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Magnetization transfer imaging (MT) may have considerable promise for early detection and monitoring of subtle brain changes
before they are apparent on conventional magnetic resonance images. At 3 Tesla (T), MT affords higher resolution and increased
tissue contrast associated with macromolecules. The reliability and reproducibility of a new high-resolution MT strategy were
assessed in brain images acquired from 9 healthy subjects. Repeated measures were taken for 12 brain regions of interest
(ROIs): genu, splenium, and the left and right hemispheres of the hippocampus, caudate, putamen, thalamus, and cerebral white
matter. Spearman’s correlation coefficient, coefficient of variation, and intraclass correlation coefficient (ICC) were computed.
Multivariate mixed-effects regression models were used to fit the mean ROI values and to test the significance of the effects
due to region, subject, observer, time, and manual repetition. A sensitivity analysis of various model specifications and the
corresponding ICCs was conducted. Our statistical methods may be generalized to many similar evaluative studies of the reliability
and reproducibility of various imaging modalities.

1. Introduction

Magnetization transfer (MT) imaging is a quantitative
approach for detecting subtle or occult abnormalities in
brain tissue. In previous studies, the Magnetization Transfer
Ratio (MTR), an index of MT imaging, was sensitive to
brain changes in patients with mild cognitive impairment,
an Alzheimer’s disease prodrome [1, 2], to new lesions
in patients with multiple sclerosis, [3] and to changes
associated with progression in chronic neurological disorders
[4]. The higher magnetic field strength afforded by 3T
allows MT image resolution to be augmented compared with

conventional MT acquisition at 1.5T [5–7]. We developed
a high resolution MT technique to detect subtle changes in
anatomically small, functionally eloquent brain structures.
The increased field strength affords whole-brain coverage
with considerably thinner slices, potentially reducing partial
volume artifacts. However, even among healthy subjects,
numerous factors may introduce variability in measures
derived from magnetic resonance (MR) data, such as static
field B0 signal dropout and RF nonuniformity. Measure-
ment variation may be introduced by scan repetitions,
repositioning at different time points, and image post-
processing. Moreover, 3T may be susceptible to variation
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associated with increased field strength [8]. Such variability
may pose limitations when conducting clinical comparisons
to differentiate normal and diseased brains or in developing
statistically predictive algorithms.

To validate high resolution MT for detecting early disease
or for monitoring progression in chronic neurological
disease, it is necessary to collect information on normative
values and to evaluate the reliability and reproducibility of
the measurements when measured across time in healthy
controls. This investigation evaluated observer-agreement
of high-resolution MT measurements determined from
repeated brain scans of 9 healthy volunteers. We postulated
that MT values would remain stable during the one month
study interval. We evaluated the reliability and reproducibil-
ity of the high resolution MT measurements in 12 brain
regions of interest (ROIs), applied statistical measures to the
data and used complex multivariate mixed-effects models to
test the statistical significance of several effects due to region,
subject, observer, time, and manual repetition.

2. Materials and Methods

2.1. Study Subjects. The study was approved by the IRB at
the North Shore University Health System, and conducted
following the ethical principles outlined in the Declaration
of Helsinki. Eleven healthy adult volunteers were randomly
selected from a database maintained at the Center for
Advanced Imaging, Radiology Department, NorthShore
University Health System provided written informed con-
sent and evaluated for eligibility criteria. To protect the
subjects’ confidentiality, all data were de-identified and
handled according to the guidelines specified by the Health
Insurance Portability and Accountability Act (HIPAA) in the
USA.

2.2. Image Acquisition. Brain images were acquired using a
3T General Electric (GE) HDx system (Waukesha, WI, USA).
Each volunteer was scanned twice in a randomly-selected
time interval between 1 to 4 weeks. Methods for reducing
random errors in image acquisition included the use of a
body-coil for excitation to control B1 non-uniformities and
an 8-channel quadrature receive-only coil [9]. MT pulses
with (Ms) and without saturation (M0) were applied at an
offset frequency from water resonance. To accelerate the scan
for whole-brain coverage, while maintaining thin slices, the
image protocol was optimized based on 3T using 3D SPGR
[5]. The Gaussian Sinc MT pulse was applied in 8 ms at
a 1200 HZ offset. The stability of the scanner and set-up
procedure were addressed with a fixed set of parameters per
subject. MT pulse was based on a three-dimensional spoiled
gradient recalled (3D SPGR) acquisition. The image protocol
included the following parameters: TR 34 to 35 ms, TE 4 to
8 ms, imaging FA 5◦, bandwidth 15.6 kHz, 0.75 NEX, phase
FOV 0.75, voxel dimensions 0.9 × 0.9 × 0.9 ∼ 1.3 mm3. The
whole brain was covered in 90 to 140 slices with acquisition
time ranging from 7 minutes 40 seconds to 10 minutes 20
seconds using a partial k-space acquisition.
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Figure 1: High resolution three-dimensional MTR map displayed
both for the original view of the Axial plane and the reconstructed
view of the Coronal plan. The MTR maps have excellent tissue
conspicuity and high image resolution in all three dimensions.

