
Received: May 28, 2015; Revised: July 22, 2015; Accepted: August 17, 2015

© The Author 2015. Published by Oxford University Press on behalf of CINP.

International Journal of Neuropsychopharmacology, (2016) 19(3): 1–20

doi:10.1093/ijnp/pyv095
Advance Access Publication September 5, 2015
Review

1
This is an Open Access article distributed under the terms of the Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction  
in any medium, provided the original work is properly cited.

review

High Times for Painful Blues: The Endocannabinoid 
System in Pain-Depression Comorbidity
Marie Fitzgibbon, David P. Finn, PhD; Michelle Roche, PhD

Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, 
Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National 
Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.

Correspondence: Michelle Roche, PhD, Physiology, School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland (michelle.
roche@nuigalway.ie).

Abstract

Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 
80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-
related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates 
have been identified as potential mediators in the association between depression and pain, including neuroanatomical 
reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and 
neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid 
(endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role 
in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence 
supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system 
in this interaction.
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Clinical Data Supporting Depression-Pain Comorbidity
Depression and pain are two of the most prevalent psychiatric 
and neurological disorders worldwide, and both are associated 
with significant disability, impaired health-related quality of 
life, and high mortality (Spitzer et al., 1995; Kvien, 2004; Scholich 
et al., 2012; Hassett et al., 2014). While each is considered a debil-
itating disorder in its own right, these disease entities frequently 
coexist, and it has been reported that this association may be as 
high as 80% of patients (Poole et al., 2009). For example, major 
depressive and bipolar disorder is associated with painful symp-
toms in up to 95% of patients (Grover et  al., 2012; Maneeton 
et al., 2013; Nicholl et al., 2014). Similarly, patients suffering from 
inflammatory and neuropathic pain are up to 4.9 times more 
likely to develop depression or anxiety disorder than the gen-
eral population (Hawker et al., 2011; Knaster et al., 2012; Emery 

et al., 2014; Lin et al., 2015). Patients exhibiting comorbid depres-
sion and pain do not respond as effectively to pharmacological 
treatment, and this comorbidity is more disabling and expen-
sive to both patients and society than either condition alone 
(Emptage et al., 2005; Gameroff and Olfson, 2006). Furthermore, 
it has also been found that the severity of depression directly 
correlates with increased severity of pain symptomatology 
(Khongsaengdao et al., 2000). However, it should be noted that an 
intricate relationship exists between depression and pain such 
that although pain is commonly reported by depressed patients, 
examination of pain thresholds to various stimuli such as cold, 
heat, and pressure have been shown to be reduced, increased, 
or unchanged (Ben-Tovim and Schwartz, 1981; Lautenbacher 
et al., 1999; Gormsen et al., 2004; Bar et al., 2005; Boettger et al., 
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2013), effects which depend on the modality and intensity of the 
stimulus. Thus, given the complex interaction between affect 
and pain, and the high comorbidity of depression-pain, greater 
understanding of the neurobiological mechanisms underlying 
the association is warranted to develop more efficacious treat-
ment strategies. There have been several studies investigat-
ing the role of neural substrates, including neuroanatomical 
organization, neurotransmission, neurotrophins, dysregulation 
of the hypothalamo-pituitary-adrenal (HPA) axis, and inflamma-
tion, to name but a few, in the interaction between affect and 
nociceptive processing (for review, see Blackburn-Munro, 2004; 
Goesling et al., 2013; Walker et al., 2014). A full review of the role 
of each of these substrates is beyond the scope of this review. 
However, increased evidence has indicated a role for a further 
substrate, the endogenous cannabinoid (endocannabinoid) sys-
tem, in affective and nociceptive responding (for reviews, see 
Finn, 2010; Ashton and Moore, 2011; Gorzalka and Hill, 2011; 
Rani Sagar et al., 2012; Hillard and Liu, 2014; Jennings et al., 2014; 
Boychuk et al., 2015) and as such, alterations in this system may 
provide a common mechanism by which depression and pain 
coexist. Preclinical animal models provide a valuable means 
of investigating potential neurobiological substrates that may 
underlie the association between depression and pain. As such, 
this review will provide an overview of the preclinical evidence 
supporting an interaction between depression and pain, the 
evidence supporting a role for the endocannabinoid system in 
this interaction, and the potential mechanisms through which 
the endocannabinoid system may mediate effects on affect and 
nociceptive processing.

Preclinical Animal Models Support 
Depression-Pain Interactions

Animal Models of Depression Exhibit Altered 
Nociceptive Responding

Several animal models of depression based on genetics, stress, 
lesion, and pharmacological manipulation have been shown 
to exhibit alterations in nociceptive responding (for review, 
see Li, 2015), supporting the clinical finding of an association 
between depression and pain. For example, in rats, the chronic 
mild stress model of depression has been shown to display a 
reduced nociceptive threshold to cold (Bardin et al., 2009; Bravo 
et al., 2012; Bravo et al., 2014) and mechanical (Bardin et al., 2009; 
Imbe et al., 2012) stimuli and an increased threshold to noxious 
thermal stimuli (Shi et al., 2010). Furthermore, both inflamma-
tory (Gameiro et al., 2005; Rivat et al., 2010; Wang et al., 2013) 
and neuropathic (Bravo et al., 2012) pain behavior are enhanced 
in chronic stress models of depression. Similarly, we and others 
have shown that the Wistar-Kyoto (WKY) rat, a stress hyperre-
sponsive rat strain with a depressive-like phenotype, exhibits 
thermal hyperalgesia (Burke et al., 2010), visceral hyperalgesia 
to colorectal distension (Gibney et al., 2010; Gosselin et al., 2010; 
O’Malley et al., 2010), enhanced formalin-evoked inflammatory 
pain behavior (Burke et al., 2010; Rea et al., 2014), and enhanced 
mechanical allodynia following peripheral nerve injury (neuro-
pathic pain) (Zeng et al., 2008; del Rey et al., 2011). Reserpine-
induced monoamine depletion has long been known to result in 
depressive-like behavior, and recent evidence has demonstrated 
accompanying thermal allodynia (Liu et  al., 2014), as well as 
pronounced and long-lasting mechanical hyperalgesia and 
allodynia, and cold allodynia (Nagakura et al., 2009; Arora et al., 
2011). Thus, this model has been proposed as a possible rodent 

model of fibromyalgia (Nagakura et  al., 2009). Furthermore, 
recent work from our group has demonstrated that the olfac-
tory bulbectomised rat, a lesion model of depression, exhibits 
increased sensitivity to mechanical and thermal stimuli in the 
von Frey, acetone drop, hot plate, and tail flick tests (Burke et al., 
2010, 2013), increased inflammatory pain responding in the for-
malin test (Burke et al., 2010), and enhanced neuropathic pain 
responding following spinal nerve ligation (Burke et  al., 2013, 
2014). Thus, taken together, several animal models of depression 
have been shown to exhibit altered nociceptive thresholds and 
enhanced inflammatory and neuropathic pain behavior, mim-
icking effects observed clinically.

Animal Models of Chronic Pain Exhibit Depressive-
Like Behavior

Depressive- and anxiety-like behavior, as assessed by multi-
ple paradigms, has been reported in a wide variety of preclini-
cal models of chronic pain (for review, see Yalcin et al., 2014; Li, 
2015). For example, peripheral or spared nerve injury in mice 
induces a pronounced mechanical allodynia accompanied by 
the development of depressive-like behavior as determined by 
enhanced immobility in the forced swim test (FST) (Goncalves 
et  al., 2008; Norman et  al., 2010; Wang et  al., 2011). Similarly, 
rodents subjected to the chronic constriction injury model of 
neuropathic pain exhibit reduced sucrose preference (Dellarole 
et al., 2014) and increased immobility in the FST (Hu et al., 2009; 
Jesse et al., 2010; Fukuhara et al., 2012; Zhao et al., 2014), indi-
cating the development of anhedonia and behavioral despair, 
hallmarks of depressive-like behavior. In the complete Freund’s 
adjuvant model of inflammatory pain, both mice and rats exhib-
ited depression-like behavior in the FST (Maciel et  al., 2013; 
Borges et al., 2014) and tail suspension test (Maciel et al., 2013) 
and anxiety-related behavior in the elevated plus maze, open 
field test, and social interaction test (Parent et al., 2012; Borges 
et al., 2014). Such changes in affective processing in chronic pain 
models have been shown to occur later than the development 
of enhanced somatosensory perception. For example, in neuro-
pathic pain models, alterations in emotional behavior have been 
observed 4 to 8 weeks post nerve injury (Suzuki et al., 2007; Yalcin 
et al., 2011), but not prior to this (2-4weeks) when mechanical 
allodynia/hypersensitivity is observed (Kontinen et  al., 1999; 
Hasnie et al., 2007). These studies highlight the development of 
depressive- and anxiety-like behavior in models of neuropathic 
or inflammatory pain and suggest that pathological alterations 
induced by persistent nociceptive input to brain regions that 
process both pain and affect may account, at least in part, for 
comorbid depressive-like behavioral changes.

