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Abstract: The various classes of gene delivery vectors possess distinct advantages and 

disadvantages, each of which impacts on cargo loading, delivery and, ultimately, its function. 

With this in mind, herein we report on a small layered double hydroxide (sLDH)–liposome 

composite system, drawing upon the salient features of LDH and liposome classes of vectors, 

while avoiding their inherent shortfalls when used independently. sLDH–liposome composites 

were prepared by the hydration of freeze-dried matrix method. These composite systems, 

with a Z-average size of ≈200 nm, exhibited low cytotoxicity and demonstrated good 

suspension stability, both in water and cell culture medium after rehydration. Our studies 

demonstrate that short dsDNAs/ssDNAs were completely bound and protected in the 

composite system at an sLDH:DNA mass ratio of 20:1, regardless of the approach to DNA 

loading. This composite system delivered DNA to HCT-116 cells with ≈3-fold greater 

efficiency, when compared to sLDH alone. Our findings point towards the sLDH-liposome 

composite system being an effective and biocompatible gene delivery system. 

Keywords: small layered double hydroxides; liposome; gene delivery; endosomal  

escape; cytotoxicity 
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1. Introduction 

Gene therapy aims to use genetic materials, namely DNA or RNA, as a therapy; this approach is 

expected to lead to effective treatment of a wide range of disorders of genetic origin, most of which are 

not amenable to curative therapy using conventional “small molecule” agents [1,2]. A growing body of 

evidence points towards the promise of gene therapy as an effective means of treating cancers, as well 

as genetic and neurodegenerative diseases [3,4]. That said success of gene therapy trials relies heavily 

on access to safe and efficient vectors that are able to overcome the various extra- and intra-cellular 

barriers faced by genetic material [5–8]. 

Layered double hydroxides (LDHs), otherwise known as anionic clays, are either sourced naturally in 

the form of minerals or can be synthesised with precise composition and particle size homogeneity [9–12]. 

Here, magnesium-aluminium-based LDHs (MgAl–LDH) have proven to be excellent gene delivery 

vehicles, given their intrinsically low cytotoxicity, good biocompatibility, well-defined particle size and 

cationic surface properties [13–20]. The positively-charged surface of LDH nanoparticles (NPs)  

allows ready adsorption of negatively-charged (genetic) material, driven by electrostatic attraction,  

a phenomenon that leads to cargo being protected from degradation by ubiquitous enzymes, while the 

net cationic charge of LDH–gene complexes facilitates cellular internalisation. Once internalised,  

the gradual dissolution of LDH NPs in the acidifying conditions of the endosome results in 

sustained/controlled release of the payload, which, in turn, raises the osmotic pressure in the endosome 

and leads to an influx of water, causing swelling and, finally, rupture of endosomal vesicles [21,22].  

Once the LDH–gene complexes enter the cytosol, the LDH system is rapidly disassembled, with the Mg 

and Al ions eliminated through an abundance of membrane-based ion channels. A major drawback to 

the use of LDH is the mass aggregation of LDH NPs resulting from the interaction with serum proteins 

abundant in systemic circulation, a feature that has prevented the wider application of LDH as  

an in vivo compatible gene vector. 

Separately, liposomes have long been trialled and accepted as effective drug/gene vectors, given their 

similarities with the cell membrane, both in structure and composition [23]. Moreover, the surface of 

PEGylated liposomes has been readily modified with specific ligands for targeted delivery [24–27].  

A rate-limiting step with many non-viral vectors, including PEGylated liposomes, is their inability  

to escape endosomes in a timely manner. Hence, researchers have dedicated their efforts to preparing 

PEGylated liposomes encompassing various fusogenic lipids (e.g., dioleoylphosphatidyl ethanolamine 

(DOPE)) and pH-sensitive polymers, such as polyethylenimine (PEI), to improve the endosomal escape 

and payload release properties [28,29]. 

More recently, lipid-coated hybrid nanoparticles (NPs), such as polymeric NPs, mesoporous silica 

NPs and calcium phosphate NPs, have found a place in combination therapy, where attempts are being 

made to enhance their therapeutic efficacy, while reducing drug resistance and side effects. Such hybrid 

systems aim to merge the beneficial features from both vectors into one nanocarrier, while mitigating 

their individual drawbacks [26,30–34]. In particular, Bégu et al. prepared layered double hydroxide–

liposome hybrid materials with unilamellar liposomes present in the interlayer of the layered double 

hydroxide by anionic exchange [35], which could be a potential drug storage and sustained release system. 