2.3. Image Analysis. MTR maps were generated off-line
on a General Electric AW Workstation (General Electric,
Milwaukee, WI, USA) using the standard equation:

MTR = M0 −MS

M0
× 100%, (1)

where MS and M0 were the signal intensities in a given voxel
obtained, with and without the MT saturation pulse, respec-
tively. MTR maps generated based on the high resolution
MT are demonstrated in Figure 1. The 12 ROIs were: genu,
splenium, left and right hemispheres of the hippocampus,
caudate, putamen, thalamus, and cerebral white matter.
Figure 2 illustrated the 12 ROIs that were investigated. Each
ROI was sized approximately 30 to 43 mm2 and manually
and independently placed by Observers 1 and 2 (Authors
S.S. and Y.W.) following procedures in classical and standard
agreement studies [10]. After an initial consensus decision
was drawn regarding the sizes and locations of the 12 ROIs,
the observers performed manual segmentations of the ROI
independently on each set of images. This ROI placement
procedure was repeated by each observer in the following
week.

MTR values were extracted using the manually-defined
ROIs with the combinations of observer, time point, and rep-
etition (Table 1). The mean and SDs of the ROI values were
calculated. Meta-data were stored in a SAS 9.1 (SAS, Cary,
NC, USA) dataset, with individual volunteer identification
numbers withheld and replaced by a sequence of 1 to 9 for
each subject.

2.4. Statistical Methods. Statistical analyses were
performed using SAS 9.1 (SAS Institute, Cary, NC,
USA; http://www.sas.com). The SAS analytic procedures
conducted included “Proc Univariate,” “Proc Means,” “Proc
Corr,” and “Proc Mixed.” Bar diagrams were constructed
using Microsoft Excel (http://www.microsoft.com). Age and
gender were not controlled for in analyses.

http://www.sas.com
http://www.microsoft.com
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Figure 2: The Axial (a) and Coronal (b) views of high resolution MTR maps. Twelve brain ROIs are illustrated (white dots).

Table 1: The random or fixed effects in the data structure for the repeated measures MT study.

Outcome
Variable Yijkln

Effect in the
Variance-
Component
Analysis

Type of Effect
Mathematical

Symbol
Index

Maximum of the
Index

Mean ROI Value
via Manual
Segmentations

Subject Random Si i = i, . . . , I I = 9

Observer Fixed or Random Oj j = 1, . . . , J J = 2

Time Point Fixed or Random Tk k = 1, . . . ,K K = 2

Repetition Fixed or Random Rl l = 1, . . . ,L L = 2

Region of Interest Fixed Km m = 1, . . . ,M M = 12

Interaction Terms Generally Mixed {Si;Oj ;Tk ;Rl;Km} {i; j; k; l;n}
Based on the

Appropriate Model
Specification

2.4.1. Descriptive Statistics. Let Y = Yijklm having the indices
described in Table 1 be a random variable representing the
mean ROI value. For the mth ROI, we first computed
the sample mean and standard deviation of all mean
ROI values:

̂Mean(Ym) = Y••••m = 1
Nm

2∑

l=1

2∑

k=1

2∑

j=1

9∑

i=1

Yijklm,

ŜD(Ym) =
{

V̂ar(Ym)
}1/2

=
⎧
⎨
⎩

1
Nm − 1

2∑

l=1

2∑

k=1

2∑

j=1

9∑

i=1

(
Yijklm − Y••••m

)2⎫⎬
⎭

1/2

,

(2)

where Nm = I × J × K × L = 9 × 23 = 72 measurements and
the operator “•” means the marginal sum over the particular
index.

The 95-percentile normality range was approximately
within the following interval, with the following lower and
upper bounds:
(

̂Mean(Ym)− 2× ŜD(Ym), ̂Mean(Ym) + 2× ŜD(Ym)
)
.