Animal models that replicate the clinical scenario are impor-
tant for in-depth investigation of the possible neurobiological 
substrates that may mediate the association between depres-
sion and chronic pain. Although the cause of this coexistence 
remains somewhat elusive, as highlighted earlier, common 
anatomical substrates and neurobiological mediators, includ-
ing neurotransmitters, neurotrophins, neuroendocrine altera-
tions, and inflammatory mediators, have been identified, any or 
all of which may alter neural functioning in key brain regions 
involved in regulating emotional and nociceptive processing 
(for review, see Blackburn-Munro, 2004; Maletic and Raison, 
2009; Anderson et  al., 2012; Goesling et  al., 2013; Meerwijk 
et al., 2013; Jennings et al., 2014; Walker et al., 2014; Doan et al., 
2015). Increasing evidence has highlighted an important role 
for the endocannabinoid system in modulating emotional and 
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nociceptive processing, and thus this system may play a key role 
in the association between pain and depression.

The Endocannabinoid System

The plant Cannabis sativa has been used as a medicine through-
out the world for several thousand years, with reports of its 
use in treating painful symptoms appearing as early as 2600 
bc. The principal psychoactive ingredient of Cannabis sativa, 
delta-9-tetrahydrocannabinol (Δ9-THC), was first identified in 
1964 (Gaoni and Mechoulam, 1964), and subsequent studies to 
understand its mechanism of action led to the discovery of the 
endogenous cannabinoid (endocannabinoid) system. This endo-
cannabinoid system consists of the cannabinoid receptors (CB1 
and CB2) (Devane et al., 1988; Matsuda et al., 1990; Munro et al., 
1993), their naturally occurring endogenous ligands (the best 
characterized of which are N-arachidonoylethanolamine, or 
anandamide [AEA]) (Devane et al., 1992) and 2-arachidonylglyc-
erol (2-AG) (Mechoulam et al., 1995), and the enzymes involved 
in their biosynthesis and degradation. Other endocannabinoid 
ligands have also been identified, including oleamide (Leggett 
et al., 2004), O-arachidonoyl ethanolamine (virodhamine) (Porter 
et al., 2002), 2-arachidonoyl glycerol ether (noladin ether) (Hanus 
et al., 2001), and N-arachidonoyl-dopamine (Huang et al., 2002), 
although their physiological role has not been examined in detail. 
Endocannabinoid biosynthesis occurs on demand via hydrolysis 
of cell membrane phospholipid precursors. AEA is formed from 
the precursor N-arachidonoylphosphatidylethanolamine due to 
the hydrolytic activity of the phospholipase D enzyme NAPE-
PLD (Di Marzo et al., 1994; Sugiura et al., 1996), while fatty acid 
amide hydrolase (FAAH) is the primary enzyme responsible for 
the metabolism of this endocannabinoid (Cravatt et al., 1996). In 
comparison, the main biosynthetic pathway for 2-AG involves 
the hydrolysis of the membrane phospholipid phosphatidylino-
sitol by phospholipase C, producing 1,2-diacylglycerol, which 
is then converted to 2-AG by diacylglycerol lipase (Prescott and 
Majerus, 1983, Sugiura et  al., 1995). 2-AG is primarily metabo-
lized by monoacylglycerol lipase (MAGL) (85%) (Blankman et al., 
2007), although other enzymes including cyclooxygenase-2 (Yu 
et al., 1997; Kozak et al., 2000), lipoxygenase (van der Stelt et al., 
2002), ABDH6 (serine hydrolase α/β-hydrolase domain), and 
ABDH12 (Blankman et al., 2007), have also been shown to play 
a role.

Upon release, endocannabinoids bind and activate the 
G-protein coupled receptors CB1 and/or CB2. CB1 receptors are 
highly expressed on presynaptic neurons throughout the 
human and rodent brain (Herkenham, 1991; Tsou et  al., 1998; 
Mackie, 2008), the activation of which results in inhibition of 
cyclic AMP, activation of mitogen-activated protein kinase, inhi-
bition of N- and P/Q-type voltage-activated Ca2+ channels, and 
induction of inwardly rectifying K+ currents, with the resultant 
inhibition of neurotransmitter release (Demuth and Molleman, 
2006). CB1 receptors have also been shown to be expressed on 
glia and a wide range of peripheral tissues, though at lower 
levels than observed on neurons (Galiegue et al., 1995; Carlisle 
et  al., 2002; Osei-Hyiaman et  al., 2005; Cavuoto et  al., 2007; 
Cota, 2007). In contrast, CB2 receptors are widely distributed in 
peripheral tissues and organs, with a particularly high density 
on immune cells and tissues (Munro et  al., 1993; Berdyshev, 
2000; Sugiura et  al., 2000), including on glia within the brain, 
with enhanced expression observed under neuroinflammatory 
conditions (Carlisle et al., 2002; Nunez et al., 2004; Rock et al., 
2007). Accumulating evidence has also indicated that the CB2 
receptor is also expressed on subsets of neurons within the 

brain (Van Sickle et al., 2005; Gong et al., 2006; Baek et al., 2008; 
Zhang et al., 2014) and thus also modulates neurotransmission 
(Roche and Finn, 2010; Atwood et  al., 2012; Kim and Li, 2015). 
Endocannabinoids also have affinity for and activity at other 
receptors, namely the transient receptor potential vanilloid 1, 
peroxisome proliferator-activated receptors, GPR55, and GPR119 
(Huang et al., 2002; Overton et al., 2006; Sun et al., 2006; Ryberg 
et  al., 2007). Activity at these receptors has been proposed to 
account, at least partially, for some of the differential effects 
observed with potent selective cannabinoid agonists and phar-
macological modulators of endocannabinoid tone.

Because of the distribution of the endocannabinoid system 
throughout spinal and supraspinal regions, it is in a prime posi-
tion to regulate neurophysiological activities such as affective 
and nociceptive processing. This has been a very active area 
of research over the past decade, with a number of excellent 
reviews synthesizing the data supporting a role for the endo-
cannabinoid system in modulating mood and nociception (for 
review, see Ashton and Moore, 2011; Gorzalka and Hill, 2011; Rani 
Sagar et al., 2012; Hillard and Liu, 2014; Ulugol, 2014; Boychuk 
et al., 2015). However, no review to date has examined the evi-
dence that may support a role for the endocannabinoid system 
as a link between depression and pain, and thus the remainder 
of this review aims to collate and synthesize these data.