Huang et al. reported a dextran-magnetic layered double hydroxide-fluorouracil liposome (DMFL) 

prepared by the reverse evaporation method [36] and claimed that layered double hydroxide 
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nanoparticles were entrapped in the core of liposomal vesicles with the sustained release of fluorouracil. 

Very recently, Yan et al. [37] reported a PEGylated lipid coated LDH delivery system with a core-shell 

structure with more effective cancer drug delivery. 

In this research, we designed a new composite system, comprising of small LDH nanoparticle  

(30–50 nm) and liposomes, one that would synergistically enhance the colloidal stability and delivery 

efficiency with reduced side effects. We have demonstrated that our novel LDH–liposome composite 

system possesses good colloidal stability and high rates of gene transfection with consistent dimensions in 

the low nanometre size range. 

2. Materials and Methods 

2.1. Preparation of LDH NPs and LDH–Liposome Composites 

Small LDH (sLDH) and large LDH (L-LDH) NPs were prepared as we reported earlier [38,39]. The 

LDH-liposome composite system was prepared by the hydration of freeze-dried matrix (HFDM) 

method, with slight modifications. The minor deviation from the published [40–43] method involved 

using 30% v/v tertiary butyl alcohol (TBA, Sigma–Aldrich, Castle Hill, Australia, ≥99.0%), as opposed 

to 50% v/v TBA [44]. Typically, 70 µL of 400 µg/mL sLDH suspension was mixed with 70 µL of  

95 mg/mL sucrose solution, followed by further mixing with 60 µL of 450 µg/mL EPC (Egg-derived  

L-α-lysophosphatidylcholine, Avanti Polar Lipids, Alabaster, AL, USA). The resulting clear TBA 

/water/EPC three-phase mixture was then snap-frozen in dry ice, followed by freeze-drying for 24 h 

(Christ Alpha 2-4 LD, Osterode, Germany). Finally, the freeze-dried matrix was hydrated with  

50–200 µL water and stood at room temperature for 10 min. 

2.2. Incorporation of DNA into LDH–Liposome Composite 

The complexation of DNA with our LDH–liposome composite was trialled using three different 

approaches, denoted as “LDH–DNA–liposome”, “LDH–liposome–DNA” and “LDH–liposome + 

DNA”. As depicted in Scheme 1 and elaborated here, the “LDH–DNA–liposome” formulation involved 

first complexing DNA with LDH in a sucrose solution, followed by mixing in the EPC in TBA solution, 

then freeze-drying and hydrating the lyophilisate. Similarly, for the “LDH–liposome–DNA” formulation, 

DNA was added to an LDH suspension containing EPC in TBA, with similar post-treatment. Finally, 

for “LDH–liposome + DNA”, we first prepared the LDH–liposome composite with DNA added directly 

to the nanosuspension. 

2.3. Suspension Stability Test 

All particle size distributions were determined by dynamic light scattering (DLS, Zetasizer Nano ZS, 

Malvern Instruments, Malvern, UK), where LDH, LDH–DNA, LDH–liposome and LDH–liposome with 

DNA suspensions were diluted with water at a volume ratio of 1:1 before measurement. For their size 

distribution in cell culture media, they were diluted with complete cell culture media (Gibco® 10% v/v 

of foetal bovine serum (Life Technologies, Carlsbad, CA, USA) mixed with Dulbecco’s Modified Eagle 

Medium (DMEM, with L-glutamine and 4.5 g/L of glucose, Gibco®) at a volume ratio of 1:1. 
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Scheme 1. Sequential schematic outlining the preparation of various composite layered 

double hydroxide (LDH)-liposomal formulations (suppose the total volume of mixed 

solution was 100% before freeze-drying). 