(3)

The term “normality range” as used in Europe, could be
arbitrarily-defined according to the number of standard
deviations away from the mean [11]. Thus, it should not
be viewed as the range of the entire dataset, but rather an
interval useful for estimating the population value by one or
several standard deviations away from the mean. Here the
critical value of 2 was chosen as recommended by Bland and
Altman [12].
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Additionally, we justified using a Student’s t-distribution
with Nm− 1 = 71 degrees of freedom. For any tail probability
of α/2 (e.g., 0.025 for a 95-percent normality range), we
used the quantile of the corresponding to particular t-
distribution, such that

t−1
Nm−1

(
1− α

2

)
= t−1

71 (0.975) = 1.994, (4)

This value happened to be close to the recommended
multiplier of 2. Therefore, we rounded it to 2 in (3) for
convenience.

2.4.2. Concordance Using Spearman’s Rank Coefficient Coef-
ficients. We first explored and measured the concordance
between the various measurements fully nonparametrically
via Spearman’s rank correlation coefficient. Suppose that we
correlated the ROI values by Observers j = 1 and j′ = 2,
then denoted the marginal ranks, Rijklm = ranki(Yijklm)
and Rij′klm = ranki′(Yi′ jklm), respectively, for all j /= j′ with
j = 1 and j′ = 2. The sample version of Pearson’s product-
moment correlation coefficient between the ranks of the data
was equivalent to Spearman’s rank correlation coefficient
[13]:

Ĉor
(
ri jklm, ri j′klm

)
= (Nm/2)

∑2
l=1

∑2
k=1

∑9
i=1(Ri1klmRi2klm)−∑2

l=1

∑2
k=1

∑9
i=1 Ri1klm

∑2
l=1

∑2
k=1

∑9
i=1 Ri2klm{

(Nm/2)
∑2

l=1

∑2
k=1

∑9
i=1 R

2
i1klm −A

}1/2{
(Nm/2)

∑2
l=1

∑2
k=1

∑9
i=1 R

2
i2klm −B

}1/2 ,

=
∑2

l=1

∑2
k=1

∑9
i=1(Ri1klmRi2klm)− (Nm/2)Ri1klmRi2klm

(Nm/2− 1)SD(Ri1klm)SD(Ri2klm)
.

(5)

where A denotes (
∑2

l=1

∑2
k=1

∑9
i=1 Ri1klm)

2
and B denotes

(
∑2

l=1

∑2
k=1

∑9
i=1 Ri2klm)

2
.

Assuming that there was no presence of any ties since
the ROI values were of continuous random variables, the
Spearman’s rank correlation coefficient between Observers j
and j′ was

Corr
(
ri jklm, ri j′klm

)
= 1− 6

∑2
l=1

∑2
k=1

∑9
i=1 D

2
i•klm

(Nm/2)
(
N2
m/4− 1

) , (6)

where the difference of an arbitrary pair of marginal ranks for
Observer j and j′ was denoted by Di•klm = Rijklm − Rij′klm,
for all j /= j′. Consequently, all of the raw mean ROI values
were converted to their marginal ranks and the differences
between the ranks of each observation on the two variables
were computed. Spearman’s rank correlation coefficient was
also computed for the ROI values between any two different
time points k = 1 and k′ = 2.

The strength of the concordance and the benchmark
values have been discussed [14]. Bar diagrams were made to
display the Spearman’s rank correlation coefficients between
observers or time points for each ROI.

2.4.3. Reproducibility Using Coefficients of Variations. We
used the normalized measure of dispersion of a distribution
to evaluate the reproducibility of the measurement [15]. The
measure was the coefficient of variation (CV), defined as the
ratio of the SD to the mean.

ĈV(Ym) = ŜD(Ym)
̂Mean(Ym)

, (7)

where both the numerator (i.e., sample SD) and the denom-
inators (i.e., sample mean) in the above expression for CV
are provided in (2). Skewed data, such as those generated
by an exponential distribution for which the underlying

population mean and standard deviation would be equal,
and thus the CV became 1. Hence, CV < 1 would generally
represent low variability, and CV > 1 would represent high
variability. As in (4) and (6), further stratified computations
of CV for different observers, time point, or repetitions were
achieved using formulae similar to (7).

2.4.4. Normality and Significance Tests for the Effects via a
Multivariate Regression Analysis. As overall variability was
likely a result of the effects illustrated in Table 1. We
employed a multivariate mixed-effects regression analysis to
direct model the ROI values.