The Role of the Endocannabinoid System In 
Depression-Pain Interactions

Clinical Evidence

Several lines of evidence have demonstrated alterations in the 
endocannabinoid system in chronic pain (Richardson et  al., 
2008; Kaufmann et al., 2009) and in psychiatric patients (Gobbi 
et  al., 2005; Hill and Gorzalka, 2005; Koethe et  al., 2007). For 
example, various polymorphisms of CB1 and CB2 receptors have 
been identified in patients with major depression and bipolar 
disorder (Monteleone et  al., 2010; Minocci et  al., 2011; Mitjans 
et al., 2012; Mitjans et al., 2013) with a single nucleotide poly-
morphism in the CB1 receptor reported to enhance the risk of 
treatment resistance in depression (Domschke et al., 2008) and 
the development of anhedonic depression following early life 
trauma (Agrawal et al., 2012). Similarly, genetic alterations in the 
CB1 receptor and FAAH have also been identified in patients with 
pain associated with migraine, Parkinson’s disease, and irritable 
bowel syndrome (Juhasz et al., 2009; Park et al., 2011; Greenbaum 
et al., 2012). In addition, serum levels of endocannabinoids have 
been reported to be reduced in both depressed patients (Hill 
et  al., 2008c, 2009b) and chronic pain patients (Fichna et  al., 
2013). A recent study has reported enhanced plasma 2-AG levels 
and increased CB1 and CB2 mRNA expression on blood lympho-
cytes in osteoarthritic patients (La Porta et al., 2015). A signifi-
cant positive correlation was observed between 2-AG levels, 
pain, and depression, and a negative correlation of 2-AG with 
quality of life and visual memory was observed (La Porta et al., 
2015). In addition, CB1 receptor expression was positively cor-
related with depression scores, while CB2 receptor expression 
was correlated with pain scores. These data indicate that key 
components of the endocannabinoid system are upregulated 
in human osteoarthritis with significant correlations with pain 
and emotional symptoms. In addition to visual loss and sensory 
deficits, neuromyelitis optica is associated with significant pain 
(altered threshold responding and symptoms of neuropathic 
pain), depression, and increased plasma levels of 2-AG and 
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AEA (Pellkofer et al., 2013). This study evaluated if a correlation 
existed between pain threshold and levels of endocannabinoids, 
demonstrating a considerable negative correlation between the 
plasma levels of 2-AG and mechanical pain thresholds in these 
patients, although this study did not evaluate if an association 
also existed with depressed mood. While the data suggest a 
possible association between pain, depression, and the endo-
cannabinoid system in osteoarthritis and neuromyelitis optica 
patients, further clinical studies are required to determine if 
alterations in the genetics, levels, and activity of the endocan-
nabinoid system exist in other patient groups exhibiting depres-
sion-pain comorbidity.

There has been a paucity of clinical studies directly inves-
tigating the role or activity of cannabinoids in depression-pain 
interactions; however, enhanced mood and improved quality of 
life have been reported in studies investigating the analgesic 
efficacy of cannabinoid-based therapies (Table 1). For instance, 
cannabis intake has been reported to improve muscle and nerve 
pain as well as depression and anxiety symptomatology in a 
group of HIV patients (Woolridge et  al., 2005). Improvements 
in anxiety and overall distress have been reported in patients 
with advanced cancer in whom pain symptoms were managed 
by daily adjunctive administration of Cesamet (nabilone, a Δ9-
THC analogue) for 30 days (Maida et al., 2008). Similarly, a rand-
omized, double blind, placebo-controlled trial, which examined 
the therapeutic benefit of nabilone in terms of pain manage-
ment and quality of life improvement in patients with fibromy-
algia, identified significant pain relief and alleviation of anxiety 
symptoms after 4 weeks of therapy (Skrabek et  al., 2008). In 
addition, a retrospective evaluation investigating the efficacy of 
nabilone for the management of concurrent disorders in seri-
ously mentally ill correctional populations identified signifi-
cant amelioration of symptoms related to posttraumatic stress 
disorder as well as a subjective improvement in chronic pain 
(Cameron et al., 2014). Furthermore, a multicenter retrospective 

survey of patients with chronic central neuropathic pain or 
fibromyalgia who were prescribed oral Δ9-THC (dronabinol), sup-
plemental to existing medication, reported improved symptoms 
of both anxiety and depression after 7 months of treatment as 
assessed by the Hospital Anxiety and Depression Scale (Weber 
et al., 2009). Although Sativex (1:1 ratio of Δ9-THC:cannabidiol), 
indicated for resistant spasticity and pain in multiple sclero-
sis, has not yet been directly associated with significant mood 
changes, patients have reported improvements in overall qual-
ity of life following 16 weeks of treatment (Vermersch, 2011). In 
a separate randomized control clinical trial evaluating the effect 
of Sativex in patients with chronic painful diabetic neuropa-
thy, patients with comorbid depression displayed significant 
improvements in total pain score in comparison with nonde-
pressed counterparts (Selvarajah et  al., 2010). Collectively, the 
above studies suggest that when coexistent, both depression/
anxiety and pain respond to exogenously administered cannab-
inoids, although it remains to be determined if the effects are 
mediated by common or parallel mechanisms. Recent evidence 
has demonstrated enhanced amygdala activity and reduced 
functional connectivity between the amygdala and somatosen-
sory cortex correlate with Δ9-THC–mediated reductions in the 
unpleasantness to ongoing pain (Lee et  al., 2013), suggesting 
that the amygdala may provide a common neural circuit for the 
association between emotional responding and pain.

Preclinical Evidence

Despite numerous reports of altered endocannabinoid signal-
ing in various animal models of pain (Lim et  al., 2003; Zhang 
et al., 2003; Walczak et al., 2005; Mitrirattanakul et al., 2006) and 
mood-related behavior (Vinod et  al., 2012; Marco et  al., 2014; 
Navarria et al., 2014), there is limited direct evidence available 
identifying alterations in endocannabinoid function in animal 
models of coexistent depressive and pain behavior (Tables 2 and 

Table 1. Clinical Studies Demonstrating Effects of Cannabinoid-Based Therapies on Symptoms of Comorbid Depression and Pain

Drug
Pain  
Measurement

Depression/
Anxiety  
Measurement

Outcomes  
in Pain

Outcomes in  
Depression/
Anxiety Reference

HIV Cannabis Pilot
questionnaire

Pilot 
Questionnaire

muscle,
↓ nerve pain, 

headaches

↓ anxiety, 
depression

Woolridge 
et al. (2005)

Cancer pain Nabilone 
(Cesamet®)

ESAS MSE ESAS ↓ pain score, 
MSE

↓ anxiety, overall 
stress

Maida et al. 
(2008)

Fibromyalgia Nabilone VAS FIQ Anxiety ↓ pain ↓ anxiety Skrabek et al. 
(2008)

Mentally ill 
offenders

Nabilone Self-reported
 pain severity

PCL-C
GAF

↓ pain ↓ PTSD  
symptoms

Cameron et al. 
(2014)

Multiple sclerosis- 
related resistant 
spasticity

Sativex (Δ9-THC, 
cannabidiol)

NRS spasticity 
score

QOL ↓ spasticity ↑ QOL Vermersch 
(2011)

Chronic central 
neuropathic pain, 
fibromyalgia

Δ9-THC VRS, NRS, PDI SF-12, QLIP, 
HADS,

↓ pain, pain 
intensity

↑ QOL, depression,  
↓ anxiety

Weber et al. 
(2009)

Painful diabetic 
peripheral 
neuropathy

Sativex  (Δ9-THC, 
cannabidiol)

VAS HADS,
 QOL

↓ pain (only 
in patients 
with baseline 
depression)

↑ QOL Selvarajah 
et al. (2010)

Abbreviations: ESAS, Edmonton symptom assessment system; FIQ, fibromyalgia impact questionnaire; GAF, Global Assessment of Functioning; HADS, hospital anxi-

ety and depression scale; HIV, human immunodeficiency virus; MSE, morphine sulphate equivalent; NRS, numerical rating scale; PDI, pain disability index; PCL-C, 

Posttraumatic Checklist–Civilian version; PTSD, posttraumatic stress disorder; QLIP, quality of life; QOL, quality of life; SF-12, short form-12;VAS, visual analog scale; 

VRS, verbal rating scale.
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3). One of the first studies examining the role of the endocan-
nabinoid system in the interaction between affect and pain was 
conducted by Takahashi and colleagues (2003). In this study, out-
bred Swiss-albino mice were stratified into groups of anxious 
and nonanxious animals as determined by behavioral responses 
in the elevated plus maze, before subsequent exposure to intra-
plantar formalin administration (Takahashi et al., 2003). Despite 
the hypothesis that the degree of anxiety may contribute to the 
perception of and response to the noxious stimulus, both anx-
ious and nonanxious animals displayed comparable formalin-
evoked biphasic nociceptive profiles. Systemic pretreatment 
with Δ9-THC elicited an analgesic effect in both groups of ani-
mals, an effect blocked by systemic pretreatment with a CB1 
receptor antagonist, rimonabant (Takahashi et al., 2003). These 
data suggested that the endocannabinoid system (and in partic-
ular the CB1 receptor) may represent a potential treatment strat-
egy for inflammatory pain in the presence and/or absence of 
anxiety and possibly other neuropsychiatric disorders. However, 
it should be noted that direct activation of central CB1 receptors 
is responsible for the psychoactive effects of potent synthetic or 
plant-derived cannabinoids; thus potent, direct agonism of this 
receptor is unlikely to be therapeutically viable for pain and/
or psychiatric disorders. In comparison, modulation of endo-
cannabinoid tone by inhibiting enzymes responsible for their 
metabolism has been proposed to confer improved efficacy and 
safety relative to direct cannabinoid agonists.

