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Abstract

Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently,

there are only a few ADSC products that have been approved for clinical use. The clinical application

of ADSCs still faces many challenges. Here, we review emerging strategies to improve the

therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed

for the stem cell therapies, which requires the advanced cell expansion technologies. In addition

cell-derived products are also required for the development of ‘cell-free’ therapies to overcome

the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative

functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and

regeneration required for different physiological and pathophysiological conditions. Third, poor

delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell

delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging

cell retention. Moreover, we also point out some critical issues about the sources, effectiveness

and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs,

ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
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Highlights

• ADSCs have great potential in tissue regeneration but the clinical translation of ADSCs remains a challenge.
• Strategies to improve the efficacy of ADSCs for tissue regeneration are reviewed.
• Critical issues about the sources, effectiveness and safety of ADSCs are raised for consideration.

Background

Among various mesenchymal stem cells (MSCs), adipose-
derived stem cells (ADSCs) are derived from adipose tissue
and they have wide application potential for tissue repair
and regeneration. Zuk et al. isolated a population of stem

cells from human adipose tissue through liposuction and con-
firmed their stemness [1]. Adipose tissue provides an abun-
dant autologous source of ADSCs and diverse preparation
methods result in different ADSC-containing products. Gen-
erally, adipose tissue is harvested in a micro-invasive way
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through Coleman liposuction [2] or lipectomy. After a combi-
nation of mechanical emulsification, enzymatic digestion with
collagenase and centrifugation, cells from fat tissue are con-
centrated and resuspended as the stromal vascular fraction
(SVF) [3,4]. Next, the SVF is seeded in flasks and nonadherent
cells are discarded after a certain period of time. Afterwards,
cells are expanded in accordance with conventional culture
standards [5,6]. In 2013, the International Federation for Adi-
pose Therapeutics and Science and the International Society
for Cellular Therapy made a joint statement that ADSCs share
surface characteristics with MSCs, including positivity for
cluster of differentiation (CD) 90, CD73, CD105 and CD44,
and negativity for CD45 and CD31. Furthermore, ADSCs
retain surface marker CD36 and lack CD106, which distin-
guishes them from bone-marrow-derived MSCs [7]. Different
anatomical sites do not alter the biological properties or
multipotency of ADSCs no matter whether they are obtained
from visceral, omental or subcutaneous fat pads [8].

Furthermore, ADSCs are one of the most favored ‘seed
cells’ in regenerative medicine nowadays because of their
ability to promote tissue regeneration via several mecha-
nisms. First, ADSCs have multidirectional differentiation
potential. In addition to osteogenic [9], chondrogenic [10]
and adipogenic [11] differentiation potential, ADSCs are
also capable of differentiating into hepatocytes [12,13],
endothelial cells [14,15], smooth muscle cells [16,17], skeletal
muscle cells [18], myocardial cells [19,20], Schwann cells
[21] and pancreatic acinar-like cells [22]. ADSCs can also be
reprogrammed into induced pluripotent stem cells (iPSCs)
[23], whether they are derived from either human or mouse
[24,25]. The reprogramming time for mouse and human
ADSCs into iPSCs averages 1.5 weeks and 2.5 weeks,
respectively, and their induction efficiency is higher than
that of other types of cells [26]. The ability of ADSCs
to differentiate into multilineage cells implies that ADSCs
might replace damaged resident cells and benefit a wounded
organ through differentiation. Another growing opinion
insists that the healing competency of ADSCs in tissue
regeneration should be ascribed to their paracrine capacity
[27,28]. Angiogenic factors, growth and trophic factors,
chemokines, pro-inflammatory cytokines, anti-inflammatory
cytokines and other cytokines secreted by ADSCs [29], are
dominant in tissue repair and play different roles during
sequential wound healing processes. Therefore, we can
prolong the paracrine period, extend the paracrine profile
and strengthen the secretion of selected cytokines to reinforce
the healing effect of ADSCs. Besides, ADSCs also have
immunomodulatory functions. Both pro-inflammatory and
anti-inflammatory effects of ADSCs have been reported. It is
suggested that the stimulation of specific Toll-like receptors
may lead to the polarization of MSCs into either pro-
inflammatory or anti-inflammatory phenotypes, resulting
in different immunomodulatory capacities under various
pathophysiological conditions [30,31]. Therefore, stem cell
therapy has been used in tissue regeneration mostly due
to their anti-inflammatory ability for alleviating excessive
inflammation in acute injuries and chronic inflammatory