A variance-component approach has advantages over
many stratified analyses, especially studying studies with a
limited sample size. Here, because of the novel imaging
modality using MT and 3T acquisitions with labor-intensive
manual segmentation procedures, large number of subjects
would not have been feasible. To conduct an analysis of vari-
ance (ANOVA) based on the various effects, a distributional
assumption of normality was necessary and convenient.
Therefore, we conducted marginal normality tests using
the Shapiro-Wilk test [16]. We would demonstrate (see
Section 3.4) that the normality assumption was generally
satisfactory.

Thus, we could then consider adopting a linear random-
effects model with all pair-wise interactions, in addition to a
third-order interaction term:

Yijklm = μm + Si +Oj + Tk + Rl

+ Si ×Oj + Si × Tk + Si × Rj +Oj × Tk
+Oj × Rl + Tk × Rj +Oj × Tk × Rl + εi jklm,

∀i = 1, . . . , 9, j = 1, 2, k = 1, 2, l = 1, 2.

(8)

The effects represented the following: μm as intercept, Si as
subjects, Oi as observers, Ti as time points, Ri as repetitions,
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and εi jklm as the error team. A random-effects model
assumed that each of the effects would have independent
normal distributions with mean and variance.

If normality had failed and because the data were
mean ROI values that were positively-valued, we would
recommend a Box-Cox transformation, h(Yijklm, λ), of the
outcome variable with an optimal power coefficient λ [17–
19]. Note that the log-normal becomes a special case when
the power coefficient λ = 0. This normality transformation
is given by:

Y ′i jklm = h
(
Yijklm, λ

)
=

⎧
⎪⎪⎨
⎪⎪⎩

Yijklm
λ − 1

λ
, λ /= 0

log
(
Yijklm

λ
)

, λ = 0

∀i = 1, . . . , 9, j = 1, 2, k = 1, 2, l = 1, 2.

(9)

A profile log-likelihood, llik of λ given the observations
yi jklm, would be maximized to estimate an optimal Box-Cox
transformation via a nonlinear minimization routine, where
the log-likelihood was

llik
(
λ | yi jklm

)

= −Nm log
{
SD
(
y′i jklm

)}
+ (λ− 1)

⎧
⎨
⎩

Nm∑

i=1

log
(
y′i jklm

)
⎫
⎬
⎭ + c,

(10)

where c was a constant free of the power coefficient to be
optimized.

Due to the limited number of subjects, however, even
with an optimal normality transformation, over-fitting and
non-convergence might be issues. Alternatively, we could
regard all of the observers, time points, and repetitions as
fixed and specify a mixed-effects model. The significances of
the sources of variability were tested via a restricted max-
imum likelihood (REML) approach. For our multivariate
analysis, the significance threshold for two-tailed P-values
was set if P ≤ .05.

2.4.5. Interobserver Reliability Using the ICCs. Stratified by
the time points within each ROI, a two-way ANOVA was
performed by regarding all of the observers, time points, and
repetitions as fixed. We specified a mixed-effects model for
simplicity. Due to the complexity of the variance compo-
nents, we instead adopted a hybrid approach by considering
two effects at once. For example, all subjects were segmented
by the same observers who were from an entire population
of observers. In other words, the subject effect was always
assumed to be random, while the remaining effect (e.g., here
the observer) was assumed to be fixed. We computed the
Case-3 ICCs, accordingly [20].

We simplified our notations by only keeping the
indices for the subject and observer effects of interest. We
decomposed the data as follows:

Table 2: Various strengths of correlation coefficients as a measure
of concordance.

Absolute Value of the
Correlation Coefficient

Strength of the Concordance
Between Samples

0.0 No

0.2 Weak

0.5 Moderate

0.8 Strong

1.0 Perfect

Table 3: Two-way ANOVA table for the mixed-effects model.

Source of
Variation

Degrees of
Freedom

Mean Squares

(A) Between
Subjects

I − 1 BSMS Jσ2
S + σ2

E

(B) Within
Subjects

I(J − 1) WSMS θ2
o + Jσ2

S×o/(J − 1) + σ2
E

(B.1) Between
Observers

J − 1 OMS Iθ2
o + Jσ2

S×o/(J−1)+σ2
E

(B.2) Error (I − 1)(J − 1) EMS Jσ2
S×o/(J − 1) + σ2

E

Note: BSMS: Between Subjects Mean Squares; WSMS: Within Subject Mean
Squares; OMS: Observer Mean Squares; EMS: Error Mean Squares.