The WKY rat is a genetically stress-sensitive strain of rat that 
exhibits a depression- and anxiety-related phenotype (Pare and 
Redei, 1993) and heightened nociceptive behavioral respond-
ing in several paradigms (Zeng et  al., 2008; Burke et  al., 2010). 
Characterization of the endocannabinoid system in WKY rats 
has revealed higher levels of FAAH and CB1 receptor coupling and 
lower levels of AEA in the frontal cortex and hippocampus when 
compared with Wistar rats (Vinod et  al., 2012). Furthermore, 
enhancing AEA tone by pharmacologically inhibiting FAAH activ-
ity resulted in an attenuation of depressive-like behavior (sucrose 
preference test and FST) in WKY rats (Vinod et al., 2012). Recent 
studies in our laboratory have identified alterations in the endo-
cannabinoid system concurrent with enhanced formalin-evoked 
nociceptive behavior in the WKY rat (Rea et al., 2014) (Table 2). 
More specifically, we found that in WKY rats, intraplantar admin-
istration of the noxious inflammatory pain stimulus formalin 
resulted in a significant reduction in AEA in the rostral ventro-
medial medulla (RVM), a component of the descending pain 
pathway synonymous with pain facilitation and/or inhibition, 
an effect that was not observed in Sprague Dawley (SD) coun-
terparts. Intraplantar administration of formalin increased levels 
of 2-AG in the RVM of SD rats, an effect not observed in WKY 
animals. Furthermore, exposure to formalin induced significant 
increases in mRNA expression of NAPE-PLD and diacylglycerol 
lipase-α, precursors of AEA and 2-AG, respectively, in the RVM of 
SD rats, an effect not observed in the WKY strain. Pharmacological 

Table 2. Endocannabinoid-Mediated Effects/Changes on Affective and Nociceptive Behavior in Animal Models

Depression/
Affective Model Nociceptive Effects Cannabinoid-based drugs

Endocannabinoid-related 
changes/effects Reference

Anxiety-stratified 
(EPM), mouse

↑ formalin-evoked
nociceptive responding 

in anxious and non- 
anxious

Δ9-THC 
Rimonabant

CB1/2 agonist 
CB1 
antagonist

Δ9-THC ↓ nociception in both 
anxious and non-anxious 
mice,

Rimonabant blocked effects 
of Δ9-THC

Takahashdi 
et al. (2003)

WKY rat ↑ formalin-evoked
nociceptive responding

URB597
AM251

FAAH 
inhibitor

CB1 antagonist

Formalin-induced ↓ AEA in 
RVM,

No formalin-induced ↑ 2-AG,
NAPE-PLD or DAGL-α in RVM 

(compared with SD)
Systemic URB597 ↓ 

nociception 
Systemic AM251 ↑ 

nociception
AM251 within RVM blocked 

effect of URB597

Rea et al. 
(2014)

Repeated FST in SD 
and WKY rat

Stress ↓ formalin- 
evoked nociceptive 
responding in SD

Stress ↓ formalin- 
evoked nociceptive 
responding in WKY

↑ MAGL mRNA in spinal cord 
of SD

↓ AEA in amygdala of SD
No change in MAGL mRNA in 

spinal cord of WKY
No change AEA in amygdala 

of WKY

Jennings 
et al. (2015)

CUS, mouse ↓ latency to respond 
in HPT

URB597 JZL184 FAAH 
inhibitor, 
MAGL 
inhibitor

URB597 ↓ anxiety (EPM, LD)
JZL184 ↓ anxiety (LD)
Both ↓ thermal hyperalgesia

Lomazzo 
et al. (2015)

CUS, mouse Chronic mechanical 
hyperalgesia following 
NGF

URB597 JZL184 FAAH 
inhibitor, 
MAGL 
inhibitor

URB597 ↓ hyperalgesia
No change with JZL184

Lomazzo 
et al. (2015)

Abbreviations: AEA, anandamide; 2-AG, 2-arachidonoylglycerol; CUS, chronic unpredicted stress; EPM, elevated plus maze; FAAH, fatty acid amino hydrolase; DAGL-α, 

diacylglycerol lipase-alpha; HPT, hot plate test; LD, light-dark box; MAGL, monoacylglycerol lipase; NAPE-PLD, N-acyl phosphatidylethanolamine-specific phospholi-

pase D; NGF, nerve growth factor; RVM, rostral ventromedial medulla; SD, Sprague Dawley; WKY, Wistar-Kyoto.
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studies were carried out to evaluate the functional significance 
of the alterations in the endocannabinoid system in WKY rats 
in response to formalin. Enhancing endogenous AEA tone fol-
lowing systemic administration of the FAAH inhibitor URB597 
attenuated formalin-evoked hyperalgesic responding in WKY 
rats, while in comparison, CB1 receptor antagonism was associ-
ated with augmentation of nociceptive responding. Furthermore, 
CB1 receptor blockade within the RVM attenuated the reduction 
in nociceptive behavior induced by URB597 in WKY rats. In com-
parison, pharmacological manipulation of the endocannabinoid 
system in SD rats did not alter formalin-evoked nociceptive 
responding (Rea et al., 2014). These findings indicate a causative 
role of endocannabinoid dysregulation in hyperalgesic behavior 
associated with negative affect, and moreover identify a role for 
AEA-induced activation of CB1 receptors in the RVM as a media-
tor of pain suppression in animal subjects predisposed to anxiety 
and depression. In addition to its role in influencing responsivity 
of WKY rats to noxious stimuli in the absence of stress, we have 
also shown very recently that the endocannabinoid system may 
also play a role in the differential effects of repeated homotypic 
stress on inflammatory pain-related behavior in WKY vs SD rats 
(Jennings et al., 2015). Specifically, repeated forced swim stress 
exposure prolonged and attenuated formalin-evoked nocicep-
tive behavior in SD and WKY rats, respectively. These behavioral 
alterations were accompanied by differential effects of stress on 
AEA levels in the amygdala and MAGL expression in the spinal 
cord between SD and WKY rats (Jennings et al., 2015). These data 
indicate that changes in the tone of the endocannabinoid system 
in the amygdala and spinal cord may underlie the differential 
effects of stress on inflammatory pain behavior between SD and 
WKY rats.

