustness to covariance misspecification

As illustrated by Supplementary Figures S14 and S15, GPseudoClust
is robust to covariance matrix misspecification across a range of
scenarios. Our results show that the degree of cluster overlap is gen-
erally more important, in terms of affecting our ability to uncover
clustering structure.

3.2.4 Gaining efficiency and maintaining accuracy with

subsampling

The simulation studies with 9000 cells and different noise levels show
that 30 subsampled cells (10 per capture time) per chain permitted a
good approximation of the true cluster structures both for simulated
datasets with lower and higher noise levels (Supplementary Figs S16,
S17, S20 and S21). The across-chain convergence measures specified
in Supplementary Section S3 indicate 12 chains with 10 subsampled
chains as sufficient (Supplementary Figs S18 and S22). Supplementary
Figure S19 illustrates the efficiency gain obtained by subsampling.
Note that without subsampling, but with efficient inversion of block
matrices (see Section 2.4), computational complexity scales as the
cube of the number of cells, while with subsampling it scales as the
cube of the (smaller) number of subsampled cells per chain (see also
Supplementary Fig. S49).

3.3 Experimental data results
3.3.1 Validating subsampling: Sasagawa data

The Sasagawa dataset has only 35 cells, which makes it suitable for
comparing the proposed subsampling methods to applying the
GPseudoClust method to all the cells.

Figure 3 illustrates good convergence of the GPseudoClust
method with and without subsampling. Moreover it demonstrates
that the proposed subsampling methods ‘PY and PEAR’ and ‘DPM

and PEAR’ lead to PSMs convincingly similar to the ones obtained
without the subsampling, and that a similar matrix is obtained using
lmkk. For further confirmation of convergence see Supplementary
Figure S48.

3.3.2 Immune response genes cluster around functional profiles

The genes analysed for the Shalek data (see Section 3.1.2) are from
three modules identified in Shalek et al. (2014) as ‘peaked inflamma-
tory module’, which shows a ‘rapid, yet transient induction’ to LPS
stimulation, ‘core antiviral module, enriched for annotated antiviral
and interferon response genes’, and ‘sustained inflammatory mod-
ule; exhibiting continued rise in expression under LPS’. Although
the analysis proved to be very stable with regard to the number of
subsampled chains (Supplementary Fig. S45), for the following ana-
lysis the PSM obtained using the ‘PY þ PEAR’ method with 96 sub-
sampled chains is used. However, as illustrated by Supplementary
Figure S45, for the ‘PY and PEAR’, ‘DPM and PEAR’ and ‘mean
PSM’ methods a good approximation is achieved with only four ran-
domly chosen chains. Supplementary Figure S46 further illustrates
convergence by applying the measures presented in Section 2.6 and
in Supplementary Section S3.

The PSMs allow the computation of (potentially overlapping)
groups of genes with high pairwise co-clustering probabilities.
We use a threshold of 80% for the identification of groups of genes
with high pairwise co-clustering probability. The choice of 80% for
the threshold is chosen to ensure that it is sufficiently stringent to
allow meaningful groups to be identified, but low enough to allow
reasonably sized groups to be identified. The word pairwise is used
here to emphasize that this is not the probability of all the genes
being in the same cluster, but that for any two genes in such a group
the probability of these two genes being in the same cluster is above
80%. It should be noted that this approach is different from trying
to find a single summary clustering, and that the groups will usually
overlap.

GPseudoClust identifies four groups with pairwise co-clustering
probabilities of more than 80%, three of which, however, have a
large overlap. Therefore, we refer to the groups as 1, 2a, 2b and 2c.
Group 1: Bcl2l11, Flrt3, Nfkbid, Ralgds, Rasgef1b and Socs3. All
genes in this group belong to a ‘peaked inflammatory module’ iden-
tified in Shalek et al. (2014), which shows a ‘rapid, yet transient in-
duction’ to LPS stimulation. Group 2: Ddx60, E030037k03rik,
Iigp1, Irf7, Mpa2l, Ms4a4c, Nlrc5, Nos2, Phf11 and Slco3a1
Group 2a: Group 2 and D14ertd668e, Dhx58, Il15. Except for
Nos2, all genes in this group belong to a ‘core antiviral module,
enriched for annotated antiviral and interferon response genes’
(Shalek et al., 2014). Nos2 is part of the ‘sustained inflammatory
module; exhibiting continued rise in expression under LPS’. Group

Fig. 3. Sasagawa data: (a) illustrates four PSMs obtained without subsampling, by

applying GPseudoClust to all cells for each of the four chains (b) compares the pro-

posed subsampling methods ‘PY and PEAR’, ‘DPM and PEAR’, and ‘lmkk’
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2b: Group 2 and D14ertd668e, Dhx58 and Procr. This group con-
sists of genes from the ‘core antiviral module’, except for Nos2 and
Procr. Group 2c: Group 2 and Il15, Procr. This group consists of
genes from the ‘core antiviral module’, except for Nos2 and Procr.