 

2.4. Agarose Gel Electrophoresis 

The dsDNA (21 bases, sequencing/PCR purity, GeneWorks, Hindmarsh, Australia) loaded with LDH 

NPs and LDH–liposome composites was assessed by agarose gel electrophoresis. A 2.5% agarose 

(molecular grade, Bioline, Alexandria, Australia) gel with Invitrogen™ Gel-Red (Life Technologies, 

Carlsbad, CA, USA) stain was made, and then dsDNA bound with LDH NPs/LDH–liposome composites 

was loaded in the wells. For each well, 260 ng dsDNA were used. The gel was imaged by a Bio-Rad 

imaging system after running at 90 V for 45 min in TBE (Tris/borate/EDTA, Invitrogen™) buffer. 

2.5. Cell Viability 

Human colon cancer HCT-116 cells were seeded in 96-well plates at a density of 2000 cells per well in 

200 µL of cell culture media. After 24 h of incubation, cell culture media was replaced by 200 µL of 

fresh media with the desired concentration of LDH or LDH–liposome NPs. After 48 and 72 h of further 

incubation, 20 µL of MTT reagent (5 mg/mL in PBS buffer, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, Molecular Probes®, Carlsbad, CA, USA) were added, followed by 2–4 h of 

incubation (dependent on cell density). Next, the cell culture media was discarded, and 50 µL of DMSO  

(Sigma–Aldrich, Castle Hill, Australia, BioReagent, ≥99.9%) was added to each well, followed by  

10 min of incubation. Absorbance was read using a plate reader (Bio-Tek, Winooski, VT, USA) at  

540 nm after 1 min of orbital shaking. A negative control group (only cell culture media, without cells) 

was used as the background. A group without adding NPs was used as the control. The cell viability was 

normalised to the control. The experiments were conducted for at least two batches in triplicate. Data 

are presented as the mean ± SEM (standard error of the mean). Two-way ANOVA was used to assess the 
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statistical significance using commercial transfection reagent Oligofectamine™ (Life Technologies, 

Carlsbad, CA, USA) as the control group. 

2.6. Cellular Uptake 

HCT-116 cells were seeded in 6-well plates at a density of 1 × 105 cells per well in 2 mL complete 

cell culture media. After 24 h of incubation, cell culture media was replaced with 1 mL of fresh media 

containing the desired concentration of LDH–DNA–Cy3 NPs (single-stranded DNA, 21 bases, labelled 

with Cy3, transfection purity, GeneWorks) or LDH–liposomes with DNA–Cy3 NPs (10 and 20 nM 

DNA). After 4 h of further incubation, the culture media was removed; cells were washed twice with 

PBS buffer (Gibco®) and then detached from the plates by trypsin–EDTA (Gibco®). The cells were 

washed twice with PBS buffer (Gibco®) and then fixed in a certain volume of 2% PFA 

(paraformaldehyde, Chemsupply, Gillman, Australia) before measurement by flow cytometry (BD 

Accuri™ C6 Flow Cytometer System, BD Biosciences, San Jose, CA, USA; band pass filter 585/40 was 

used; 10,000 cells were counted). All treatments were performed for three batches in duplicate. Data are 

presented as the mean ± SEM. Two-way ANOVA was used to assess the statistical significance. 

3. Results and Discussion 

3.1. sLDH–Liposome Composite Formation 

As shown in Figure 1A, sLDH possesses a narrow particle size distribution in the range of 10 to 100 nm 

with a Z-average size of ~40 nm. L-LDH NPs have a particle size in the range of 20 to 200 nm with  

a Z-average size of ~100 nm (data not shown). After mixing with sucrose solution, the LDH suspension 

particle size increased marginally because sucrose lowered the ion strength of the solution [45]. The 

reduced ion strength may increase the electrostatic double layer around sLDH NP and thus lead to an 

increased hydrodynamic particle size of sLDH nanoparticles measured by DLS (Figure 1A). While in a 

homogeneous TBA/water/EPC three-phase mixture, the Z-average particle size increased considerably to 

~200 nm, indicative of the formation of lipidic micelles (Figures 1A and 2B). 

Figure 1. Particle size distribution of small LDH (sLDH) in various mixtures (A); blank 

liposome and sLDH–liposome by the hydration of freeze-dried matrix (HFDM) method (B). 
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Figure 1. Cont. 

 

Figure 2. Schematic of the proposed sLDH–liposome composite formation by the HFDM 

method (for clarity, sucrose is not shown). 