The chronic unpredictable stress (CUS) model of depression 
has been shown to exhibit thermal hyperalgesia in the hotplate 
test (Lomazzo et  al., 2015), cold allodynia (Bravo et  al., 2012), 
exacerbated trigeminovascular nociception (Zhang et al., 2013), 
inflammatory hyperalgesia in response to formalin adminis-
tration (Shi et  al., 2010), and persistent mechanical hyperal-
gesia following nerve growth factor administration (Lomazzo 
et al., 2015). Exposure to CUS has been shown to result in site-
specific alterations in the endocannabinoid system, notably a 
downregulation of CB1 receptors, reduction in 2-AG levels and 
increased FAAH levels in the hippocampus (Hill et  al., 2005; 
Reich et al., 2009), an increase in CB1 receptor mRNA expression 
in prefrontal cortex and decrease in expression in the midbrain 
(Bortolato et  al., 2007), a decrease in CB1 receptor density in 
the hypothalamus and striatum and increased CB1 receptor 
density in the prefrontal cortex (Hill et al., 2008a; McLaughlin 
et al., 2013), a reduction in 2-AG–mediated retrograde synaptic 
transmission in the hippocampus (Zhong et  al., 2014), and a 
reduction in AEA levels in the hypothalamus, prefrontal cortex, 
hippocampus, and striatum (Hill et al., 2008a). Depressive-like 
behaviors in the CUS model have been shown to be attenu-
ated by endocannabinoid-modulating pharmacological agents, 
including the MAGL inhibitor JZL184 (Zhong et  al., 2014; 
Zhang et al., 2015). Only one study to date has examined the 
effect of endocannabinoid modulation on affective and pain 
responding in CUS-exposed mice. Pretreatment with the FAAH 
inhibitor, URB597, or MAGL inhibitor, JZL184, which enhanced 
endogenous levels of AEA and 2-AG, respectively, significantly 
attenuated CUS-induced anxiety-related behavior in the light-
dark box and concurrent thermal hyperalgesia (Lomazzo et al., 
2015). Long-lasting widespread mechanical hyperalgesia, 

Table 3. Endocannabinoid-Mediated Effects/Changes on Affective and Nociceptive Behavior in Animal Models of Pain

Pain Model
Depressive  
Effects  Cannabinoid-Based Drugs

Endocannabinoid-Related 
Changes/Effects Reference

PNL, mouse ↑ Anxiety in LD 
and Zero Maze

↓ Sucrose 
Preference in 
CB1

-/- mice only

Anxiety and depressive 
effects

only in CB1
-/- mice

Racz et al. 
(2015)

Monosodium 
iodoacetate, 
mouse

↑ Anxiety in EPM
Memory 

impairment 
in object 
recognition 
memory task

ACEA
JWH133

CB1 agonist
CB2 agonist

↑ anxiety in CB1
-/- mice

no anxiety in CB2
-/- mice

ACEA and JWH133 ↓ 
mechanical allodynia and 
anxiety

ACEA ↓ memory impairment

La Porta et al. 
(2015)

CCI, rat ↑ Immobility in 
FST

GW405833 CB2 agonist GW405833 ↓ mechanical 
hyperalgesia

GW405833 ↓ immobility

Hu et al. 
(2009)

Acid-stimulated 
stretching, rat

↓ Food intake
↓ ICSS

Δ9-THC,
CP55940

CB1/2 agonist
CB1/2 agonist

Both blocked stretching
Both exacerbated ↓ ICSS
No effect on feeding

Kwilacz et al. 
(2012)

Acid-stimulated 
stretching, rat

↓ ICSS URB597
Rimonabant
SR144528

FAAH inhibitor
CB1 antagonist
CB2 antagonist

URB597 ↓ stretching; blocked 
by rimonabant,

URB597 induced delayed 
partial attenuation of 
ICSS - not attenuated by 
rimonabant or

SR144528

Kwilacz et al. 
(2014)

Abbreviations: CCI, chronic constrictive injury; CFA, complete Freud’s adjuvant; EPM, elevated plus maze; FAAH, fatty acid amino hydrolase; FST, forced swim test; 

ICSS, intracranial self-stimulation; LD, light-dark box; MBT, marble burying test; PNL, partial sciatic nerve ligation.



Fitzgibbon et al. | 7

induced by intramuscular administration of nerve growth 
factor to CUS rats, was effectively reduced by URB597, but 
not JZL184 (Lomazzo et al., 2015). These data demonstrate an 
important role for AEA signaling in anxiety- and pain-related 
behavior in stress-exposed mice.

In addition to the evidence supporting a role for the endo-
cannabinoid system in enhanced nociception observed in 
models of depression, alterations in endocannabinoid signal-
ing have also been observed in animal models of chronic pain 
with comorbid alteration in affective responding (Table  3). 
A  recent report by Racz and colleagues (2015) has revealed a 
prominent role of CB1-mediated events in affective behavior 
induced by neuropathic pain. In this study, partial sciatic nerve 
ligation (PNL) was employed to induce a model of neuropathic 
pain in wild-type and CB1

-/- mice. Wild-type and CB1
-/- mice 

exhibited mechanical allodynia following PNL. However, evalu-
ation of anxiety- (light-dark test and the elevated zero-maze) 
and depressive-like (sucrose preference test) behavior 4 to 7 
weeks following PNL revealed deficits in affective responding 
in CB1

-/-, but not wild-type, mice (Racz et al., 2015). Thus, these 
data demonstrate that functionally active CB1 receptors con-
fer resilience to pain-related anxiety/depression, highlighting 
a protective role for CB1 receptors against the emotional con-
sequences of neuropathic pain. In a similar fashion, La Porta 
et al. (2015) recently investigated the role of the endocannabi-
noid system in affective and cognitive manifestations in an 
animal model of osteoarthritis. This study revealed that the 
anxiety-related behavior of osteoarthritic mice, identified in 
the elevated plus maze, was enhanced in CB1

-/- and absent in 
CB2

-/- mice, indicating differential effects of CB1 and CB2 recep-
tors in mediating the affective dimension of pain in the model. 
Similar to effects in a neuropathic model (Racz et  al., 2015), 
the data would indicate that CB1 receptors confer resilience, 
while CB2 receptors confer susceptibility to the development 
of arthritis-related anxiety. The authors suggest and provide 
some support that the differential effects of CB1 and CB2 recep-
tors may be mediated by alterations in HPA axis functionality 
and responses (La Porta et al., 2015). In addition, this study also 
demonstrated that acute pharmacological blockade of CB1 or 
CB2 receptors ameliorated both the nociceptive and affective 
dimension of pain in the model (La Porta et  al., 2015). Taken 
together, the data suggest that cortico-limbic endocannabinoid 
signaling is a key modulator of different osteoarthritis pain 
manifestations.

Only one study to date has investigated the role of CB2 recep-
tors in the interaction between neuropathic pain and affective 
behavior. The chronic constriction injury model of neuropathic 
pain results in mechanical hypersensitivity and depressive-like 
behavior (immobility in the FST) in mice (Hu et al., 2009). Both 
depressive-like behavior and mechanical hyperalgesia following 
constriction injury were significantly attenuated by systemic 
administration of the CB2 receptor agonist GW405833, effects 
that were not observed in sham-operated animals. Furthermore, 
such behavioral effects were superior to administration of a tri-
cyclic antidepressant, first line treatment for depression and 
chronic pain (Hu et al., 2009). The precise mechanism by which 
CB2 receptor agonism may elicit analgesic and antidepressant-
like effects was not evaluated; however, given the well-recog-
nized role for inflammatory processes in mediating chronic 
pain, it is possible that CB2 receptor activation attenuates such 
responses, preventing the development of central sensitization 
and mechanical allodynia and the associated increase in neu-
ronal input to affective supraspinal sites. Further studies are 
required to evaluate this theory.

Intraperitoneal administration of a dilute concentration 
of lactic or acetic acid has been shown to induce abdominal 
stretching/writhing (visceral pain behavior), an effect asso-
ciated with a reduction in feeding and hedonic behaviors 
(pain-depressed behavior). Evaluation of the role of the endo-
cannabinoid system in mediating pain-stimulated and pain-
depressed/suppressed responses in this model has revealed 
that genetic antagonism of CB1 receptors enhances acid-
induced writhing (visceral pain stimulated behavior) and aug-
ments acid-induced reductions in feeding (Miller et al., 2011). 
In contrast, CB1 receptor agonism using Δ9-THC and CP55940 
dose dependently inhibits acid-stimulated stretching while 
eliciting either no effect (Miller et  al., 2012) or exacerbating 
(Kwilasz and Negus, 2012) acid-induced depression of feeding 
and scheduled controlled/intracranial self-stimulation in rats. 
Thus, under these conditions, potent synthetic cannabinoids 
such as Δ9-THC and CP55940 may elicit differential effects on 
visceral pain (attenuated) and pain-related depressive (exacer-
bated) behavior. However, the FAAH inhibitor URB597 exhibits a 
dose-related and CB1 receptor-mediated decrease in acid-stim-
ulated stretching and suppression of feeding (Miller et al., 2012; 
Kwilasz et al., 2014). Furthermore, URB597 also elicits a delayed 
but significant attenuation of acid-induced suppression of 
intracranial self stimulation, an effect occurring independent 
of CB1 or CB2 mediation (Kwilasz et al., 2014). Taken together, 
these data indicate a role for CB1 receptors in mediating acid-
induced visceral pain, with a possible common and/or alter-
native endocannabinoid mechanism mediating the associated 
anhedonic/depressive-like behavior.