We also applied the other clustering methods (listed in Section
2.7), to the Shalek dataset. The importance of quantifying the uncer-
tainty of inferred cluster structures as done by GPseudoClust is high-
lighted by Figure 4, where the various clustering methods resulting
in a single clustering disagree quite significantly, with most ARIs
between pairs of results obtained by different methods <0.6.
In addition, Figure 4 also shows that when the two-stage method of
combining GPclust with a pseudotime method is used, the clustering
result depends on the choice of the pseudotime method.
GPseudoClust models the uncertainty in the cluster structures,
which we generally represent by the summary PSMs. In Figure 4, the
uncertainty is represented by eight random draws from the posterior
distribution of cluster allocations.

3.3.3 Detecting branch-dependent clustering structures

The analysis of the Moignard dataset shows very different clustering
structures in the trunk, the endothelial and the erythroid branch (see
Fig. 5), which shows summary PSMs obtained using the ‘PY þ
PEAR’ method for the different branches.

In this figure, the rows and columns of the four PSMs displayed
are ordered in the same way to illustrate the differences in the clus-
tering structures between the different branches.

For the trunk, Fli1, Tal1, Etv2 and Kdr have high posterior co-
clustering probabilities, mirroring the fact that they are switched on early
in the developmental process (see Supplementary Figs S28 and S29).
Genes with very low expression levels in the trunk (Gata1, Gfi1, Gfi1b,
Hbbbh1, HoxB2, HoxD8, Ikaros, Itga2b, Mecom, Mitf, Myb, Nfe2
and Sfpi1) also have high co-clustering probabilities, see Supplementary
Figure S30, similarly genes with relatively constant higher expression lev-
els (Ets2, FoxH1, FoxO4 and Ldb1; Supplementary Fig. S31).

For the endothelial branch, there is a group of genes with relative-
ly constant higher expression level throughout the endothelial branch,
which have high posterior co-clustering probabilities (Cbfa2t3h,
Cdh5, Egfl7, Erg, Ets1, Ets2, Etv6, Fli1, Hhex, Itga2b, Kdr, Kit,
Ldb1, Lyl1, Mecom, Meis1, Notch1, Pecam1, Sox17, Sox7 and Tal1;
Supplementary Fig. S34), and a group of genes which have very low
expression levels or are not expressed (Cdh1, Gata1, Gfi1, Gfi1b,
HoxB2, HoxD8, Ikaros, Myb and Nfe2; Supplementary Fig. S35).

For the erythroid branch GPseudoClust identifies again a group
of genes with relatively constant higher expression levels (Cbfa2t3h,
Ets2, Etv6, FoxH1, FoxO4, Kit, Ldb1, Lyl1, Pecam1, Runx1 and
Tal1, Supplementary Fig. S36). Gata1 and Nfe2 are switched on at
similar pseudotimes in the erythroid branch (Supplementary Fig.
S37), whereas Cdh5, Ets1, Etv2, Fli1, Hhex, Kdr and Sox7
(Supplementary Fig. S38) have a marked decrease in expression
around a similar pseudotime. For a detailed analysis and illustra-
tions of the pseudotemporal dynamics of clusters of genes in differ-
ent branches, see Supplementary Section S10 and Supplementary
Figs S27–S40. Again we performed stringent convergence analysis to
ensure across-chain convergence (see Supplementary Figs S41–S44).

3.3.4 Combining multiple datasets

The subsampling methods proposed in Section 2.5 are also particularly
useful in situations where we need to integrate data that were not
obtained in exactly the same way, for instance because they were
obtained from different cell lines or generally in slightly different experi-
mental conditions. Instead of just blending the datasets, the subsampling
method allows us to run chains for the different cell lines separately and
then combine them in a principled way. The ‘PY and PEAR’ and ‘DPM
and PEAR’ methods show particularly good agreement with each other
(see Supplementary Fig. S47), but we also considered the ‘mean psm’
and ‘lmkk’ methods (see again Supplementary Fig. S47). Figure 6 illus-
trates the downweighting of those subsamples which are inconsistent
with the integration of the two cell lines to a joint overall structure
(weights close to 0 in Fig. 6), and highlights again the high level of agree-
ment between the ‘PYþ PEAR’ and ‘DPMþ PEAR’ methods.