disorders. It is found that ADSC treatment can reduce inflam-
matory infiltration, impair Type 1 T helper (Th1)-driven
inflammatory responses, promote macrophage polarization,
downregulate the production of various inflammatory
mediators and induce anti-inflammatory interleukin (IL) 10-
secreting regulatory T cells [32–36]. Consequently, ADSC
treatment can relieve symptoms of inflammatory bowel dis-
eases, chronic obstructive pulmonary disease associated with
cigarette smoking, crescentic glomerulonephritis, rheumatoid
arthritis etc. [32–36]. Apart from the direct application of
ADSCs, macrophages cultured with conditioned medium
(CM) of ADSCs showed an immunosuppressive secretory
phenotype, and therapeutic injection of these altered
macrophages could also exert a protective effect against
colitis [37]. ADSCs can also suppress the proliferation of
lymphocytes, especially T cells [38], and prolong the survival
of skin allografts in vivo [39]. These reports imply their low
immunogenicity and suggest that they are well tolerated [40],
which may enable the wide and safe application of ADSCs.
Collectively, the abundant sources, low immunogenicity and
ease of accessibility of ASDCs enable their broad application,
and their capacity for multilineage differentiation, paracrine
capacity and immunomodulation support their contributions
to tissue repair (Figure 1).

Because of the above-mentioned advantages and charac-
teristics, ADSCs have become an attractive tool for regener-
ative cell-therapies. Around 1000 MSC-related clinical trials
and >400 clinical trials involving ADSCs are currently listed
on ClinicalTrails.gov. The therapeutic potential of ADSCs has
boosted numerous studies on musculoskeletal [41], cardio-
vascular [42–44], rheumatic [45], urinary [46–49], hepatic
[50,51], corneal [52] and neurological diseases [53–55] as
well as aesthetic rejuvenation [56] etc. (Figure 1). In addition
to promoting tissue repair directly, adipocytes generated from
patient-derived ADSCs carry genetic variation cues and help
screen personalized antidiabetic drugs [57]. However, MSCs,
as the mainstay for stem cell-based therapy, have always been
the subject of criticism, because only a few clinical trials
have succeeded in proceeding into the Phase III/IV stage.
Some meta-analyses have pointed out that there is no level-
4 evidence supporting stem cell therapy for tendon disorders
[58] or knee osteoarthritis [59]. Furthermore, only a short list
of cord blood based cellular products have been approved
by the Office of Tissues and Advanced Therapies (OTAT) of
the US Food and Drug Administration (FDA) [60],whereas
none of the ADSC-derived products has been licensed in the
USA. So far, approved ADSC products include Anterogen’s
Cuepistem from Korea and Alopisel from Europe, both of
which are indicated for the treatment of complex perinal
fistulae in patients with Crohn’s disease. Collectively, ADSCs
have great potential in tissue regeneration but the clinical
translation of ADSCs remains a challenge.

Review

Strategies for improving ADSCs for tissue regeneration

It can be seen that, despite a surge in ADSC-based therapies,

ClinicalTrails.gov
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Figure 1. Preparation, characteristics, mechanisms and applications of adipose-derived stem cells (ADSCs) (created with BioRender.com)

controversy persists and the optimal regimen for their clinical
application remains elusive. Here, the needs and problems
involved in the application of ADSC-based therapies are
emphasized. Strategies to improve the efficacy of ADSCs for
tissue regeneration are highlighted (Figure 2). First, a great
quantity of cells is often needed for the stem cell therapies,
which requires the advanced cell expansion technologies to
maintain cell stemness during cell expansion for high-quality
cell production. Meanwhile, sorting of cell subpopulations
can offer specific therapeutic treatment. Besides, functional
cell-derived products, such as extracellular vesicles/exosomes
and conditioned medium, are also needed for the develop-
ment of ‘cell-free’ therapies to overcome the drawbacks of
cell-based therapies. Second, it is necessary to strengthen the
regenerative functions of ADSCs, including viability, differ-
entiation and paracrine ability, for the different physiolog-
ical and pathophysiological conditions in tissue repair and
regeneration. Third, poor delivery efficiency also restricts the
therapeutic effect of ADSCs. Effective approaches to improv-
ing cell delivery include alleviating harsh microenvironments,
enhancing targeting ability and prolonging cell retention.
Finally, some crucial concerns on source, effectiveness and
safety of ADSCs are raised for consideration when approach-
ing better ADSC-based treatment. In summary, by aiming at
critical points of ADSC application, diversified novel strate-
gies can help in achieving the full potential of ADSC-based
therapies.