Overall, despite the limited data, evidence suggests a promi-
nent role for the endocannabinoid system in the interaction 
between depression and pain, although whether the effects are 
mediated by the same or parallel neuroanatomical pathways 
remains to be determined.

Mechanisms By Which The 
Endocannabinoid System May Modulate 
Depression And Pain Interactions

While the exact mechanism(s) by which the endocannabinoid 
system may influence emotional and nociceptive processing 
remains undetermined, this system is known to elicit potent 
modulatory effects on neurotransmission, neuroendocrine, and 
inflammatory processes, all known to be altered in both depres-
sion and chronic pain. Presented here is an overview of how the 
endocannabinoid system may modulate affective and pain pro-
cessing via interacting with these systems.

Neurotransmitters

GABA and Glutamate
GABA- and glutamatergic neurotransmission are well recog-
nized as important mediators in affect and nociceptive process-
ing, and alterations in these systems have been demonstrated in 
both depression and chronic pain (for review, see Kendell et al., 
2005; Rea et al., 2007). There are an increasing number of stud-
ies demonstrating that glutamatergic and GABAergic signaling 
play an important role in mediating the depressive symptoms 
associated with chronic pain. For example, ketamine, an NMDA 
receptor antagonist, attenuated depressive-like behavior follow-
ing spared nerve injury without altering injury-induced hyper-
sensitivity (Wang et al., 2011), while AMPAkines (which augment 
AMPA receptor function) have been shown to attenuate both 
pain hypersensitivity and associated depressive-like behavior 



8 | International Journal of Neuropsychopharmacology, 2016

in models of chronic inflammatory and neuropathic pain (Le 
et al., 2014). Furthermore, facilitation of glutamatergic transmis-
sion through AMPA receptors in the nucleus accumbens, a brain 
region involved in reward, resulted in attenuation of depression-
like behavior in an animal model of neuropathic pain (Goffer 
et  al., 2013). Despite a recognized role for the GABAergic sys-
tem in emotional and pain processes, to our knowledge few 
studies have investigated the role of this system in affect-pain 
interactions to date. One such study has reported that GABAA 
receptor activation in the RVM blocked formalin-induced hyper-
algesia produced upon removal from an aversive elevated plus 
maze (stressor) (Cornelio et  al., 2012). In addition, Quintero 
and colleagues (2011) have also identified that repeated forced 
swim stress-induced inflammatory hyperalgesia is initiated by 
decreased and delayed GABA release and GABAA receptor activa-
tion and maintained by increased glutamate release and NMDA 
activation at the spinal cord level (Suarez-Roca et al., 2008).

CB1 receptors are expressed at a particularly high density on 
presynaptic nerve terminals of GABAergic and glutamatergic 
synapses in cortical and limbic areas of the brain associated with 
stress, emotional response, and pain modulation (Herkenham 
et al., 1990; Katona et al., 2001; Domenici et al., 2006; Wittmann 
et al., 2007). Endocannabinoids have been shown to exert behav-
ioral effects via CB1 receptor agonism and resultant presynaptic 
inhibition of GABAergic and glutamatergic transmission (Meng 
et  al., 1998; Millan, 2002) in supraspinal and spinal regions 
(Ulugol, 2014). In addition, glutamatergic neurotransmission is 
known to enhance endocannabinoid formation and subsequent 
CB1 receptor activation (Galante and Diana, 2004). Thus, complex 
bidirectional interaction exists between the endocannabinoid-
glutamatergic-GABAergic systems. Several studies have demon-
strated that CB1 modulation of GABAergic signaling is important 
in nociceptive (Manning et al., 2003; Naderi et al., 2005; Pernia-
Andrade et al., 2009) and emotional (Haller et al., 2007; Naderi 
et al., 2008; Rossi et al., 2010; Rey et al., 2012; Reich et al., 2013) 
processing. Although it would appear intuitive, it is unknown if 
endocannabinoid modulation of GABA and/or glutamate plays a 
role in depression-pain interactions. However, we have demon-
strated that CB1 receptors play an important role in mediating 
analgesia in response to acute stress (contextual fear condition-
ing) (Finn et al., 2004; Butler et al., 2008) and demonstrated an 
important role for GABAergic and glutamatergic signaling in the 
basolateral amygdala in mediating this effect (Rea et al., 2014). 
Thus, endocannabinoid modulation of GABAergic and gluta-
matergic tone can mediate stress-pain interactions and there-
fore may play a prominent role in coexistent psychiatric and 
pain disorders.

Monoamines
In addition to the treatment of depression, monoamine-based 
antidepressants are now regarded as first-line therapy for fibro-
myalgia and neuropathic pain. The monoaminergic system has 
been proposed as a common neural substrate for depression-
pain associations. In accordance, a number of preclinical studies 
have demonstrated beneficial effects of modulating monoam-
inergic tone on depression associated with chronic pain and 
vice versa. For example, recent studies have demonstrated that 
chronic administration of 3-(4-fluorophenylselenyl)-2,5-diphe-
nylselenophene, which increases serotonergic neurotransmis-
sion by inhibiting presynaptic serotonin transport, attenuates 
mechanical allodynia and depressive-like behavior in an ani-
mal model of neuropathic pain (Gai et al., 2014). Furthermore, 
chronic imipramine treatment reduces depressive-like behavior, 
but not hyperalgesia, in a rat model of neuropathic pain, effects 

mediated by increasing the neurotrophin BDNF (Yasuda et al., 
2014). In addition, direct administration of a BDNF inducer (4-MC) 
into the brain attenuated thermal hyperalgesia and depressive-
like behavior following nerve injury (Fukuhara et  al., 2012; 
Ishikawa et al., 2014). The spinal serotonergic system has been 
shown to participate in the thermal hyperalgesia response in 
an animal model of depression, the olfactory bulbectomized rat 
(Rodriguez-Gaztelumendi et al., 2014). We have shown recently 
chronic amitriptyline treatment elicits an antidepressant-like 
effect and potently attenuates nerve injury-induced mechani-
cal and cold allodynia in the bulbectomy model of depression 
(Burke et al., 2015). Thus, enhancing monoaminergic tone, and 
consequently central BDNF expression, modulates pain-depres-
sion behaviors.