3.3.5 Comparing GPseudoClust and GPseudoRank (Shalek13 data)

The distributions of cell orderings obtained by the two methods are
similar, but the accounting for the uncertainty in cluster allocations by
GPseudoClust reveals greater uncertainty in the orderings. We have
found that GPseudoClust is more likely to get stuck in local posterior
modes than GPseudoRank; e.g. Supplementary Figure S23 shows that,
for GPseudoClust, different MCMC chains visit different posterior
modes. Although this is a drawback compared with GPseudoRank
(where convergence was achieved with individual chains exploring
multiple modes of complex posterior distributions), we note that it is
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mitigated by our subsampling strategies, which combine posterior sam-
ples across chains. In general, the existence of multiple modes high-
lights the benefits of adopting a Bayesian approach and running
multiple chains, compared with strategies that seek a single, locally op-
timal result. For details see Supplementary Section S9.

4 Discussion

GPseudoClust is a Bayesian non-parametric method for the clustering
of genes for single-cell RNA-seq and RT-qPCR data in terms of latent
shared pseudotime expression profiles. Applying the method to simu-
lated data shows that unless the clusters are very clearly separated
from each other, clustering methods not incorporating the pseudotem-
poral nature of the data may not be effective. Although it is possible
to combine pseudotime ordering and clustering methods in a two-step
process, applications to both simulated and experimental data lead to
clustering results with a dependence on the pseudotime method used
(see Figs 2 and 4). In an application to dendritic cells GPseudoClust
identifies clusters of genes closely associated with their biological
function, and shows that there is considerable uncertainty in the clus-
tering structures. GPseudoClust captures this uncertainty by providing
a distribution of posterior co-clustering probabilities rather than just
one single ‘point estimate’ of a clustering. An application to branching
data from early haematopoeitic cells demonstrates the ability of the
method to identify strong differences between the clustering structures
of the different branches. GPseudoClust identifies genes switched on
or off at similar times in pseudotime as being co-clustered with a high
probability. The uncertainty of clustering structures learned from the
posterior distribution as represented by the PSM allows us to under-
stand similarity of genes in terms of pairwise co-clustering probabil-
ities. An application to data obtained from different cell lines
illustrates the ability of the method to analyse different datasets study-
ing the same developmental process. GPseudoClust can be used to
combine studies with different experimental protocols with different
levels of measurement noise. The methods for finding weighted aver-
ages from multiple PSMs proposed here are designed to discard chains
inconsistent with the overall clustering structure. We note that
GPseudoClust could also be used to perform meta-analyses of previ-
ous studies, thanks to its ability to integrate datasets obtained under
different experimental conditions. This may be of interest beyond the
study of single-cell gene expression data.

GPseudoClust, which uses MCMC methods to sample from a
highly complex joint posterior distribution of both cell orders and
gene clusters, was designed to infer cluster structures accounting
for pseudotemporal uncertainty and not to compete, in terms of
computational speed, with (e.g.) efficient variational methods for
pseudotime ordering. Nevertheless, we found that computation
times (see Supplementary Table S5) still reflect the efficiency of our
inference method given the hugely complex inference task.
GPseudoClust scales linearly with both the number of genes and
the number of clusters. In terms of computation time, it is therefore
feasible to apply it to larger numbers of genes. Here we have pre-
sented applications to datasets where genes were selected whose
expression varies across pseudotime, for the Shalek dataset we
refer to previous publications for this purpose (Reid and Wernisch,
2016; Strauß et al., 2019). An exception are two RT-qPCR data-
sets, the Moignard dataset (Moignard et al., 2015), which contains
only 42 genes (33 transcription factors important in endothelial
and haematopoietic development and 9 marker genes), and the
Stumpf dataset (Stumpf et al., 2017), which contains 94 genes
(excluding 2 housekeeping genes). Generally, we would recom-
mend pre-selecting genes with pseudotemporal variation by pre-
testing if there are differences in gene expression across capture
times; e.g. as in Strauß et al. (2019).
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