Harvest cells or cell-derived products

Cells

Alter cell culture scheme The ever-growing use of stem cell-
based regenerative medicine has been a challenge to the
cell expansion technologies. A typical therapeutic dose of
stem cells ranges from 106 to 109 cells [61–63]. Despite the
rich resources of adipose tissue, the pressing need for large
populations of stem cells necessitates simple, rapid and large-
scale production. However, large-scale production may be
accompanied by the possibility of abated cellular stemness,
genetic and epigenetic mutations, phenotype transformation
and functional property alteration due to rapid cell division.
Hence, the cell culture scheme should be altered to meet the
requirements of quality and quantity.

Cellular stemness can be preserved by designing scaffold-
s/substrate with a specialized nanostructure. For example,
a ZnO nanorod array could provide a nanoscale surface
and sustained release of Zn2+. Therefore, ADSCs cultured
on a ZnO nanorod array were able to express Kruppel-like
factor 4 and retain stemness genes and protein expression
without inhibiting self-renewal and differentiation potential
[64]. To prevent gradual stemness loss of cultured stem cells
in vitro, it is necessary to avoid hyperoxia and intracellular
reactive oxygen species (ROS) overload that is caused by
frequently-used hydrophobic polystyrene flasks. Accordingly,
a degradable zwitterionic hydrogel was developed to
mitigate excessive ROS production within stem cells in

BioRender.com
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Figure 2. Strategies for improving adipose-derived stem cells (ADSCs) for tissue regeneration. ROS reactive oxygen species (created with BioRender.com)

response to hydrophobic substrates by inhibiting O2-related
metabolism [65]. Another clickable zwitterionic starch-based
hydrogel also contributed to the well-maintained stemness
of encapsulated brown ADSCs against their spontaneous
myocardial differentiation during expansion [66].

In addition, a favorable environment mimicking the in vivo
stem cell niche can also help to maintain ADSC stemness and
support stable and rapid proliferation. Usually, cells cultured
within a 3D spheroid demonstrate better performance than
those cultured on 2D culture plates because 3D culture can
provide viable cell density and promote cell harvest. Besides,
the 3D matrix is similar to the natural physiological milieu of
ADSCs and is able to provide cell–cell and cell–extracellular
matrix (ECM) mechanotransduction for improved prolifera-
tion and functionality. Construction of 3D stem cell aggrega-
tion via a chemical adhesion modification is advantageous to
produce a potent pro-angiogenic secretome [67]. Formation
of size-controllable ADSC spheroids induced by a nanowire
surface could yield enhanced angiogenic potential [68].

Therefore, some ‘all-in-one’ platforms have emerged, such
as hydrogels inspired by sandpaper [69] and lotus seedpod
[70], which allowed integrated culture, harvest and delivery
of ADSC spheroids. A thorough microsphere-based system,
fabricated by digital light processing 3D printing technology,
pulled together procedures including expansion, preservation
and harvest. This system used cell-capsulated microspheres
as functional units for ADSC delivery and ‘bottom-up’ tissue
construction [71].

Sort cell subpopulations ADSCs are known to be a hetero-
geneous population of cells that can be identified through
a set of markers. The heterogeneity of stem cells results in
divergent functionalities that may affect therapeutic poten-
tial. According to surface markers and other properties of
stem cells, ADSCs can be further divided and enriched into
subpopulations with specific functions and efficacy that can
be used for effective and accurate treatment.

For example, purified CD105+ ADSCs was a worthwhile
attempt to improve chondrogenic regeneration when seeded
into a biodegradable 3D scaffold. [72]. CD105, i.e. endoglin,
is a 180 kDa homodimeric transmembrane glycoprotein that
acts as a coreceptor for transforming growth factor-β (TGF-
β), which is a principal regulator during chondrogenesis [73].
Augmented cartilage regeneration could also be achieved by
sorting and utilizing CD146+ ADSCs coupled with articular
cartilage ECM in a rat osteochondral defect model. The
therapeutic effect may benefit from the immune-modulating
properties of CD146, a transmembrane glycoprotein and an
adhesion molecule of the immunoglobulin superfamily [74].

Cell-derived products

Extracellular vesicles (EVs)/exosomes Direct cell-based therapy
often raises concerns about immune tolerance of allogenic
cells, quality control of cell viability and stringent operation
requirements, which drives the research into ‘cell-free’
therapies as viable alternatives.

BioRender.com
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Extracellular vesicles (EVs), as a novel acellular alternative
for stem cell therapy, are described as cargoes containing
selected proteins, lipids and nucleic acids [75]. The bilayer
lipid membrane of EVs allows their fusion with target cells,
and then microRNA (miRNA) and proteins released from
vesicles mediate downstream signaling. It is a different process
from direct paracrine effect which involves the transduction
of extracellular signals via membrane receptors [76]. EVs
contain not only conventional proteins but also tissue/cell
type-specific contents, which reveal their source and specific
utility. For example, EVs, obtained from ADSCs during dif-
ferentiation towards white or beige adipocytes, favor white or
beige adipogenic differentiation of ADSCs, respectively [77].