Several lines of evidence have demonstrated that chronic 
antidepressant administration modulates endocannabinoid 
signaling (Hill et al., 2006, 2008b; Mato et al., 2010; Smaga et al., 
2014), which underlie at least in part the mechanism by which 
these pharmacological agents modulate affective and noci-
ceptive processes. Furthermore, endocannabinoid-induced 
modulation of serotonergic, noradrenergic, and dopaminergic 
transmission has been thoroughly investigated in several excel-
lent reviews (Haj-Dahmane and Shen, 2011; Melis and Pistis, 
2012; Kirilly et al., 2013). CB1 receptors are highly expressed on 
serotonergic, noradrenergic, and dopaminergic neurons and 
play an important role in the regulation of monoaminergic activ-
ity. Local and systemic administration of exogenous CB1 recep-
tor agonists significantly increases serotonin (Bambico et  al., 
2007), noradrenaline (Jentsch et  al., 1997; Oropeza et  al., 2005; 
Page et al., 2007, 2008), and dopamine (Cheer et al., 2004; Solinas 
et al., 2006) levels in discrete brain regions that mediate emo-
tional and nociceptive processing. Increasing endogenous levels 
of AEA and 2-AG through systemic administration of FAAH or 
MAGL inhibitors, respectively, has also been shown to enhance 
serotonergic and dopaminergic activity (Gobbi et al., 2005; Seif 
et al., 2011), and FAAH inhibition in the PFC increases seroton-
ergic neuronal firing in the dorsal raphe nucleus (McLaughlin 
et al., 2012). In addition, endocannabinoids can inhibit the activ-
ity of monoamine oxidase (Fisar, 2010), the enzyme responsible 
for the metabolism of monoamines, which may also contrib-
ute to the increasing synaptic availability of the monoamines. 
Endocannabinoid activation of the CB1 receptor has been shown 
to control the function and expression of specific serotonin 
receptors, namely 5-HT1A, 5-HT2A, and 5-HT2C, in discrete regions 
of the CNS (Aso et  al., 2009; Moranta et  al., 2009; Zavitsanou 
et  al., 2010; Franklin et  al., 2013). Furthermore, spinal noradr-
energic depletion is associated with compromised analgesic 
effects of CB1 agonism on formalin-evoked inflammatory pain 
(Gutierrez et al., 2003), while CB1 receptor activation results in 
attenuation of enhanced serotonergic firing in the dorsal raphe 
following nerve injury, an effects accompanied by antinoci-
ception (Palazzo et  al., 2006). Taken together, these data dem-
onstrate that cannabinoids modulate nociceptive tone, in part 
through modulation of noradrenergic and serotonergic systems. 
Thus, endocannabinoid-induced enhancement of monoamin-
ergic tone may modulate emotional and nociceptive processes 
and thus the interaction between depression and pain.

Opioids
Numerous studies have characterized the causative role and 
therapeutic potential of opioidergic signaling in affective and 
nociceptive processing (for review, see Maletic and Raison, 
2009; Lutz and Kieffer, 2013). Furthermore, alterations in opi-
oid signaling in key brain regions such as the amygdala have 
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been reported in a chronic pain model that exhibits comorbid 
anxiety-related behavior (Narita et  al., 2006). Acute morphine 
administration attenuated both mechanical allodynia and anx-
iety-related behavior in the complete Freund’s adjuvant model 
of inflammatory pain (Parent et  al., 2012). A  very substantial 
body of evidence is now available to suggest that the endocan-
nabinoid and opioidergic systems interact in therapeutically 
beneficial ways. CB1 and µ-opioid receptors are highly colocal-
ized on neurons in areas of the brain associated with emotional 
and pain processing such as the caudate putamen, periaque-
ductal gray, and spinal cord (Rodriguez et al., 2001; Salio et al., 
2001; Wilson-Poe et al., 2012). Coadministration of opioids and 
cannabinoids results in synergistic and bidirectional antino-
ciceptive effects in several animal models (Cichewicz et  al., 
1999; Cichewicz and McCarthy, 2003; Tham et al., 2005; Roberts 
et  al., 2006; Smith et  al., 2007; Wilson et  al., 2008; Wilson-Poe 
et al., 2013). In addition, increasing endocannabinoid tone has 
been shown to attenuate withdrawal symptoms in morphine-
dependent animals (Smith et  al., 2007; Wilson et  al., 2008; 
Shahidi and Hasanein, 2011). Interestingly, cross tolerance also 
exists between these neuromodulatory systems. For example, 
decreases in the analgesic effects of Δ9-THC have been identi-
fied in morphine-tolerant animals and vice versa (Thorat and 
Bhargava, 1994). Furthermore, inhibition of opioid signalling (via 
ĸ-opioid receptors) attenuates the antidepressant-like effect 
of rimonabant (CB1 receptor antagonist/inverse agonist) in the 
FST (Lockie et al., 2011), and conversely the antidepressant-like 
effects of ĸ-opioid receptor antagonism are attenuated by the 
CB1 receptor antagonist/inverse agonist AM251 (Braida et  al., 
2009). Although further studies are required, collectively these 
findings suggest a regulatory role of the endocannabinoid sys-
tem on opioid transmission, which may underlie the mainte-
nance of coexistent depression-pain processes.

Neuroendocrine Activity – HPA Axis

Dysregulation of the HPA axis has been implicated in the patho-
physiology of both depression and pain disorders for decades 
(for review, see Bomholt et  al., 2004; Vierck, 2006; Maric and 
Adzic, 2013; Belvederi Murri et al., 2014) and thus has also been 
proposed as a possible mediator in the depression-pain dyad 
(for review, see Blackburn-Munro, 2004). Several clinical stud-
ies have identified altered HPA axis activity in patients exhib-
iting symptoms of both depression and pain. For example, a 
cross-sectional study of patients with advanced breast cancer 
revealed increasing plasma cortisol levels that positively corre-
lated with symptoms of depression and pain (Thornton et al., 
2010). However in patients with fibromyalgia, enhanced corti-
sol release and dysregulation of HPA function associates with 
depressive, but not pain, symptoms, implying possible diverg-
ing mechanisms for both affective and nociceptive processing 
in this condition (Wingenfeld et al., 2010). Preclinical evidence 
of this reciprocity is also evident in an experimental model of 
gastritis, which is associated with gastrointestinal inflamma-
tion, pain, and anxiety- and depressive-like behaviors in rats 
(Luo et al., 2013). These behavioral alterations are accompanied 
by dysregulation of the HPA axis, characterized by increased 
expression of corticotrophin-releasing factor (CRF) mRNA and 
reduced expression of glucocorticoid receptor in the hypothala-
mus and increased plasma levels of corticosterone (Luo et al., 
2013). Increased expression of CRF has also been reported in 
the paraventricular nucleus of the hypothalamus and dorsal 
raphe nucleus of WKY rats and animals preexposed to neonatal 
maternal separation, respectively (Bravo et al., 2011), two models 

of depression and associated hyperalgesia. Pharmacological 
blockade of CRF1 following intraamygdalar infusion of the 
CRF1 antagonist CP376395 inhibits hyperalgesic responding to 
colorectal distention in WKY rats, an effect not observed fol-
lowing glucocorticoid receptor or mineralocorticoid receptor 
antagonism (Johnson et al., 2012). Furthermore, the hyperalge-
sic visceromotor response to phasic colorectal distension fol-
lowing repeated water avoidance stress has been shown to be 
attenuated by CRF1 antagonism (Larauche et al., 2008). In addi-
tion, systemic or intraamygdalar injection of the CRF1 receptor 
antagonist NBI27914 blocks anxiety-related and nocifensive 
behavior in a rat model of arthritis (Ji et al., 2007). Thus, the CRF-
HPA stress axis has been shown to play a key role in affective 
and/or nociceptive processing.

Several lines of evidence now support an important role 
for the endocannabinoid system as a modulator of HPA axis 
function and vice versa (for review, see Finn, 2010; Riebe and 
Wotjak, 2011; Hill and Tasker, 2012). The majority of evidence 
collated to date would suggest that basal HPA activity is under 
tonic inhibitory control by CB1 receptors. This has been shown 
in numerous reports where genetic deletion or pharmacologi-
cal blockade of the CB1 receptor in vivo enhances expression of 
CRF and reduces glucocorticoid receptor expression in the hypo-
thalamus and pituitary gland, respectively (Cota et  al., 2007), 
and increases circulating levels of corticosterone and adreno-
corticotropic hormone (Barna et  al., 2004; Cota et  al., 2007; 
Steiner et al., 2008). In addition, stress-induced increases in CRF 
expression in the paraventricular nucleus of the hypothalamus 
and the basolateral amygdala, as well as corticosterone secre-
tion, are effectively blocked by pharmacological enhancement 
of endocannabinoid levels (Patel et  al., 2004; Hill et  al., 2009a; 
Bedse et al., 2014; Roberts et al., 2014), thus implying a role for 
endocannabinoid-CB1 receptor signaling in diminished hyperac-
tivity of the HPA axis. Furthermore, recent evidence has shown 
that CRF1 activation in the amygdala induces FAAH and reduces 
AEA levels, an effect associated with anxiety-related behavior 
(Gray et al., 2015). Given the important role of the amygdala in 
affective modulation of pain, it is possible that CRF-mediated 
FAAH activation in this region may also modulate nociceptive 
possessing and associated emotional alterations. While there 
have been a few studies examining endocannabinoid-HPA axis 
effects in mediating the effects of the stress response (Hill et al., 
2011; Roberts et al., 2014), to date no study has investigated if 
cannabinoid-mediated alterations of the HPA axis underlie 
alterations in nociceptive and/or affective behavior observed in 
depression-pain comorbidity.