 

Upon cooling, TBA present within the core of micelles freezes first, given its relatively high freezing 

point (25.5 °C), this, in turn, freezes the lipid molecules surrounding the TBA core. The water phase 

freezes next, albeit more gradually due to the presence of sucrose and its high concentration, which 

further assists with the more uniform distribution of the LDH-payload in the water phase of the mixture 

(Figure 2C) [43]. 

Water and TBA are removed completely during the next freeze drying step. During this process, the 

lipid molecules are expected to re-arrange themselves, forming fragments of lipid bilayers, while sucrose 

serves to further stabilise these transient structures (Figure 2D). Upon hydration, the lipid bilayer fragments 

spontaneously assemble and seal, forming liposomes (Figure 2E,F). Due to the relatively small size of 

sLDH NPs (~40 nm) compared to the forming liposomes, a proportion of the NPs are encapsulated in 

the vesicles during lipid-fragment self-assembly into liposomes, although one can indeed expect some 

sLDH NPs to escape encapsulation (Figure 2F). In contrast, when considering this process from the 
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perspective of L-LDH NPs and their capture into forming liposomes (Figure 2F), one would expect 

significant challenges, stemming from the considerably larger (~100 nm) size of L-LDH (cf. sLDH), and 

so, they are deemed to be less amenable to composite particle formation. 

The process leading to the formation of sLDH–liposome composite NPs prepared by the HFDM 

method is illustrated in Figure 2, with the particle size distribution of blank liposome and the  

sLDH–liposome shown in Figure 1B. When comparing particle size, the sLDH–liposome composite 

with a Z-average size of ~240 nm was found to be greater than the blank liposome (~200 nm); this difference 

may be attributed to the adsorption of sLDH NPs onto the surface of liposomal vesicles (as shown in 

Figure 2F), and this could well prove advantageous from an endosomal escape perspective (discussed 

later). As an approximation, there was about 50% of the sLDH in the liposome core and 50% on the 

liposome surface as well as in aqueous solution, determined by elemental analysis. In comparison, most 

L-LDH particles (>90%) were found in aqueous solution using the same procedure to make  

L-LDH–liposome. 

3.2. Composite System Stability 

Figure 3A shows the particle sizes of sLDH and sLDH–liposome formulations loaded with dsDNA 

in water and in cell culture medium at a dsDNA concentration of 10 µg/mL. sLDH–dsDNA has a larger 

particle size in cell culture media (~90 nm) than in water (~64 nm), which can be attributed to the 

adsorption of serum proteins onto the surface of sLDH NPs. In contrast, the sLDH–liposome suspension 

and sLDH–liposome loaded with dsDNA possessed an average particle size between 200 and 240 nm, 

which is consistent with the size of cationic liposomes loaded with siRNA reported by Wu et al. [40], 

and this particle size range is also appropriate for subsequent cellular uptake. Moreover, this observation 

illustrates that loading dsDNA into the sLDH–liposome composite system does not significantly affect 

composite size. 

Figure 3. The Z-average particle sizes of LDH NPs and LDH–liposome formulations loaded 

with dsDNA (dsDNA = 10 µg/mL; the mass ratio LDH:dsDNA = 20:1; EPC:dsDNA = 20:1; 

* MS = medium + serum, i.e., complete cell culture medium). 
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3.3. Cytotoxicity of LDH and LDH–Liposome NPs 

LDH and LDH-liposome NPs show negligible cytotoxicity at 72 h, even when employing artificially 

larger concentrations (i.e., 100–200 µg/mL, >10-times the practical concentration), as shown in Figure 4, 

with >90% cell viability at 48 h and >70% cell viability at 72 h at 200 µg/mL of LDH in the systems.  

In contrast, transfection reagent Oligofectamine™ (Life Technologies, Carlsbad, CA, USA) exhibits 

significantly higher cytotoxicity at a comparable dose (~45% cell viability at 48 h and ~30% cell viability 

at 72 h, p < 0.0001). Consistent with previous reports, the cytotoxicity of LDH [17,38] and liposomes 

composed of neutral lipids [46,47] show moderate levels of cytotoxicity. 