EVs isolated from supernatants of ADSCs via tangential-
flow filtration have similar biological functions to ADSCs,
such as immune-modulatory capacity. Intra-articular injec-
tion of ADSC-EVs significantly alleviated osteoarthritis and
protected cartilage against degradation [78]. EVs effectively
suppressed IL 1β-mediated expression of several inflamma-
tory and catabolic factors, such as matrix metalloproteinase
(MMP)-1, -3, -13 and a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS)-5, and EVs also
strengthened chondrocyte viability and collagen deposition,
thus shifting catabolic trends towards cartilage homeostasis
[78]. Hypofunction of ultraviolet-damaged human dermal
fibroblasts results in dermal inflammation, collagen loss
and skin aging. Administration of ASDC-EVs could restore
proliferation, migration and collagen synthesis of ultraviolet-
irradiated human dermal fibroblasts and avoid aberrant
matrix degradation [79]. Furthermore, after intrarenal
ADSC-EVs infusion, pigs with metabolic syndrome and renal
artery stenosis displayed improved performance of blood
supply, glomerular filtration rate, medullary oxygenation
and fibrosis rate. However, the renoprotective effect was
attenuated with pre-silencing of IL-10 within EVs, which
underlined the cargoes of anti-inflammatory factors in
ADSC-EVs [80].

Apart from protein components, the therapeutic effect of
ADSC-EVs could also be partly ascribable to nucleic acids
within vesicles, such as miRNA. Taking advantage of osteoin-
ductive miRNAs, immobilization of biotin-labeled ADSC-
EVs on a biotin-doped polypyrrole titanium (Bio-Ppy-Ti) sur-
face could enable titanium to be a promising metal graft for
bone regeneration [81]. After internalization into osteoblasts,
miRNA could enhance the expression of osteogenic genes and
proteins, promote ECM mineralization and induce osteogenic
differentiation.

In addition, many researchers have established ADSC-
exosomes (exos) as an alternative approach for ADSC-based
regenerative therapy. As determined by biogenesis, EVs can
be divided into three main types, including exos, microvesi-
cles and apoptotic bodies [82,83]. Exos, a large complex
ranging from 50 to 100 nm in size, are secreted vesicles of
endolysosomal origin, [76] while microvesicles bud from the
plasma membrane [83]. Polydopamine-coating poly (lactic-
co-glycolic acid) (PLGA/pDA) scaffolds immobilized with

ADSC-exos demonstrated their potential for the repair of
bone defects [84]. An injectable polypeptide-based hydrogel
with a pH-responsive sustained release of ADSC-exos, could
avoid the rapid clearance of ADSC-exos and achieve diabetic
wound healing [85]. OxOBand, a porous cryogel supple-
mented with ADSC-exos, could also facilitate diabetic wound
closure [86].

Conditioned medium Utilization of ADSC-conditioned
medium (CM) is another preferable ‘cell-free’ therapeutic.
ADSC-CM contains almost the whole secretome of ADSCs
and can reflect the regenerative potential that originate from
their paracrine capacity. Compared with using EVs/exos,
it is more economical, efficient, controllable and time-
saving to employ ADSC-CM and utilization of ADSC-
CM may avoid controversies arising from stem cell-based
therapies. In addition, ADSC-CM treatment as a therapy
involving a cocktail of factors is spatiotemporally quite
similar to the physiological process. In contrast, it has
been proven that individual delivery of growth factors may
have drawbacks. For example, because of the mismatch
between the in vivo kinetics of exogenous vascular endothelial
growth factor (VEGF) and sequential angiogenesis demands,
exogenous VEGF may result in a serious increase in vascular
permeability [87].

It is reported that the healing potency of submucosal injec-
tion of ADSC-CM was equivalent to that of stem cell engraft-
ment, in terms of proliferation, angiogenesis, immunomod-
ulation and antioxidation [88]. Application of CM, includ-
ing subcutaneous injection and topical smearing, achieved
healing effects on a rat wound model through macrophage
recruitment and macrophage polarization towards a pro-
healing phenotype [89]. Instead of applying stem cells directly,
simply treating endothelial cells with CM collected from
an ADSCs sphere culture could promote capillary forma-
tion due to the increased level of VEGF production [68].
ADSCs cultured on polydopamine-modified bioceramic scaf-
folds showed enhanced paracrine function, the CM of which
could promote angiogenesis, modulate macrophage pheno-
type and accelerate diabetic wound closure [90]. ADSC-CM
could also protect lung epithelial cells against linear electrical
injury and restore transcellular electrical resistance even in
the presence of cigarette smoke extract, demonstrating the
protective effect of ADSCs against cigarette-induced lung
injury [33]. Additionally, a conceptual artificial stem cell
spheroid (ASSP) was constructed by using PLGA and cell
membranes of erythrocytes/platelets to load CM derived from
ADSC spheroids. It was found that ASSP analogs restored
blood perfusion against ischemic diseases, showing promise
in the development of a controllable and applicable ‘cell-free’
ADSC-based therapy [67].