Neuro-Inflammatory Processes

Increasing evidence indicates a potent and prominent interac-
tion between inflammation, depression, and pain (for review, 
see Walker et al., 2014). For instance, there is a high prevalence 
of depression among patients with inflammatory pain disor-
ders such as fibromyalgia, arthritis, and irritable bowel disorder 
(Kappelman et al., 2014; Scheidt et al., 2014; Lin et al., 2015). In 
addition, patients receiving cytokine therapy for specific cancers 
and malignancies also develop depressive and/or painful symp-
tomatology (Capuron and Ravaud, 1999; Capuron et  al., 2001; 
Nogueira et al., 2012). Furthermore, increases in serum and cer-
ebrospinal fluid levels of proinflammatory cytokines have been 
widely reported in both depression (Tuglu et al., 2003; Knuth et al., 
2014; Bay-Richter et al., 2015) and pain conditions (Koch et al., 
2007; Ludwig et al., 2008; Kadetoff et al., 2012). Inflammatory pro-
cesses have also been shown to underlie the interaction between 
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depression and pain in several animal models. For instance, 
increased expression of proinflammatory cytokines, concomi-
tant with depressive-like behavior, has been identified in animal 
models of inflammatory (Kim et al., 2012; Maciel et al., 2013) and 
neuropathic (Norman et  al., 2010; Burke et  al., 2014; Dellarole 
et  al., 2014; Zhou et  al., 2015) pain. The innate inflammatory 
cascade has been shown to increase glutamate neurotransmis-
sion, central sensitization, and excitotoxicity, reduce BDNF and 
neurogenesis, and activate neurodegenerative cascades, events 
observed in both depression and pain conditions (for review, 
see Dantzer et al., 2011; Maes et al., 2011; Song and Wang, 2011; 
Zunszain et al., 2013; Walker et al., 2014).

Over the past decade, a wealth of data has demonstrated 
an important role for the endocannabinoid system in modulat-
ing innate immune function and inflammatory processes (for 
review, see Alhouayek and Muccioli, 2012; Zajkowska et al., 2014; 
Henry et al., 2015). Interactions between the endocannabinoid 
system and inflammatory mediators has been shown to influ-
ence synaptic transmission and neuronal function (Rossi et al., 
2014). Spinal cord injury has been shown to be associated with 
increased coexpression of CB1 receptors with chemokines CCL2, 
CCL3, and/or CCR2 in the hippocampus, thalamus, and periaq-
ueductal grey, areas associated with affective pain responding 
(Knerlich-Lukoschus et al., 2011), and studies have also demon-
strated that CB1-chemokine interactions in the periaqueductal 
grey can modulate nociceptive responding (Benamar et  al., 
2008). Pharmacological enhancement of endocannabinoid tone 
also modulates inflammatory effects in vivo. For example, the 
FAAH inhibitor URB597 and the MAGL inhibitor JZL184 attenu-
ate inflammation-induced astrocyte and microglial activa-
tion (Katz et al., 2015) and neuroinflammatory processes (Kerr 
et  al., 2012, 2013; Henry et  al., 2014). Furthermore, Zoppi and 
colleagues (2011, 2014) have demonstrated that pharmacologi-
cal activation of CB1 or CB2 receptors attenuates, while genetic 
deletion of these receptors augments, repeated stress-induced 
proinflammatory responses in the frontal cortex. In addition, 
several studies have demonstrated that the analgesic effects 
of cannabinoids in chronic inflammatory and neuropathic pain 
are at least partially mediated by modulation of inflammatory 
responses (Burgos et  al., 2012; Wilkerson et  al., 2012; Burston 
et al., 2013; Lu et al., 2015). While there are no studies to date 
investigating if cannabinoid modulation of inflammatory pro-
cesses underlies coexistent depressive and pain behavior, the 
above findings suggest a potential role for cannabinoid-medi-
ated immunomodulation in the pathogenesis and treatment of 
co-occurring depression and pain.

Conclusion and Future Directions

This review has provided an overview of the clinical and preclinical 
evidence supporting an association between depression and pain 
and vice versa. While a number of neural substrates have been 
proposed to underlie this association, this review provides a syn-
thesis of the data supporting the contention that comorbid depres-
sion and pain may be mediated at least in part via dysregulation 
of the endocannabinoid system. Targeting the endocannabinoid 
system for therapeutic benefit has been an ever-expanding area 
of research with more than 150 clinical trials during the past dec-
ade evaluating the effects of cannabinoids in pain and psychiatric 
disorders (International Clinical Trials Registry Platform). While no 
study to date has specifically evaluated the effects of cannabinoids 
on depression-pain comorbidity, several have examined effects on 
mood and quality of life in patients receiving cannabinoid-based 
pharmaceuticals for analgesic purposes (Maida et al., 2008; Skrabek 

et al., 2008; Weber et al., 2009; Cameron et al., 2014), providing a 
basis for further study in this area. However, many of these can-
nabinoids are potent CB1 receptor agonists (Δ9-THC derivatives), 
an effect that may limit their usefulness in psychiatric conditions 
due to the associated adverse CNS effects. Cannabidiol has been 
shown to limit the adverse CNS effects associated with CB1 recep-
tor agonists, and Sativex (1:1 Δ9-THC:cannabidiol) has been shown 
to reduce chronic pain and improve mood (Selvarajah et al., 2010; 
Vermersch, 2011). Thus, combination therapy may be a beneficial 
treatment strategy for depression-pain comorbidity. As highlighted 
throughout this review, modulation of endogenous cannabinoid 
tone provides an alternative to direct CB1 receptor agonism and 
although still in the early stages of clinical investigation, FAAH 
inhibitors such as PF-04457845 have demonstrated safety and tol-
erability in patients, although no effect on pain associated with 
osteoarthritis was reported (Huggins et  al., 2012). However, this 
inhibitor is currently under clinical investigation for treatment of 
cannabis withdrawal, PTSD, and Tourette syndrome (International 
Clinical Trials Registry Platform), the results from which will pro-
vide important clinical data on the effect of FAAH inhibition on 
affective responding. Further clinical studies will provide greater 
insight into alterations and the role of the endocannabinoid sys-
tem in the association between depression and pain.

Preclinical models that encapsulate the clinical scenario are 
particularly useful in gaining greater understanding of the neu-
robiology underlying depression-pain interactions. This review 
has presented the evidence to date demonstrating alterations in 
various components of the endocannabinoid system in models of 
depression-pain comorbidity and highlighted a particular role for 
AEA and CB1 receptors in mediating and modulating the affective 
and nociceptive processes in these models. However, research in 
this area is still in its infancy, and this review highlights the gaps 
in the knowledge and outstanding questions that remain to be 
addressed. For example, there have been limited data examining 
the role of other components of the endocannabinoid system on 
depression-pain interactions (2-AG, CB2, peroxisome proliferator-
activated receptors, etc.), whether the endocannabinoid modula-
tion of affect and nociception occur through the same or parallel 
pathways, and the mechanism by which the endocannabinoid 
system may mediate its effects (neurotransmitters, HPA axis, 
inflammation, or a combination). Furthermore, it is unknown if 
the role of the endocannabinoid system in chronic pain associ-
ated with depression is the same or different from altered affec-
tive processing associated with chronic pain conditions. Such 
studies are essential if we are to move towards a more compre-
hensive understanding of the neurobiology underlying the asso-
ciation between these pain and depression and fully explore the 
potential clinical efficacy of targeting the endocannabinoid sys-
tem for resolution of these comorbid conditions.
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