Figure 4. Cell viability of LDH and LDH–liposome NPs (MTT assay, in LDH–liposome 

formulations; LDH:EPC mass ratio = 1:1; transfection reagent Oligofectamine™ was used 

as the positive control; 1 * = minimum recommended dose of Oligofectamine™). 

 

3.4. DNA Loading 

Figure 5A shows the electrophoretic mobility of sLDH–liposome composites in the presence of 

dsDNA. It is evident that sLDH and sLDH–liposome composites completely bind dsDNA, irrespective 

of the dsDNA loading method (sLDH:dsDNA mass ratio = 20:1, Lane 3 to Lane 6), driven by the 

positively-charged property of sLDH NPs, which fully immobilises the negatively-charged DNA in the 

wells at this mass ratio. However, neutral liposomes (EPC:dsDNA = 20:1, Lane 7) cannot fully retard 

dsDNA migration in the well. This difference reveals, as alluded to earlier, that there are likely to be 
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sLDH NPs residing outside of the sLDH–liposome composite, which help to immobilise dsDNA in the 

well (sLDH NPs fully associate dsDNA at a mass ratio of 5:1, as reported earlier [39]), as proposed and 

shown in Figure 2F. 

Figure 5. Electrophoresis mobility of the HFDM LDH–liposome composite for dsDNA 

loading (LDH:DNA mass ratio = 20:1; EPC:DNA mass ratio = 20:1). 

 

L-LDH and L-LDH–liposome yielded similar profiles for dsDNA immobilisation, as shown in  

Figure 5B. L-LDH and all L-LDH–liposome formulations can fully complex with dsDNA in the wells 

regardless of the dsDNA loading method (Lane 3 to 6; positively-charged L-LDH NPs can also fully 

combine with DNA at this mass ratio). This also indicates that L-LDH NPs are almost entirely residing 

outside the L-LDH–liposome composites, thus allowing direct interaction with dsDNA. In addition, the 

two faintest bands in Lanes 2 and 7 (Figure 5B) arise from strand dissociation (to ssDNA), where there 

was not any LDH involved, which can occur upon extended storage of dsDNA. 

3.5. Cellular Delivery 

In consideration of the high cellular delivery of DNA using LDH NPs only (~100% of positive cells 

were observed when 40 nM of Cy3–DNA was used with LDH NPs), 20 nM of Cy3–DNA was used here 

to evaluate the cellular uptake differences between LDH and LDH–liposome composite. 

Cellular uptake of Cy3–DNA (20 nM) delivered using either LDH or LDH–liposome composite after 

4 h of incubation are shown in Figure 6A,B. The LDH–liposome composite led to a similar number of 

Cy3-positive cell populations when compared to (s/L-)LDH alone. Unsurprisingly, the average amount 

of DNA delivered into each cell by sLDH–DNA–liposome and sLDH–liposome–DNA was 2.9- and 2.2-

fold higher, respectively, when compared to that achieved with sLDH alone. In contrast, sLDH–

liposome + DNA and liposome–DNA gave a lower relative average Cy3 intensity/cell (= Cy3 intensity 

of Cy3 positive cells × Cy3 positive cell percentage; the fluorescence of non-Cy3 positive cells was 

disregarded) than sLDH alone. The reason for the latter observation is most likely due to the lower 
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loading efficiency of dsDNA into liposomes (Figure 5A), while for the former, this could be due to the 

competition for internalisation existing between empty sLDH–liposomes, blank liposomes and sLDH–

DNA NPs; more likely, the encapsulated sLDH NPs are redundant in this case. The results indicate that 

the sLDH–DNA–liposome delivered the most DNA into HCT-116 cells, followed by sLDH–liposome–

DNA. Clearly, sLDH–liposome + DNA delivered the least amount of DNA, for which one of the main 

reasons could be that most DNA is associated with the free sLDH in suspensions, and thus, DNA–sLDH is 

not hybridized with the liposome. Thus, sLDH–DNA–liposome and sLDH–liposome–DNA composites 

would be the better choice for future investigation. 

Figure 6. Cellular uptake of DNA–Cy3 by HCT-116 cells in terms of Cy3-positive cell 

percent (A) and mean Cy3-fluorescence intensity (B) (20 nM DNA, LDH:DNA mass ratio 

= 20:1, EPC:DNA = 20:1 and 4 h incubation.) 