Strengthen function

Maintain viability Poor survival rate of ADSCs impedes their
further application. How to maintain ADSC viability in a
diseased microenvironment is a major challenge. Enhancing
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cell resistance, conducting hypoxic pre-conditioning and alle-
viating cell apoptosis and cell aging may be helpful.

Enhancing cell resistance to harsh environments is an
option. Therefore, hydrogels immobilized with insulin-like
growth factor 1C domain peptide improved the viability and
angiogenic activity of encapsulated ADSCs in vitro as well
as their survival and retention in vivo, thus achieving limb
salvage for critical limb ischemia [91]. Additionally, mela-
tonin could alleviate apoptosis, inflammation and oxidative
stress of ADSCs by reducing the acetylation levels of p53,
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and forkhead box protein O1 (FoxO1) through
upregulating sirtuin 1 (SIRT1). Therefore, melatonin exerted
a protective effect against hypoxia/serum deprivation injury
of ADSCs in vitro and showed an additional benefit in ADSC
treatment of myocardial infarction [92]. The knockdown of
prolyl hydroxylase domain protein 2 of ADSCs increased
cell survival and insulin-like growth factor secretion and
showed a cardioprotective effect, since prolyl hydroxylase
domain protein 2 served as a sensor of cellular oxygen level
and a regulator of two critical transcription factors, namely
hypoxia-inducible factor (HIF) and NF-κB [93].

Moreover, hypoxic pre-conditioning can endow stem cells
with enhanced adaptability to a hypoxic environment by up-
regulation of the HIF-1 α pathway [94]. Pre-vascularized
human MSC (hMSC) cell sheets that experienced hypoxic
and angiogenic pre-conditioning through first-stage hypoxic
culture conditions (2% O2) and second-stage co-culture with
endothelial cells consequently displayed a superior therapeu-
tic effect in terms of skin-graft take rate, tissue regeneration,
cosmetic appearance and skin appendages preservation in
comparison with untreated hMSC cell sheets [95].

Aging is also an issue of concern that may hinder
the function of ADSCs. Delivery of lentivirus-containing
myocardin and telomerase reverse transcriptase managed
to promote myogenic differentiation and rejuvenate aged
ADSCs, with therapeutic implication for ischemic diseases
[96]. In addition, overexpressed CLOCK, a transcriptional
activator regulating mammalian circadian rhythm, rejuve-
nated aged hMSCs in vitro and alleviated aging-related joint
degeneration in vivo [97].

Manipulate differentiation ADSCs can also differentiate into
other cell types, the process of which can be guided and
regulated by either intrinsic factors, like cell engineering, or
extrinsic cues from the surrounding environment.

To achieve directed differentiation, overexpression of
specific proteins in ADSCs by cell engineering is a common
approach. For example, up-regulating of bone morpho-
genetic protein 2 (BMP2)/TGF-β3 reportedly augmented
the osteogenic differentiation of ADSCs [98]. Modified
by a hybrid baculovirus system to prolong and stabilize
the expression of TGF-β3/BMP-6, rabbit ADSCs exhibited
enhanced chondrogenesis without a tendency towards osteo-
genesis/hypertrophy [99,100]. In addition, ADSCs engineered
through co-delivering the BMP2 gene for overexpression

and the clustered regularly interspaced short palindromic
repeats (CRISPR) interference system for Nog knockout,
synergistically provoked osteogenic differentiation and
induced healing of large calvarial bone defects [101]. Apart
from those systems, lentivirus-mediated transfection of miR-
135 into ADSCs could regulate osteogenic differentiation
by down-regulating the downstream pathway of Homeobox
A2. When combined with scaffolds, ADSCs transduced with
miR-135 could increase the level of bone mineral density and
trabecular number and effectively repair bone defects [102].