Yij = μ + Si + oj + Si × oj + εi j , ∀i = 1, . . . , 9, j = 1, 2,
(11)

where the subject effect Si was assumed to be random in
an upper-case letter, which had a normal distribution with
mean 0 and variance σ2

S , for all i = 1, . . . , I (here I = 9);
the observer effect oj was considered to be a fixed effect in

a lower-case letter, with the constraint
∑J

j=1 oj = 0, with
the corresponding parameter to the variance being θ2

o =
(1/(J − 1))

∑J
j=1 o

2
j , for all j = 1, . . . , J (here J = 2); the

interaction term between the subject and the observer Si×oj
was the degree to which the jth observer departed from his
or her usual rating tendencies for the ith subject, which had
a normal distribution with a mean of 0 and variance σ2

S×o;
the errors terms εi j were assumed to have an independent
and identical distribution (iid) normal distribution with
a mean of 0 and variance σ2

E . For the same ith subject,
the effects are further assumed to be subjected to the
constraint

∑J
j=1 (S× o)i j = 0 over all of the observers. The

corresponding two-way ANOVA table was listed (Table 3).
Shrout and Fleiss gave the true definition of ICC using

the variance ratio of the subject variance over the total
variance, with its estimated version using the quantities via
ANOVA (Table 3) [19]:

ICC = σ2
S − σ2

S×o/(J − 1)
σ2
S + σ2

S×o + σ2
E

,

ÎCC(3, 1) = BSMS− EMS
BSMS + (J − 1)EMS

.

(12)
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2.4.6. Intraobserver Reliability Using the ICCs. Similar to the
analysis described above, we adopted a hybrid approach by
considering two effects at once, with the subject effect always
assumed to be random and the time point assumed to be
fixed. The associate model was given by

Yij = μ + Si + tk + Si × tk + εik, ∀i = 1, . . . , 9; k = 1, 2.
(13)

As in (12), the estimated intraobserver agreement and its
estimate were provided by:

ICC = σ2
S − σ2

S×t/(K − 1)
σ2
S + σ2

S×t + σ2
E

,

ÎCC(3, 1) = BSMS− EMS
BSMS + (K − 1)EMS

,

(14)

where the interaction term the interaction term between the
subject and the time Si × tk had a normal distribution with a
mean of 0 and variance σ2

S×t.

2.4.7. Sensitivity Analyses of the ICCs under Various Mod-
els. We performed a sensitivity analysis by computing 6
different ICC values Shrout and Fleiss previously pro-
posed assumptions for ICCs (Table 4) [18]. A SAS macro,
written by Professor Robert Hamer, University of North
Carolina School of Medicine, Chapel Hill, NC, USA
(http://www.bios.unc.edu/∼hamer), was run to perform the
various ICC computations.

3. Results

3.1. Descriptive Statistics. Eleven healthy adults provided
written informed consent to be evaluated and 9 underwent
brain scans. Mean age of participants who received scans was
37.9±14.2 years; 7 participants were men and 2 were women.

The mean ROI values varied across different region
(Table 5). The left and right hemispheres tended to yield
similar results when the average over these healthy subjects
was considered.

3.2. Concordance Using Spearman’s Rank Coefficient Coeffi-
cients. Spearman’s rank correlation coefficients showed that
a majority of correlations within each observer was above
0.5, suggesting a moderate to high concordance (Figure 3).
Time point 2 tended to yield higher concordance between
the observers, which suggested a possible learning effect over
time (Figure 4). Due to limited sample sizes in this pilot
study, in Figures 3 and 4, we demonstrated the effect of
observers by averaging over repetitions by each observer.
Similarly, we demonstrated the effect of time points by
averaging over repetitions at each time point.

3.3. Reproducibility Using Coefficients of Variations. Overall,
CVs ranged from 1.2% in the genu for Observer 2 to 7.0% in
the right hippocampus for Observer 1 (Table 6). Since all of
the CVs were within 7%, that is, all CVs were less than 10%,
the reproducibility was reasonably high.
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Figure 3: Spearman’s rank correlation coefficients between the two
different time points for the same observer (red = Observer 1; blue
= Observer 2).
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Figure 4: Spearman’s rank correlation coefficients between the two
different observers for the same time point (orange = Time Point 1;
green = Time Point 2).

3.4. Normality and Significance Tests via a Multivariate
Analysis. The tests of the normal distribution assumption
marginally using the Shapiro-Wilk test indicated that only
occasionally (e.g., for left caudate, left and right putamen,
and right hippocampus), this assumption was not met (see
Table 7). Therefore, it was reasonable to specify linear mixed-
effects modeling and two-way ANOVA reported in Sections
3.5 and 3.6.