 

The average Cy3 intensity delivered by L-LDH–liposome composites was much lower than that 

achieved by sLDH–liposome composites (Figure 6B). Moreover, their average Cy3 intensity is very 

similar in these cases, consistent with the idea that L-LDH largely resides outside the  

L-LDH–liposomes, which leads to a similar internalisation profile of DNA–Cy3 via L-LDH NPs. 

3.6. Why does the sLDH–Liposome Composite Enhance Cellular Delivery? 

sLDH–liposome composites possess improved cellular delivery properties, and this could be attributed 

in part to the encapsulation of sLDH NPs inside liposomal vesicles. Firstly, association of sLDH with 

liposomal vesicles reduces the risk of aggregation between sLDH NPs and serum proteins, thus improving 

the colloidal stability of sLDH(–DNA) NPs, so that the bioavailability and retention of sLDH–DNA NPs 

in the cell culture media is improved. The reduced protein binding was also reported by Yan et al. [37] for a 

PEGylated lipid-coated LDH delivery system. Other researchers in the field have also related the 

increased uptake/delivery of cell penetrating peptides, micelles-iron oxide NPs and LDH NPs to their 

greater stability under physiological conditions [37,48–50]. Moreover, the smaller dimensions of the 
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resulting complexes normally lead to rapid, receptor-mediated internalisation, while larger, aggregated 

complexes may show less efficient unspecific uptake through adsorptive endocytosis, which is a 

relatively slower process [51]. Furthermore, with improved composite suspension stability, the system 

would be expected to perform well in both suspended and adherent cell lines (previously, we found that 

transfection of the suspended cell line CHO-S using LDH NPs was not very successful, unlike adherent 

cell lines, such as HEK293T, NIH 3T3, COS-7 and CHO-K1 [16]). 

Aside from the composite size and colloidal stability, another key driver to internalisation, is the 

affinity of phospholipids (from liposomes) for lipids of the cell membrane [52,53]. This is also confirmed by 

the >50% of Cy3-positive cell population achieved with the liposome only, although gene loading 

efficiency by the liposome is probably only 50% (Figure 5, Lane 7). 

Followed by enhanced cellular uptake, efficient cargo release is also crucial for any competent gene 

delivery vector. The proposed endosomal escape pathway for this sLDH–liposome composite is outlined 

in Figure 7 [21,22]. Following internalisation of the sLDH–liposome composite, sLDH NPs on the 

liposomal external surface dissolve gradually under the acidic conditions inside the endosomes. This 

results in increased osmotic pressure inside, causes an influx of water and then swells the endosome 

(Figure 7A,B). Further dissolution of sLDH NPs leads to further swelling of liposomal and endosomal 

vesicles (Figure 7C), finally rupturing the endosomes and liposomes to release their cargos into the 

cytoplasm (Figure 7D). Note that in the case of liposomes (neutral liposomes here), the internalised 

liposome–DNA complexes cannot escape from the endosome efficiently, like cationic liposomes or 

liposomes with disrupting agents [54–57], which might lead to the bulk of DNA being degraded in  

the lysosome. 

Figure 7. Possible endosomal escape pathway for sLDH–liposome composite. 

 



Pharmaceutics 2014, 6 595 
 

 

4. Conclusions 

LDH–liposome composites prepared using the HFDM method possess a good particle size distribution 

with a Z-average size of ~200 nm immediately after hydration, and they remain suitable for cellular 

uptake studies. The composite systems are stable in culture medium, with limited cytotoxicity observed. 

More interestingly, the sLDH–liposome system showed a higher cellular delivery efficiency (2–3-times 

higher) than sLDH alone, while the L-LDH–liposome composite did not exhibit significant differences 

from L-LDH. The reasons we put forward for these observation are that: (1) sLDH can be easily 

encapsulated in the aqueous core of the liposome because of its relatively smaller size; (2) some sLDH 

NPs could attach to the surface of the liposome bilayer, which helps bind to and protect DNA and, more 

importantly, helps in its escape from the endosome; (3) the hydrophobicity of liposomes may also 

facilitate their cellular uptake. Thus, this research has demonstrated that a carefully engineered 

combination of sLDH and liposome synergises cellular delivery efficiency, by taking advantage of both 

systems’ salient features. 
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