Extrinsic cues from the surrounding environment are also
emphasized as stem cell fate regulators. The utilization of
biomaterials contributes to multidimensional manipulation
of stem cells and thus provides promising prospects for
ADSC-based therapy in tissue engineering [103]. Stem cells
sense and respond to the inherent properties of materials,
including stiffness [104–107], geometry [108,109], adhesive
ligands [106,110] and degradability [111], which conversely
exert influence on stem cell morphology [110,112,113],
cytoskeleton [114], mechanotransduction [114] and subse-
quent cell fate determination [115], demonstrating a dynamic
cell–material interplay. Accordingly, advanced platforms have
made it possible to orchestrate stem cell fate in a novel
way, such as in situ magnetic control [116], high-throughput
screening for beneficial cues [117] and monitoring [118,119],
even at the single-cell level [118].

Boost paracrine capacity It is widely believed that the
paracrine capacity of ADSCs contributes to tissue regener-
ation, and how to boost their secretion to generate beneficial
bioactive factors has always been a crucial concern in the
field of tissue regeneration [33,88].

Cell engineering (i.e. transgene and gene editing), charac-
terized by meticulous, directed, but complicated regulation,
is one of the worthwhile attempts to evoke regenerative
potential from an internal aspect. For example, engineered by
Cas9 adeno-associated virus serotype 6 transduction, hMSCs
overexpressed platelet-derived growth factor BB (PDGF-BB)
and VEGFA accelerated the healing of diabetic wounds [120].
ADSC cell sheets functionalized by the CRISPRa system
achieved potent peripheral nerve regeneration through over-
expression of multiple neurotrophic factors [121].

Furthermore, external factors, including different biomed-
ical, chemical and mechanical cues have been employed to
stimulate ADSCs. Some strategies are straightforward and
provide the needed stimulus directly. For example, tethering
nanoparticles loaded with tumor necrosis factor α (TNFα)
to the ADSC surface enhanced the secretion of pro-healing
factors and achieved considerable blood perfusion and mus-
cular restoration in hindlimb ischemia. The therapeutic effect
of nanostimulators was comparable to that of precondi-
tioned ADSCs, which may serve as a time-saving alterna-
tive to cell therapy [122]. There are also indirect, com-
prehensive methods, like structuring the microenvironment
in favor of secretion. Formation of cell aggregates, includ-
ing sheets [95,121,123], spheroids [67–70], fiberoids [124],
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microgels [125,126] etc., and implantation of cells within
biocompatible scaffolds [89,90,127] could enhance regional
cell density and modulate cell–cell and cell–material interac-
tion, thus enhancing the paracrine effect of ADSCs [128]. For
instance, in response to β-galactosidase, a specific hydrogel
released nitric oxide and effectively activated the VEGF/
VEGF receptor-2 pathway of ADSCs, thus triggering secre-
tion of VEGF and stromal cell-derived factor (SDF)-1α for
myocardial regeneration [129].

Improve delivery

Alleviate harsh microenvironments One of the major hurdles
in ADSC-based therapy for ischemic tissue repair is the
harsh microenvironment, characterized by a high level of
ROS, insufficient oxygenation, poor blood perfusion, exces-
sive inflammation etc. [130]. Previously, maintaining cell
activity was mentioned to improve cell survival. It is also
feasible to reduce adverse factors and provide beneficial
factors to change a harsh environment.

One of the common strategies is to eliminate ROS within
the damaged microenvironment. More specifically, ROS may
damage the adhesion molecules of ADSCs, including integrin
αV and β1, p-fak and p-src, as well as intercellular adhesion
molecule 1 and vascular cell adhesion molecule 1 ligands
on cardiomyocytes for stem cell homing and integration.
It is reported that injectable chitosan hydrogel could elim-
inate excessive ROS, recover adhesive molecules of ADSCs
and increase the level of SDF-1 for ADSC homing, thereby
contributing to myocardial repair [131]. Another strategy
took advantage of the anti-oxidative properties of fullerenol
nanoparticles within an alginate hydrogel to reduce super-
oxide anion and hydroxyl radicals, thus showing a potent
cytoprotective effect. ADSCs embedded in such an antioxida-
tive hydrogel presented improved therapeutic efficiency for
myocardial infarction via activation of extracellular signal-
regulated kinase and p38 as well as inhibition of c-Jun N-
terminal kinases [132].

In vitro pre-vascularization measures may be beneficial
for implanted stem cells. A damaged microenvironment and
insufficient transport of nutrients may lead to the necrosis
of engrafted ADSCs and hinder regenerative efficacy, espe-
cially for cells implanted within large-sized constructs. There-
fore, pre-vascularization, i.e. formation of microvascular net-
works within constructs prior to implantation, may help
to accelerate inosculation with host microvasculature and
shorten the duration of hypoxia [133]. An engineering scaf-
fold pre-seeded with human umbilical vein endothelial cells
(HUVECs) and ADSCs in a 1:1 ratio could synergistically
form aligned vascular networks after 11-day culture, which
could meet the increased need for nutrients and oxygen of a
large tissue by accelerating surrounding perfusion into vol-
umetric muscle loss defects [134]. In addition, a 3D-printed
skin patch, pre-vascularized with endothelial progenitor cells
together with ADSCs, could remarkably induce angiogene-
sis and wound healing [135]. Furthermore, inspired by the

multilineage differentiation potential of ADSCs, endothelial-
induced ADSCs and osteogenically induced ADSCs were
used for the chronological pre-vascularization of scaffolds to
repair critical-size bone defects in rat femur [136].