3.5. Interobserver Reliability Using the ICCs. At time point
1, ICCs were greater than 0.7 in regions of genu, left and
right putamen, whereas ICCs were from 0.5 to 0.7 in regions
of splenium, left and right hippocampus, left caudate, and
right cerebral white matter (Table 8). These results indicated
moderate to strong interobserver reliability. In comparison,
at time point 2, ICCs were greater than 0.7 in regions of genu,
splenium, left and right caudate, putamen and cerebral white
matter, and left hippocampus and thalamus, while ICCs
were from 0.5 to 0.7 in right hippocampus and thalamus.
These results suggested a learning effect over time. However,
for some ROIs such as the left cerebral white matter, right

http://www.bios.unc.edu/~hamer
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Table 4: Six different ICCs computed via a sensitivity analysis of the modeling choices.

Notation for the
ICC Measure

Multivariate Modeling Assumptions

ICC(1,1)
Each subject is rated by multiple observers; the observers are assumed to be randomly assigned to
the subjects; all subjects have the same number of observers.

ICC(2,1)
All subjects are rated by the same observers who are assumed to be a random subset of all possible
observers.

ICC(3,1)
All subjects are rated by the same observers who are assumed to be the entire population of
observers.

ICC(1,2) Same assumptions as ICC(1,1) but reliability for the mean of 2 ratings.

ICC(2,2) Same assumptions as ICC(2,1) but reliability for the mean of 2 ratings.

ICC(3,2)
Same assumptions as ICC(3,1) but reliability for the mean of 2 ratings. Assumes additionally there is
no subject × observer interaction.

Table 5: Descriptive statistics and 95-percentile normality range of mean ROI values.

Region of Interest Descriptive Statistics (Mean ± SD) 95% Normality Range (Mean ± 2 × SD)

Genu 77.0 ± 1.0 75.0–79.0

Splenium 72.8 ± 1.5 69.9–75.7

Left Hippocampus 51.5 ± 2.5 46.6–56.4

Left Caudate 59.5 ± 2.2 55.2–63.8

Left Putamen 62.0 ± 2.0 58.1–65.9

Left Thalamus 61.6 ± 2.3 57.1–66.1

Left Cerebral White Matter 73.2 ± 1.2 70.8–75.6

Right Hippocampus 52.0 ± 3.3 45.5–58.5

Right Caudate 61.3 ± 1.7 58.0–64.6

Right Putamen 62.8 ± 1.5 59.9–65.7

Right Thalamus 61.1 ± 2.5 56.2–66.0

Right Cerebral White Matter 73.0 ± 1.3 70.5–75.5

Note: Results were pooled among all 72 observations within each region of interest. SD: standard deviation.

caudate, right thalamus, ICCs increased from 0.2 (at time
point 1) to 0.9 (at time point 2), making it difficult to
determine whether this represents a learning effect.

3.6. Intraobserver Reliability Using the ICCs. At each time
point, intraobserver agreement was at least 0.5 for a majority
of the regions (Table 9).

3.7. Sensitivity Analyses of the ICCs under Various Models.
Six different methods for generating ICCs exhibited similar
patterns for high vs. low reliability results in different ROIs
(Table 10). Thus, reliability appeared to be sensitive to ROI.

4. Conclusions and Discussion

We present mathematical methods for MT brain images
using 3-T high resolution. Our image analysis may provide
useful pilot information for future investigations. These
mathematical and statistical methods may easily be general-
ized to practical studies with larger sample sizes or to studies
of patients with active disease.

We acquired repeat brain measurements based on a
high resolution MT imaging protocol at 3T in 9 healthy
adults. Our results indicate moderate to high reproducibility,

supporting the validity of this method for further studies.
Overall, higher intraobserver reliability was observed at
the second time point than that at the initial time point,
suggesting a possible learning curve effect for both observers.
Interobserver reliability was generally lower than intraob-
server variability, suggesting a strong observer effect in this
comparison, which may be a factor in future investigations
using MT imaging.

Our analyses examined different aspects in a typical
observer-agreement study, using measures for concordance,
reproducibility, reliability, variance-component analysis, and
multivariate analysis. In other studies, all or some of such
methods may be considered. However, with a simpler study
of either several observers, or one observer with several
repetitions at different sessions or time points, then these
scenarios may only require several of our methods. Only
a small sample of healthy volunteers was evaluated in this
initial pilot study. Therefore, the generalization of the 95-
percentile normality range may be limited with respect to
the wider spectrum of brain mechanisms represented in
the broader population. For instance, demonstrating sum-
mary measures using all possible observer and time point
combinations may not lead to meaningful interpretations
in all cases. Nevertheless, since the technology is new, this
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Table 6: Coefficient of Variation (CV) of the mean Region of Interest values for each observer.

Region of Interest
Observer 1 Observer 2

Mean ± SD (N = 36) CV (%) Mean ± SD (N = 36) CV (%)

Genu 76.9 ± 1.0 1.3 77.1 ± 0.9 1.2

Splenium 73.1 ± 1.4 1.9 72.6 ± 1.5 2.1

Left Hippocampus 51.3 ± 2.4 4.7 51.6 ± 2.7 5.2

Left Caudate 59.7 ± 1.9 3.2 59.3 ± 2.5 4.2

Left Putamen 61.9 ± 2.2 3.6 62.1 ± 1.9 3.1

Left Thalamus 59.9 ± 1.5 2.5 63.3 ± 1.7 2.7

Left Cerebral White Matter 73.3 ± 1.3 1.8 73.1 ± 1.2 1.6

Right Hippocampus 52.5 ± 3.7 7.0 51.5 ± 2.7 5.2

Right Caudate 61.2 ± 1.9 3.1 61.5 ± 1.4 2.3

Right Putamen 62.7 ± 1.5 2.4 62.8 ± 1.5 2.4

Right Thalamus 59.7 ± 1.7 2.8 62.5 ± 2.5 4.0

Right Cerebral White Matter 73.2 ± 1.2 1.6 72.8 ± 1.4 1.9

Note. SD: standard deviation.

Table 7: P-value from the Shapiro-Wilk test of marginal normal distributions.

Region of Interest
P-value P-value

Time Point 1 Time Point 2

Observer 1 Observer 2 Observer 1 Observer 2

Genu .29 .17 .70 .36

Splenium .31 .06 .93 .61

Left Hippocampus .14 .81 .45 >.99

Left Caudate .97 <.0001a .49 .92

Left Putamen .20 .06 .01a .01a

Left Thalamus .86 .51 .63 .13

Left Cerebral White Matter .82 .43 .21 .02

Right Hippocampus .54 .86 .01a .58

Right Caudate .49 .80 .60 .89

Right Putamen .07 .003a .25 .03a

Right Thalamus .50 .68 .82 .13

Right Cerebral White Matter .79 .78 .16 .54
aNormal distribution was not met.

Table 8: Interobserver reliability between two observers for each time point.

Region of Interest
Inter-Reader ICC Inter-Reader ICC

Time Point 1 Time Point 2

Genu 0.866 0.726

Splenium 0.537 0.758

Left Hippocampus 0.693 0.796

Left Caudate 0.580 0.902

Left Putamen 0.869 0.962

Left Thalamus 0.410 0.855

Left Cerebral White Matter 0.378 0.929

Right Hippocampus 0.653 0.656

Right Caudate 0.209 0.872

Right Putamen 0.725 0.882

Right Thalamus 0.264 0.572

Right Cerebral White Matter 0.637 0.896
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Table 9: Intraobserver reliability within each observer between different repetitions.

Region of Interest
Intraobserver ICC Intraobserver ICC

Observer 1 Observer 2

Genu 0.537 0.555

Splenium 0.598 0.756

Left Hippocampus 0.520 0.596

Left Caudate 0.709 0.362

Left Putamen 0.940 0.784

Left Thalamus 0.479 0.622

Left Cerebral White Matter 0.560 0.703

Right Hippocampus 0.411 0.826

Right Caudate 0.473 0.436

Right Putamen 0.659 0.657

Right Thalamus 0.687 0.308

Right Cerebral White Matter 0.570 0.770

Table 10: Sensitivity analysis of 6 different interobserver ICCs.

Region of Interest ICC (1,1) ICC (2,1) ICC (3, 1) ICC (1, 2) ICC (2, 2) ICC (3, 2)