Another way is to supply oxygen, since large volume
materials may aggravate the hypoxia of newly formed tissue.
For this reason, supplementation of perfluorotributylamine
(PFTBA), an oxygen carrier with high oxygen solubility,
within a hydrogel could enrich local oxygen supply and facil-
itate stem cell survival and tissue regeneration [137]. As less
integration of stem cells at the infarcted site did not alter the
therapeutic efficacy, it may be unnecessary to transplant cells
at the injury site for regeneration [138]. Therefore, injecting
stem cells into a site with sufficient blood supply rather than
ischemic tissue may serve as an easy and direct treatment to
bypass a harsh microenvironment.

Enhance targeting ability Targeted administration is a pre-
ferred delivery method for ensuring the therapeutic potential
and security of ADSCs because the majority of stem cells
systemically injected become trapped in the capillary beds
of lungs and the reticuloendothelial system of spleen and
liver. Some studies suggested that although intravenously
injected MSCs were embolized in the lungs, they could also be
activated to release anti-inflammatory TNFα-induced protein
6, which partially contributed to the therapeutic effect of
MSCs on myocardial infarction in mice. MSCs, which are
not blood-resident cells, may be incompatible with human
blood in varying degrees, thus impairing their safety and
efficacy [139]. Therefore, targeted administration, including
recruitment to the injury site and locoregional delivery, may
improve the therapeutic potential and security of ADSCs.

To improve ADSC recruitment to the injury site, immo-
bilization of target ligand on the cell surface is helpful for
its targeted delivery and implantation. Surface functional-
ization of cells using heparin could avoid lung entrapment,
increase accumulation and prolong retention of intravenously
administered ADSCs in the liver, and thus further intensify the
effect of ADSCs for the treatment of acute liver failure [140–
142]. Encapsulation of ADSC-CM with functional, specific
cell membrane also serves as an approach. Erythrocyte mem-
brane coating can be used for prolonged blood circulation
while platelet membranes are useful for targeting vascular
injury [67,143,144]. Besides, upregulating expression of SDF-
1 and some other injury-related chemokines after myocardial
infarction could synergistically engage intravenous ADSCs to
the infarcted site [145].

Additionally, locoregional delivery presents a more direct
way to utilize ADSCs in close-quarters therapy, such as intra-
arterial (coronary artery, hepatic artery, renal artery, carotid
artery, femoral artery for the target organs, respectively),
intra-portal, intra-cavity (nasal cavity, vitreous cavity, trachea
and bronchus, cerebrospinal fluid cavity, articular cavity,
abdominal cavity, urethra, vagina, digestive tract, etc.), within
tissue/parenchyma (muscle) and in situ (cornea, skin, etc.)
[146]. Advanced biomaterials and techniques can also help
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to achieve locoregional delivery. After injection into porcine
fistula and gelling in situ at body temperature, thermore-
sponsive Pluronic F-127 gel managed to preserve ADSC-
EVs in the fistula tract, leading to the desired healing results
[147]. Moreover, the muscular defect could be restored by
injection of ADSC-laden bioink and subsequent conformal
scaffold formation by noninvasive in vivo 3D bioprinting,
avoiding iatrogenic injury and surgical exposure [148]. Uni-
form administration of stem cells to skin wound area can also
be achieved by in situ bioprinting [149] and cell spray devices
[150].

Prolong cell retention A noteworthy drawback of cell-
based therapy is that administered cells tend to disperse
to surrounding sites or interstitial space rather than to the
intended tissues and/or organs, which may restrict the healing
potential. Therefore, how to prolong ADSCs retention at
the intended sites remains a crucial challenge for cell-based
therapy.

One of the applicable approaches is to enhance the
adhesive ability of ADSCs. Incorporation of integrin-
specific short peptides into hydrogels, such as GFOGER
(a specific amino acid sequence high affinity for α2β1
integrin), supported integrin-mediated stem cell adhesion
and yielded potent survival and persistence of engrafted
ADSCs [151]. In addition, because of the reversible Schiff
base reaction between aldehydes and amino groups, the
bioadhesive hydrogel enabled stable immobilization of
ADSCs on a dynamic beating heart [152]. Moreover, ADSCs
overexpressing N-cadherin displayed robust cell adhesion,
migration, proliferation and paracrine capacity via β-
catenin-dependent MMP-10/MMP-13/hepatocyte growth
factor upregulation. Intramyocardial administration of
modified ADSCs with increased retention and angiogenesis
could protect cardiomyocytes against ischemic heart failure
[153]. Administration in the form of cell aggregates, such
as spheroids, sheets, fiberoids etc., could take advantage
of inherent cell–cell connections and preserve adhesive
molecules without the intervention of biomaterials or
digestive enzymes, thus improving the retention of ADSCs
at wound bed and injured site to prevent them being washed
away [123,124,154–156].

Microgels encapsulating ADSCs also represent an alter-
native way to prolong cell retention and improve therapeu-
tic potential. Microgels could promote cell–cell and cell–
ECM interaction, enable high local cell-loading and avoid
mechanical damage due to injection [157]. Through this
microgel-assisted delivery, long-term retention of stem cells
and prominent production of ECM and angiogenetic factors
could be achieved [125,126]. Magnetic guidance could also
augment the retention of MSCs incorporated with iron oxide
nanoparticles (IONPs) at infarcted myocardium, as well as
upregulate healing-related signaling pathways and promote
the expression of growth factors, thus accelerating the repar-
ative process [158].

Critical issues on the sources, effectiveness and safety

of ADSCs

Further understanding of the sources, effectiveness and safety
of stem cells remains to be unveiled. First, as to the source
of stem cells, autologous ADSCs are always a favorable
choice. However, the inherent disease context of patients,
such as systemic sclerosis [159], atherosclerosis [160], dia-
betes [161], obesity [162,163], aging [164] etc., might impair
the reserve, secretory profiles and functional properties of
ADSCs. Although serious adverse events on usage of allogenic
ADSCs have rarely been reported so far, suggesting that cells
from allogenic source are well tolerated [165–167], more
evidence is needed to justify the clinical use of allogenic
ADSCs. In addition, other than live-cell therapy, it has been
highlighted that cellular debris from stem cells killed by
freezing and thawing [168] and apoptotic cells along with
their apoptotic bodies [169] may also serve as potential
therapeutics.

Next comes the question of the effectiveness of stem
cell therapy. Several aspects need to be emphasized includ-
ing proper indication selection, standardization, cell dosage,
route of administration, comparison with existing treatments
and consideration of cost-effectiveness. The ultimate outcome
of engrafted ADSCs, differentiation and integration, necrosis
and apoptosis, or aberrant hyperplasia and even tumorigen-
esis, remains to be elucidated [170,171]. Revealing their in
vivo fate helps researchers to manipulate in vivo behavior
of ADSCs on demand, which may enable effective and safe
ADSC-based therapies.

The most crucial issue, we believe, lies in safety concerns.
High cell dose is often required for clinical remedies [172],
which may increase the possibility of embolism and throm-
bosis through intravascular delivery [173]. In addition, long-
term in vitro expansion may cause phenotype alternation and
drive cell senescence [174]. In particular, utilization of cell-
derived products and in vitro pretreatment may necessitate
multiple complicated procedures and technologies. Some
drawbacks of emerging technologies have also become a
concern for researchers, including unexpected integration
of retroviruses [175], off-target effects of the CRISPR-Cas
system [176] and unpredictable toxicity of materials [177].
When administrated in vivo, stem cells may interact with
the inherent inflammatory context of patients [162,163] and
exert potential tumor-promoting effects [178]. Therefore,
more caution and consideration are needed when ADSC-
based therapy caters for cancer patients, e.g. ADSC-assisted
breast reconstruction for postoperative breast cancer patients
[179].

Furthermore, the thriving of ADSC-related research is
accompanied by many challenges in commercialization and
regulation. The unregulated commercial stem cell industry
not only impedes the basic and clinical research of stem cell
therapy but also jeopardizes the health and lives of patients
[180]. The external chaos of the stem cell industry should
not be an obstacle to its development. It is necessary to
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reasonably regulate and guide the development of stem cell
research.

Conclusions

ADSCs hold great promise for tissue regeneration, but trans-
lation of ADSC-based therapies to the clinic has been limited
and requires further development of novel strategies. Strate-
gies to improve ADSCs for tissue regeneration include har-
vesting cells or cell-derived products, strengthening function
and improving delivery. Meanwhile, some critical issues about
the sources, effectiveness and safety of ADSCs should also be
taken into consideration before clinical application. Overall,
by aiming at key points of the application process, advanced
strategies are expected to overcome these obstacles and drive
the development of ADSCs for tissue regeneration.
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