Interobserver ICC at Time 1

Genu 0.870 0.879 0.866 0.931 0.935 0.928

Splenium 0.497 0.463 0.537 0.664 0.633 0.699

Left Hippocampus 0.653 0.605 0.693 0.790 0.754 0.819

Left Caudate 0.562 0.542 0.580 0.719 0.703 0.734

Left Putamen 0.871 0.874 0.869 0.931 0.933 0.930

Left Thalamus −0.015 0.114 0.410 −0.030 0.205 0.581

Left Cerebral White Matter 0.382 0.385 0.378 0.553 0.556 0.549

Right Hippocampus 0.660 0.669 0.653 0.795 0.802 0.790

Right Caudate 0.178 0.180 0.209 0.302 0.306 0.346

Right Putamen 0.725 0.732 0.720 0.840 0.845 0.837

Right Thalamus −0.092 0.079 0.264 −0.202 0.146 0.417

Right Cerebral White Matter 0.630 0.621 0.637 0.773 0.766 0.779

Interobserver ICC at Time 2

Genu 0.722 0.715 0.726 0.838 0.834 0.841

Splenium 0.758 0.757 0.758 0.862 0.862 0.863

Left Hippocampus 0.792 0.785 0.796 0.884 0.880 0.886

Left Caudate 0.905 0.909 0.902 0.950 0.952 0.949

Left Putamen 0.961 0.959 0.962 0.980 0.979 0.980

Left Thalamus 0.297 0.239 0.855 0.458 0.385 0.922

Left Cerebral White Matter 0.928 0.926 0.929 0.963 0.962 0.963

Right Hippocampus 0.640 0.620 0.656 0.781 0.765 0.793

Right Caudate 0.876 0.884 0.872 0.934 0.938 0.932

Right Putamen 0.884 0.887 0.882 0.938 0.940 0.937

Right Thalamus 0.419 0.347 0.572 0.591 0.516 0.728

Right Cerebral White Matter 0.889 0.876 0.896 0.941 0.934 0.945

research may provide useful pilot information for future
investigations. Moreover, the statistical methods employed
and illustrated here may easily be generalized to studies with
larger sample sizes and diseased subjects.

Another limitation was that this study aimed to evaluate
only the reproducibility and reliability, rather than the
accuracy in a more comprehensive validation study. In the

absence of a true gold standard, such as one based on
digital phantoms where realistic variability may still not be
simulated, or on histopathology, improved reliability may
not be equated with improved accuracy [21]. Both sensitivity
and specificity are of interest. Further research would benefit
from a useful algorithm to perhaps statistically and optimally
estimate the underlying spatial “ground truth” [22, 23].
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Table 11: Sensitivity analysis of 6 different intraobserver ICCs.

Region of Interest ICC (1,1) ICC (2,1) ICC (3, 1) ICC (1, k) ICC (2, k) ICC (3, k)

Intraobserver for Observer 1

Genu 0.537 0.537 0.537 0.699 0.699 0.699

Splenium 0.590 0.579 0.598 0.742 0.733 0.749

Left Hippocampus 0.531 0.544 0.520 0.694 0.705 0.684

Left Caudate 0.704 0.696 0.709 0.826 0.821 0.830

Left Putamen 0.942 0.946 0.940 0.970 0.972 0.969

Left Thalamus 0.481 0.484 0.479 0.650 0.653 0.647

Left Cerebral White Matter 0.550 0.539 0.560 0.710 0.701 0.718

Right Hippocampus 0.426 0.439 0.411 0.597 0.610 0.582

Right Caudate 0.470 0.467 0.473 0.640 0.637 0.643

Right Putamen 0.657 0.654 0.659 0.793 0.791 0.795

Right Thalamus 0.696 0.711 0.687 0.821 0.831 0.814

Right Cerebral White Matter 0.582 0.596 0.570 0.736 0.747 0.727

Intraobserver ICC for Observer 2

Genu 0.563 0.572 0.555 0.720 0.728 0.714

Splenium 0.760 0.767 0.756 0.864 0.868 0.861

Left Hippocampus 0.607 0.623 0.596 0.756 0.767 0.747

Left Caudate 0.365 0.367 0.362 0.535 0.537 0.531

Left Putamen 0.790 0.800 0.784 0.883 0.889 0.879

Left Thalamus 0.632 0.645 0.622 0.774 0.784 0.767

Left Cerebral White Matter 0.712 0.726 0.703 0.832 0.841 0.826

Right Hippocampus 0.829 0.835 0.826 0.907 0.910 0.905

Right Caudate 0.432 0.429 0.436 0.603 0.601 0.607

Right Putamen 0.667 0.682 0.657 0.800 0.811 0.793

Right Thalamus 0.298 0.294 0.308 0.459 0.455 0.471

Right Cerebral White Matter 0.777 0.789 0.770 0.875 0.882 0.870

Finally, future research may be directed to evaluating the
diagnostic utility of high resolution MT for early detection of
Alzheimer’s disease, multiple sclerosis or other neurological
disorders and for monitoring progression across the clinical
course.
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